Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import time
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
from sklearn import ensemble
|
8 |
+
from sklearn import datasets
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
|
11 |
+
theme = gr.themes.Monochrome(
|
12 |
+
primary_hue="indigo",
|
13 |
+
secondary_hue="blue",
|
14 |
+
neutral_hue="slate",
|
15 |
+
)
|
16 |
+
model_card = f"""
|
17 |
+
## Description
|
18 |
+
|
19 |
+
**Gradient boosting** is a machine learning technique that combines several regression trees to create a powerful model in an iterative manner.
|
20 |
+
**Early stopping** is a technique used in **gradient boosting** to determine the least number of iterations required to create a model that generalizes well to new data.
|
21 |
+
It involves specifying a validation set and using it to evaluate the model after each stage of tree building.
|
22 |
+
The process is continued until the model's scores do not improve for a specified number of stages.
|
23 |
+
Using early stopping can significantly reduce training time, memory usage, and prediction latency while achieving almost the same accuracy as a model built without early stopping using many more estimators.
|
24 |
+
You can play around with different ``number of samples`` and ``number of new estimators`` to see the effect
|
25 |
+
|
26 |
+
## Dataset
|
27 |
+
|
28 |
+
Iris dataset, Classification dataset, Hastie dataset
|
29 |
+
"""
|
30 |
+
|
31 |
+
|
32 |
+
def do_train(n_samples, n_estimators, progress=gr.Progress()):
|
33 |
+
|
34 |
+
data_list = [
|
35 |
+
datasets.load_iris(return_X_y=True),
|
36 |
+
datasets.make_classification(n_samples=n_samples, random_state=0),
|
37 |
+
datasets.make_hastie_10_2(n_samples=n_samples, random_state=0),
|
38 |
+
]
|
39 |
+
names = ["Iris Data", "Classification Data", "Hastie Data"]
|
40 |
+
|
41 |
+
n_gb = []
|
42 |
+
score_gb = []
|
43 |
+
time_gb = []
|
44 |
+
n_gbes = []
|
45 |
+
score_gbes = []
|
46 |
+
time_gbes = []
|
47 |
+
|
48 |
+
for X, y in progress.tqdm(data_list):
|
49 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
50 |
+
X, y, test_size=0.2, random_state=0
|
51 |
+
)
|
52 |
+
# We specify that if the scores don't improve by at least 0.01 for the last
|
53 |
+
# 10 stages, stop fitting additional stages
|
54 |
+
gbes = ensemble.GradientBoostingClassifier(
|
55 |
+
n_estimators=n_estimators,
|
56 |
+
validation_fraction=0.2,
|
57 |
+
n_iter_no_change=5,
|
58 |
+
tol=0.01,
|
59 |
+
random_state=0,
|
60 |
+
)
|
61 |
+
gb = ensemble.GradientBoostingClassifier(n_estimators=n_estimators, random_state=0)
|
62 |
+
start = time.time()
|
63 |
+
gb.fit(X_train, y_train)
|
64 |
+
time_gb.append(time.time() - start)
|
65 |
+
|
66 |
+
start = time.time()
|
67 |
+
gbes.fit(X_train, y_train)
|
68 |
+
time_gbes.append(time.time() - start)
|
69 |
+
|
70 |
+
score_gb.append(gb.score(X_test, y_test))
|
71 |
+
score_gbes.append(gbes.score(X_test, y_test))
|
72 |
+
|
73 |
+
n_gb.append(gb.n_estimators_)
|
74 |
+
n_gbes.append(gbes.n_estimators_)
|
75 |
+
|
76 |
+
bar_width = 0.2
|
77 |
+
n = len(data_list)
|
78 |
+
index = np.arange(0, n * bar_width, bar_width) * 2.5
|
79 |
+
index = index[0:n]
