File size: 5,336 Bytes
3c4e9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fa6f8
3c4e9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dfb890
3c4e9d2
 
 
 
3dfb890
3c4e9d2
 
 
 
 
3dfb890
3c4e9d2
3dfb890
3c4e9d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from __future__ import annotations

import numpy as np
import gradio as gr
import pandas as pd
import plotly.graph_objects as go
from sklearn.model_selection import train_test_split

import utils


def app_fn(
    formula_str: str, 
    n_samples: int, 
    lower: float,
    upper: float,
    learning_rate: float,
    n_estimators: int,
    max_depth: int,
):  
    # Generating Data
    x_range = [0, 10]
    seed = 42
    gen = utils.DataGenerator(formula_str, x_range=x_range, n_samples=n_samples, seed=seed)
    X = gen.X
    y = gen.y
    y_raw = gen.y_raw

    # Splitting Data
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=seed)

    # Model Parameters
    model_kwargs = {
        "learning_rate": learning_rate,
        "n_estimators": n_estimators,
        "max_depth": max_depth,
    }

    # Ftting Interval Model
    model_interval = utils.GradientBoostingCoverage(lower, upper, **model_kwargs)
    model_interval.fit(X_train, y_train)

    # Ftting Median Model
    model_median = utils.fit_gradientboosting(X_train, y_train, alpha=0.5, loss="quantile",**model_kwargs)

    # Ftting Mean Model
    model_mean = utils.fit_gradientboosting(X_train, y_train, loss="squared_error", **model_kwargs)

    # Calculating Train and Test Coverage
    expected_coverage = model_interval.expected_coverage
    coverage_train = model_interval.coverage_fraction(X_train, y_train)
    coverage_test = model_interval.coverage_fraction(X_test, y_test)

    # Plotting Predictions
    xx = np.atleast_2d(np.linspace(*x_range, 1000)).T
    y_lower, y_upper = model_interval.predict(xx)
    y_median = model_median.predict(xx)
    y_mean = model_mean.predict(xx)

    fig = utils.plot_interval(
        xx, X_test, y_test, y_upper, y_lower, y_median, y_mean, formula_str, f"{expected_coverage*100:.0f}"
    )

    # DataFrame with Coverage
    df_coverage = pd.DataFrame(
        {
            "Split": ["Train", "Test"],
            "Coverage": [f"{coverage_train*100:.0f}", f"{coverage_test*100:.0f}"],
            "Expected Coverage": [f"{expected_coverage*100:.0f}", f"{expected_coverage*100:.0f}"],
        }
    )

    return fig, df_coverage

title = "Prediction Intervals with Gradient Boosting Regression"
with gr.Blocks() as demo:
    gr.Markdown(f"# {title}")
    gr.Markdown(
        """
        This app shows how to use Gradient Boosting Regression to predict intervals. \
        The app uses the [Quantile Loss](https://en.wikipedia.org/wiki/Quantile_regression#Quantile_loss_function) \
        to predict the lower and upper quantiles with Gradient Boosting Regression. The data used in this example \
        is generated through the equation passed in the Formula textbox heteroscedasticity noise is introduced to \
        make the data more realistic. The app also shows the coverage of the intervals on the train and test data.

        Write equations using x as the variable and Python notation. Other supported functions are sin, cos, tan, exp, log, sqrt, and abs.

        See original sklearn example [here](https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_quantile.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-quantile-py).
        """
    )
    with gr.Row():
        with gr.Column():
            formula_str = gr.inputs.Textbox(
                lines=1, 
                label="Formula", 
                default="x * sin(x)"
            )

            n_samples = gr.inputs.Slider(
                minimum=100, 
                maximum=10000, 
                step=100, 
                default=1000, 
                label="Number of Samples"
            )

        with gr.Column():
            lower = gr.inputs.Slider(
                minimum=0.01, 
                maximum=0.45, 
                step=0.01, 
                default=0.05, 
                label="Lower Quantile"
            )

            upper = gr.inputs.Slider(
                minimum=0.5, 
                maximum=0.99, 
                step=0.01, 
                default=0.95, 
                label="Upper Quantile"
            )  

        with gr.Column():
            learning_rate = gr.inputs.Slider(
                minimum=0.01, 
                maximum=1.0, 
                step=0.01, 
                default=0.05, 
                label="Learning Rate"
            )

            n_estimators = gr.inputs.Slider(
                minimum=1, 
                maximum=1000, 
                step=1, 
                default=200, 
                label="Number of Estimators"
            )

            max_depth = gr.inputs.Slider(
                minimum=1, 
                maximum=10, 
                step=1, 
                default=2, 
                label="Max Depth"
            )

    btn = gr.Button(label="Run")
    with gr.Row():
        with gr.Column():
            fig = gr.Plot(label="Coverage Plot")
            df_coverage = gr.Dataframe(label="Coverage DataFrame")
    
    btn.click(
        fn=app_fn, 
        inputs=[formula_str, n_samples, lower, upper, learning_rate, n_estimators, max_depth],
        outputs=[fig, df_coverage],
    )
    demo.load(
        fn=app_fn, 
        inputs=[formula_str, n_samples, lower, upper, learning_rate, n_estimators, max_depth],
        outputs=[fig, df_coverage],
    )

demo.launch()