NTaylor commited on
Commit
17fcb82
·
1 Parent(s): dcc9265

Adjust label

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -216,9 +216,10 @@ with gr.Blocks(title=title) as demo:
216
  " The number of samples (n_samples) will determine the number of data points to produce. <br>"
217
  " The number of components (n_components) will determine the number of components each method will fit to, and will affect the likelihood of the held-out set. <br>"
218
  " The number of features (n_components) determine the number of features the toy dataset X variable will have. <br>"
219
- " Play with the n_components parameter to see.<br>")
 
220
 
221
- gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-fa-model-selection-py)** <br>")
222
 
223
  gr.Markdown(" **Dataset** : A toy dataset with corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature) . <br>")
224
  gr.Markdown(" Different number of features and number of components affect how well the low rank space is recovered. <br>"
@@ -233,7 +234,7 @@ with gr.Blocks(title=title) as demo:
233
 
234
  # options for n_components
235
  btn = gr.Button(value="Submit")
236
- btn.click(plot_pca_fa_analysis_side, inputs= [n_samples, n_features, n_components], outputs= gr.Plot(label='Multi-output regression with decision trees') ) #
237
 
238
 
239
  demo.launch()
 
216
  " The number of samples (n_samples) will determine the number of data points to produce. <br>"
217
  " The number of components (n_components) will determine the number of components each method will fit to, and will affect the likelihood of the held-out set. <br>"
218
  " The number of features (n_components) determine the number of features the toy dataset X variable will have. <br>"
219
+ " For further details please see the sklearn docs:"
220
+ )
221
 
222
+ gr.Markdown(" **[Demo is based on sklearn docs found here](https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-fa-model-selection-py)** <br>")
223
 
224
  gr.Markdown(" **Dataset** : A toy dataset with corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature) . <br>")
225
  gr.Markdown(" Different number of features and number of components affect how well the low rank space is recovered. <br>"
 
234
 
235
  # options for n_components
236
  btn = gr.Button(value="Submit")
237
+ btn.click(plot_pca_fa_analysis_side, inputs= [n_samples, n_features, n_components], outputs= gr.Plot(label='PCA vs FA Model Selection with added noise') ) #
238
 
239
 
240
  demo.launch()