Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
Β·
ba335a6
1
Parent(s):
9f47792
Update app.py
Browse files
app.py
CHANGED
@@ -25,26 +25,24 @@ The demo is based on the [scikit-learn docs](https://scikit-learn.org/stable/aut
|
|
25 |
def func(x):
|
26 |
return np.sin(2 * np.pi * x)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
x_test = np.linspace(0.0, 1.0, 100)
|
34 |
|
35 |
-
n_order = 3
|
36 |
-
X_train = np.vander(x_train, n_order + 1, increasing=True)
|
37 |
-
X_test = np.vander(x_test, n_order + 1, increasing=True)
|
38 |
-
reg = BayesianRidge(tol=1e-6, fit_intercept=False, compute_score=True)
|
39 |
-
|
40 |
-
def curve_fit():
|
41 |
fig, axes = plt.subplots(1, 2, figsize=(8, 4))
|
42 |
for i, ax in enumerate(axes):
|
43 |
# Bayesian ridge regression with different initial value pairs
|
44 |
if i == 0:
|
45 |
init = [1 / np.var(y_train), 1.0] # Default values
|
46 |
elif i == 1:
|
47 |
-
init = [
|
48 |
reg.set_params(alpha_init=init[0], lambda_init=init[1])
|
49 |
reg.fit(X_train, y_train)
|
50 |
ymean, ystd = reg.predict(X_test, return_std=True)
|
@@ -73,11 +71,15 @@ with gr.Blocks(theme=theme) as demo:
|
|
73 |
<h1 style='text-align: center'>Curve Fitting with Bayesian Ridge Regression π</h1>
|
74 |
''')
|
75 |
gr.Markdown(description)
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
with gr.Row():
|
78 |
run_button = gr.Button('Fit the Curve')
|
79 |
with gr.Row():
|
80 |
plot_result = gr.Plot()
|
81 |
-
run_button.click(fn=curve_fit, inputs=[], outputs=[plot_result])
|
82 |
|
83 |
demo.launch()
|
|
|
25 |
def func(x):
|
26 |
return np.sin(2 * np.pi * x)
|
27 |
|
28 |
+
def curve_fit(size, alpha, lam):
|
29 |
+
rng = np.random.RandomState(1234)
|
30 |
+
x_train = rng.uniform(0.0, 1.0, size)
|
31 |
+
y_train = func(x_train) + rng.normal(scale=0.1, size=size)
|
32 |
+
x_test = np.linspace(0.0, 1.0, 100)
|
33 |
|
34 |
+
n_order = 3
|
35 |
+
X_train = np.vander(x_train, n_order + 1, increasing=True)
|
36 |
+
X_test = np.vander(x_test, n_order + 1, increasing=True)
|
37 |
+
reg = BayesianRidge(tol=1e-6, fit_intercept=False, compute_score=True)
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
fig, axes = plt.subplots(1, 2, figsize=(8, 4))
|
40 |
for i, ax in enumerate(axes):
|
41 |
# Bayesian ridge regression with different initial value pairs
|
42 |
if i == 0:
|
43 |
init = [1 / np.var(y_train), 1.0] # Default values
|
44 |
elif i == 1:
|
45 |
+
init = [alpha, lam]
|
46 |
reg.set_params(alpha_init=init[0], lambda_init=init[1])
|
47 |
reg.fit(X_train, y_train)
|
48 |
ymean, ystd = reg.predict(X_test, return_std=True)
|
|
|
71 |
<h1 style='text-align: center'>Curve Fitting with Bayesian Ridge Regression π</h1>
|
72 |
''')
|
73 |
gr.Markdown(description)
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
size = gr.Slider(minimum=10, maximum=100, step=5, value=25, label="Number of Data Points")
|
77 |
+
alpha = gr.Slider(minimum=1e-2, maximum=2, step=0.1, value=1, label="Initial Alpha")
|
78 |
+
lam = gr.Slider(minimum=1e-5, maximum=1, step=1e-4, value=1e-3, label="Initial Lambda")
|
79 |
with gr.Row():
|
80 |
run_button = gr.Button('Fit the Curve')
|
81 |
with gr.Row():
|
82 |
plot_result = gr.Plot()
|
83 |
+
run_button.click(fn=curve_fit, inputs=[size, alpha, lam], outputs=[plot_result])
|
84 |
|
85 |
demo.launch()
|