Initial Commit
Browse files- app.py +113 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Demo is based on https://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_with_cross_validation.html
|
3 |
+
"""
|
4 |
+
from sklearn.svm import SVC
|
5 |
+
from sklearn.datasets import load_digits
|
6 |
+
from sklearn.feature_selection import RFE
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
from sklearn.datasets import make_classification
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
from sklearn.feature_selection import RFECV
|
12 |
+
from sklearn.model_selection import StratifiedKFold
|
13 |
+
from sklearn.linear_model import LogisticRegression
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
|
18 |
+
def create_classification_data(informative, redundant):
|
19 |
+
X, y = make_classification(
|
20 |
+
n_samples=500,
|
21 |
+
n_features=15,
|
22 |
+
n_informative=informative,
|
23 |
+
n_redundant=redundant,
|
24 |
+
n_repeated=0,
|
25 |
+
n_classes=8,
|
26 |
+
n_clusters_per_class=1,
|
27 |
+
class_sep=0.8,
|
28 |
+
random_state=0,
|
29 |
+
)
|
30 |
+
return X, y
|
31 |
+
|
32 |
+
|
33 |
+
def run_rfecv(informative, redundant):
|
34 |
+
X, y = create_classification_data(informative, redundant)
|
35 |
+
min_features_to_select = 1 # Minimum number of features to consider
|
36 |
+
clf = LogisticRegression()
|
37 |
+
cv = StratifiedKFold(5)
|
38 |
+
rfecv = RFECV(
|
39 |
+
estimator=clf,
|
40 |
+
step=1,
|
41 |
+
cv=cv,
|
42 |
+
scoring="accuracy",
|
43 |
+
min_features_to_select=min_features_to_select,
|
44 |
+
n_jobs=2,
|
45 |
+
)
|
46 |
+
rfecv.fit(X, y)
|
47 |
+
|
48 |
+
print(f"Optimal number of features: {rfecv.n_features_}")
|
49 |
+
n_scores = len(rfecv.cv_results_["mean_test_score"])
|
50 |
+
fig = plt.figure()
|
51 |
+
plt.xlabel("Number of features selected")
|
52 |
+
plt.ylabel("Mean test accuracy")
|
53 |
+
plt.errorbar(
|
54 |
+
range(min_features_to_select, n_scores + min_features_to_select),
|
55 |
+
rfecv.cv_results_["mean_test_score"],
|
56 |
+
yerr=rfecv.cv_results_["std_test_score"],
|
57 |
+
)
|
58 |
+
plt.title("\n Recursive Feature Elimination \nwith correlated features")
|
59 |
+
return plt
|
60 |
+
|
61 |
+
|
62 |
+
title = " Recursive feature elimination with cross-validation "
|
63 |
+
|
64 |
+
with gr.Blocks(title=title) as demo:
|
65 |
+
gr.Markdown(f"# {title}")
|
66 |
+
gr.Markdown(
|
67 |
+
" This example the feature importnace when features have both redundant and useless features using Recursive feature elimination <br>"
|
68 |
+
" Dataset: A classification set of 500 data points and 15 features in total <br>"
|
69 |
+
" **Features** <br> <br> **Informative features** : Number of features that actually having the signal to differentiate between classes. <br>"
|
70 |
+
" **Redundant features** : Number of feature which are just some random linear combinations of informative features.<br>"
|
71 |
+
)
|
72 |
+
|
73 |
+
gr.Markdown(
|
74 |
+
" **Note** Total features - (informative features + redundant features) are Useless features. <br>"
|
75 |
+
)
|
76 |
+
gr.Markdown(
|
77 |
+
" Logistic Regression classifier is used as estimator to rank features. <br>"
|
78 |
+
)
|
79 |
+
|
80 |
+
gr.Markdown(
|
81 |
+
" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_with_cross_validation.html)**"
|
82 |
+
)
|
83 |
+
with gr.Row():
|
84 |
+
informative = gr.Slider(
|
85 |
+
minimum=0,
|
86 |
+
maximum=10,
|
87 |
+
step=1,
|
88 |
+
value=3,
|
89 |
+
label="Number of Informative features in data",
|
90 |
+
)
|
91 |
+
redundant = gr.Slider(
|
92 |
+
minimum=0,
|
93 |
+
maximum=5,
|
94 |
+
step=1,
|
95 |
+
value=2,
|
96 |
+
label="Number of Redundant features in data",
|
97 |
+
)
|
98 |
+
|
99 |
+
btn = gr.Button(value="Submit")
|
100 |
+
btn.click(
|
101 |
+
run_rfecv,
|
102 |
+
inputs=[informative, redundant],
|
103 |
+
outputs=gr.Plot(label="RFE with cross validation"),
|
104 |
+
)
|
105 |
+
|
106 |
+
gr.Markdown(
|
107 |
+
" Plot demonstrate mean test accuracy for the corresponding feature selected . <br>"
|
108 |
+
)
|
109 |
+
gr.Markdown(
|
110 |
+
" Number of features selected with highest test accuracy will be nearly ~ equal to informative features . <br>"
|
111 |
+
)
|
112 |
+
|
113 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
scikit-learn==1.2.1
|