Initial Commit
Browse files
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
from sklearn.datasets import make_multilabel_classification
|
6 |
+
from sklearn.multiclass import OneVsRestClassifier
|
7 |
+
from sklearn.svm import SVC
|
8 |
+
from sklearn.decomposition import PCA
|
9 |
+
from sklearn.cross_decomposition import CCA
|
10 |
+
from matplotlib import cm
|
11 |
+
|
12 |
+
plt.switch_backend('agg')
|
13 |
+
|
14 |
+
|
15 |
+
def plot_hyperplane(clf, min_x, max_x, linestyle, linecolor, label):
|
16 |
+
"""
|
17 |
+
This function is used to plot the hyperplane obtained from the classifier.
|
18 |
+
|
19 |
+
:param clf: the classifier model
|
20 |
+
:param min_x: the minimum value of X
|
21 |
+
:param max_x: the maximum value of x
|
22 |
+
:param linestyle: the style of line one needs in the plot.
|
23 |
+
:param label: the label for the hyperplane
|
24 |
+
"""
|
25 |
+
|
26 |
+
w = clf.coef_[0]
|
27 |
+
a = -w[0] / w[1]
|
28 |
+
xx = np.linspace(min_x - 5, max_x + 5)
|
29 |
+
yy = a * xx - (clf.intercept_[0]) / w[1]
|
30 |
+
plt.plot(xx, yy, linestyle, color=linecolor, linewidth=2.5, label=label)
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
def multilabel_classification(n_samples:int, n_classes: int, n_labels: int, allow_unlabeled: bool, decompostion: str) -> "plt.Figure":
|
35 |
+
"""
|
36 |
+
This function is used to perform multilabel classification.
|
37 |
+
|
38 |
+
:param n_samples: the number of samples.
|
39 |
+
:param n_classes: the number of classes for the classification problem.
|
40 |
+
:param n_labels: the average number of labels per instance.
|
41 |
+
:param allow_unlabeled: if set to True some instances might not belong to any class.
|
42 |
+
:param decompostion: the type of decomposition algorithm to use.
|
43 |
+
|
44 |
+
:returns: a matplotlib figure.
|
45 |
+
"""
|
46 |
+
|
47 |
+
X, Y = make_multilabel_classification(
|
48 |
+
n_samples=n_samples,
|
49 |
+
n_classes=n_classes, n_labels=n_labels, allow_unlabeled=allow_unlabeled, random_state=42)
|
50 |
+
|
51 |
+
if decomposition == "PCA":
|
52 |
+
X = PCA(n_components=2).fit_transform(X)
|
53 |
+
|
54 |
+
else:
|
55 |
+
X = CCA(n_components=2).fit(X, Y).transform(X)
|
56 |
+
|
57 |
+
min_x = np.min(X[:, 0])
|
58 |
+
max_x = np.max(X[:, 0])
|
59 |
+
|
60 |
+
|
61 |
+
min_y = np.min(X[:, 1])
|
62 |
+
max_y = np.max(X[:, 1])
|
63 |
+
|
64 |
+
model = OneVsRestClassifier(SVC(kernel="linear"))
|
65 |
+
model.fit(X, Y)
|
66 |
+
|
67 |
+
fig, ax = plt.subplots(1, 1, figsize=(24, 15))
|
68 |
+
|
69 |
+
ax.scatter(X[:, 0], X[:, 1], s=40, c="gray", edgecolors=(0, 0, 0))
|
70 |
+
# colors = cm.rainbow(np.linspace(0, 1, n_classes))
|
71 |
+
colors = cm.get_cmap('tab10', 10)(np.linspace(0, 1, 10))
|
72 |
+
|
73 |
+
for nc in range(n_classes):
|
74 |
+
cl = np.where(Y[:, nc])
|
75 |
+
ax.scatter(X[cl, 0], X[cl, 1], s=np.random.random_integers(20, 200),
|
76 |
+
edgecolors=colors[nc], facecolors="none", linewidths=2, label=f"Class {nc+1}")
|
77 |
+
|
78 |
+
plot_hyperplane(model.estimators_[nc], min_x, max_x, "--", colors[nc], f"Boundary for class {nc+1}")
|
79 |
+
ax.set_xticks(())
|
80 |
+
ax.set_yticks(())
|
81 |
+
|
82 |
+
ax.set_xlim(min_x - .5 * max_x, max_x + .5 * max_x)
|
83 |
+
ax.set_ylim(min_y - .5 * max_y, max_y + .5 * max_y)
|
84 |
+
|
85 |
+
ax.legend()
|
86 |
+
|
87 |
+
|
88 |
+
return fig
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
with gr.Blocks() as demo:
|
94 |
+
|
95 |
+
n_samples = gr.Slider(100, 10_000, label="n_samples", info="the number of samples")
|
96 |
+
n_classes = gr.Slider(2, 10, label="n_classes", info="the number of classes that data should have.", step=1)
|
97 |
+
n_labels = gr.Slider(1, 10, label="n_labels", info="the average number of labels per instance", step=1)
|
98 |
+
allow_unlabeled = gr.Checkbox(True, label="allow_unlabeled", info="If set to True some instances might not belong to any class.")
|
99 |
+
decomposition = gr.Dropdown(['PCA', 'CCA'], label="decomposition", info="the type of decomposition algorithm to use.")
|
100 |
+
|
101 |
+
output = gr.Plot(label="Plot")
|
102 |
+
|
103 |
+
compute_btn = gr.Button("Compute")
|
104 |
+
compute_btn.click(fn=multilabel_classification, inputs=[n_samples, n_classes, n_labels, allow_unlabeled, decomposition],
|
105 |
+
outputs=output, api_name="multilabel")
|
106 |
+
|
107 |
+
|
108 |
+
demo.launch()
|