import gradio as gr import time import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets from sklearn.model_selection import train_test_split theme = gr.themes.Monochrome( primary_hue="indigo", secondary_hue="blue", neutral_hue="slate", ) model_card = f""" ## Description **Gradient boosting** is a machine learning technique that combines several regression trees to create a powerful model in an iterative manner. **Early stopping** is a technique used in **gradient boosting** to determine the least number of iterations required to create a model that generalizes well to new data. It involves specifying a validation set and using it to evaluate the model after each stage of tree building. The process is continued until the model's scores do not improve for a specified number of stages. Using early stopping can significantly reduce training time, memory usage, and prediction latency while achieving almost the same accuracy as a model built without early stopping using many more estimators. You can play around with different ``number of samples`` and ``number of new estimators`` to see the effect ## Dataset Iris dataset, Classification dataset, Hastie dataset """ def do_train(n_samples, n_estimators, progress=gr.Progress()): data_list = [ datasets.load_iris(return_X_y=True), datasets.make_classification(n_samples=n_samples, random_state=0), datasets.make_hastie_10_2(n_samples=n_samples, random_state=0), ] names = ["Iris Data", "Classification Data", "Hastie Data"] n_gb = [] score_gb = [] time_gb = [] n_gbes = [] score_gbes = [] time_gbes = [] for X, y in progress.tqdm(data_list): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=0 ) # We specify that if the scores don't improve by at least 0.01 for the last # 10 stages, stop fitting additional stages gbes = ensemble.GradientBoostingClassifier( n_estimators=n_estimators, validation_fraction=0.2, n_iter_no_change=5, tol=0.01, random_state=0, ) gb = ensemble.GradientBoostingClassifier(n_estimators=n_estimators, random_state=0) start = time.time() gb.fit(X_train, y_train) time_gb.append(time.time() - start) start = time.time() gbes.fit(X_train, y_train) time_gbes.append(time.time() - start) score_gb.append(gb.score(X_test, y_test)) score_gbes.append(gbes.score(X_test, y_test)) n_gb.append(gb.n_estimators_) n_gbes.append(gbes.n_estimators_) bar_width = 0.2 n = len(data_list) index = np.arange(0, n * bar_width, bar_width) * 2.5 index = index[0:n] fig1, axes1 = plt.subplots(figsize=(9, 5)) bar1 = axes1.bar( index, score_gb, bar_width, label="Without early stopping", color="crimson" ) bar2 = axes1.bar( index + bar_width, score_gbes, bar_width, label="With early stopping", color="coral" ) axes1.set_xticks(index + bar_width, names); axes1.set_yticks(np.arange(0, 1.3, 0.1)); def autolabel(ax, rects, n_estimators): """ Attach a text label above each bar displaying n_estimators of each model """ for i, rect in enumerate(rects): ax.text( rect.get_x() + rect.get_width() / 2.0, 1.05 * rect.get_height(), "n_est=%d" % n_estimators[i], ha="center", va="bottom", ) autolabel(axes1, bar1, n_gb) autolabel(axes1, bar2, n_gbes) plt.xlabel("Datasets") plt.ylabel("Test score") axes1.set_xlabel("Datasets") axes1.set_ylabel("Test score") axes1.set_ylim([0, 1.3]) axes1.legend(loc="best") axes1.grid(True) fig2, axes2 = plt.subplots(figsize=(9, 5)) bar1 = axes2.bar( index, time_gb, bar_width, label="Without early stopping", color="crimson" ) bar2 = axes2.bar( index + bar_width, time_gbes, bar_width, label="With early stopping", color="coral" ) max_y = np.amax(np.maximum(time_gb, time_gbes)) axes2.set_xticks(index + bar_width, names) axes2.set_yticks(np.linspace(0, 1.3 * max_y, 13)) autolabel(axes2, bar1, n_gb) autolabel(axes2, bar2, n_gbes) axes2.set_ylim([0, 1.3 * max_y]) axes2.legend(loc="best") axes2.grid(True) axes2.set_xlabel("Datasets") axes2.set_ylabel("Fit Time") return fig1, fig2 with gr.Blocks(theme=theme) as demo: gr.Markdown('''