|
80 |
+
|
81 |
+
fig1, axes1 = plt.subplots(figsize=(9, 5))
|
82 |
+
|
83 |
+
bar1 = axes1.bar(
|
84 |
+
index, score_gb, bar_width, label="Without early stopping", color="crimson"
|
85 |
+
)
|
86 |
+
bar2 = axes1.bar(
|
87 |
+
index + bar_width, score_gbes, bar_width, label="With early stopping", color="coral"
|
88 |
+
)
|
89 |
+
axes1.set_xticks(index + bar_width, names);
|
90 |
+
axes1.set_yticks(np.arange(0, 1.3, 0.1));
|
91 |
+
|
92 |
+
def autolabel(ax, rects, n_estimators):
|
93 |
+
"""
|
94 |
+
Attach a text label above each bar displaying n_estimators of each model
|
95 |
+
"""
|
96 |
+
for i, rect in enumerate(rects):
|
97 |
+
ax.text(
|
98 |
+
rect.get_x() + rect.get_width() / 2.0,
|
99 |
+
1.05 * rect.get_height(),
|
100 |
+
"n_est=%d" % n_estimators[i],
|
101 |
+
ha="center",
|
102 |
+
va="bottom",
|
103 |
+
)
|
104 |
+
autolabel(axes1, bar1, n_gb)
|
105 |
+
autolabel(axes1, bar2, n_gbes)
|
106 |
+
plt.xlabel("Datasets")
|
107 |
+
plt.ylabel("Test score")
|
108 |
+
|
109 |
+
axes1.set_xlabel("Datasets")
|
110 |
+
axes1.set_ylabel("Test score")
|
111 |
+
axes1.set_ylim([0, 1.3])
|
112 |
+
axes1.legend(loc="best")
|
113 |
+
axes1.grid(True)
|
114 |
+
|
115 |
+
|
116 |
+
fig2, axes2 = plt.subplots(figsize=(9, 5))
|
117 |
+
|
118 |
+
bar1 = axes2.bar(
|
119 |
+
index, time_gb, bar_width, label="Without early stopping", color="crimson"
|
120 |
+
)
|
121 |
+
bar2 = axes2.bar(
|
122 |
+
index + bar_width, time_gbes, bar_width, label="With early stopping", color="coral"
|
123 |
+
)
|
124 |
+
|
125 |
+
max_y = np.amax(np.maximum(time_gb, time_gbes))
|
126 |
+
|
127 |
+
axes2.set_xticks(index + bar_width, names)
|
128 |
+
axes2.set_yticks(np.linspace(0, 1.3 * max_y, 13))
|
129 |
+
|
130 |
+
autolabel(axes2, bar1, n_gb)
|
131 |
+
autolabel(axes2, bar2, n_gbes)
|
132 |
+
|
133 |
+
axes2.set_ylim([0, 1.3 * max_y])
|
134 |
+
axes2.legend(loc="best")
|
135 |
+
axes2.grid(True)
|
136 |
+
|
137 |
+
axes2.set_xlabel("Datasets")
|
138 |
+
axes2.set_ylabel("Fit Time")
|
139 |
+
|
140 |
+
|
141 |
+
return fig1, fig2
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
with gr.Blocks(theme=theme) as demo:
|
146 |
+
gr.Markdown('''
|
147 |
+
<div>
|
148 |
+
<h1 style='text-align: center'>Early stopping of Gradient Boosting</h1>
|
149 |
+
</div>
|
150 |
+
''')
|
151 |
+
gr.Markdown(model_card)
|
152 |
+
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_early_stopping.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-early-stopping-py\">scikit-learn</a>")
|
153 |
+
n_samples = gr.Slider(minimum=500, maximum=10000, step=500, value=1000, label="Number of samples")
|
154 |
+
n_estimators = gr.Slider(minimum=50, maximum=300, step=50, value=100, label="Number of estimators")
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column():
|
157 |
+
plot1 = gr.Plot(label="Test score")
|
158 |
+
with gr.Column():
|
159 |
+
plot2 = gr.Plot(label="Running time")
|
160 |
+
|
161 |
+
n_samples.change(fn=do_train, inputs=[n_samples, n_estimators], outputs=[plot1, plot2])
|
162 |
+
n_estimators.change(fn=do_train, inputs=[n_samples, n_estimators], outputs=[plot1, plot2])
|
163 |
+
|
164 |
+
demo.launch(enable_queue=True)
|