File size: 4,702 Bytes
f2b8171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from __future__ import annotations

import re
from typing import Optional, Union

import numpy as np
import plotly.graph_objects as go
from sklearn.ensemble import GradientBoostingRegressor

class DataGenerator:
    def __init__(self, formula_str: str, x_range: list, n_samples: int, seed: int) -> None:
        self.formula_str = formula_str
        self.x_range = x_range
        self.n_samples = n_samples
        self.seed = seed
        self.rng = np.random.RandomState(seed)

    @property
    def X(self) -> np.array:
        self.rng = np.random.RandomState(42)
        X = np.atleast_2d(self.rng.uniform(*self.x_range, size=self.n_samples)).T
        return X
    
    @property
    def y_raw(self) -> np.array:
        y_raw = self._eval_formula()
        return y_raw.ravel()
    
    @property
    def y(self) -> np.array:
        sigma = 0.5 + self.X.ravel() / 10
        noise = self.rng.lognormal(sigma=sigma) - np.exp(sigma**2 / 2)
        return self.y_raw + noise

    def _eval_formula(self) -> np.array:
        function_map = {
            'sin': "np.sin",
            'cos': "np.cos",
            'tan': "np.tan",
            'exp': "np.exp",
            'log': "np.log",
            'sqrt': "np.sqrt",
            'abs': "np.abs",
        }
        # Replace "x" in the formula string with "x_values"
        _formula_str = re.sub(r'\bx\b', '(self.X)', self.formula_str)
        # Replace any function calls in the formula string with the appropriate function object
        _formula_str = re.sub(r'(\w+)\(([^)]*)\)', lambda m: f'{function_map[m.group(1)]}({m.group(2)})', _formula_str)
        # Evaluate the formula using the updated string and return the result
        return eval(_formula_str)

class GradientBoostingCoverage:
    def __init__(self, lower: float, upper: float, **kwargs) -> None:
        self.lower = lower
        self.upper = upper
        self.kwargs = kwargs
        self.models = self._build_models()

    @property
    def expected_coverage(self) -> float:
        return self.upper - self.lower

    def _build_models(self) -> dict[str, GradientBoostingRegressor]:
        models = {}
        for name, alpha in [("lower", self.lower), ("upper", self.upper)]:
            models[f"{name}"] = GradientBoostingRegressor(loss="quantile", alpha=alpha, **self.kwargs)
        return models
    
    def fit(self, X: np.ndarray, y: np.array) -> None:
        for model in self.models.values():
            model.fit(X, y)

    def predict(self, X: np.ndarray) -> tuple[np.array, np.array]:
        lower = self.models["lower"].predict(X)
        upper = self.models["upper"].predict(X)
        return lower, upper
    
    def coverage_fraction(self, X: np.ndarray, y: np.array) -> float:
        y_low, y_high = self.predict(X)
        return np.mean(np.logical_and(y >= y_low, y <= y_high))


def fit_gradientboosting(X, y, **kwargs) -> GradientBoostingRegressor:
    model = GradientBoostingRegressor(**kwargs)
    model.fit(X, y)
    return model

def plot_interval(
    xx: np.array, 
    X_test: np.array, 
    y_test: np.array,
    y_upper: np.array, 
    y_lower: np.array, 
    y_med: np.array,
    y_mean: np.array,
    formula_str: Optional[str]=None,
    interval: Optional[Union[int, str]]=None,
) -> go.Figure:
    # Using plotly to plot an interval
    fig = go.Figure()

    fig.add_trace(
        go.Scatter(
            x=xx.ravel(), 
            y=y_upper, 
            fill=None, 
            mode="lines", 
            line_color="rgba(255,255,0,0)", 
            name=""
        )
    )

    fig.add_trace(
        go.Scatter(
            x=xx.ravel(), 
            y=y_lower, 
            fill="tonexty", 
            mode="lines", 
            line_color="rgba(255,255,0,0)", 
            name=f"Predicted Interval"
        )
    )

    fig.add_trace(
        go.Scatter(
            x=xx.ravel(), 
            y=y_med, 
            mode="lines", 
            line_color="red", 
            name='Predicted Median',
        )
    )

    fig.add_trace(
        go.Scatter(
            x=xx.ravel(), 
            y=y_mean, 
            mode="lines", 
            name='Predicted Mean',
            line=dict(color='red', dash='dash')
        )
    )

    fig.add_trace(
        go.Scatter(
            x=X_test.ravel(),
            y=y_test,
            mode="markers",
            marker_color="blue",
            name="Test Observations",
            marker=dict(size=5, line=dict(width=2, color="DarkSlateGrey"))
        )
    )

    fig.update_layout(
        title=f"Predicted {interval}% Interval",
        xaxis_title="x",
        yaxis_title="f(x)" if not formula_str else formula_str,
        height=600
    )

    return fig