Modified::Added some text to the app
Browse files
app.py
CHANGED
@@ -92,6 +92,15 @@ def multilabel_classification(n_samples:int, n_classes: int, n_labels: int, allo
|
|
92 |
|
93 |
with gr.Blocks() as demo:
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
n_samples = gr.Slider(100, 10_000, label="n_samples", info="the number of samples")
|
96 |
n_classes = gr.Slider(2, 10, label="n_classes", info="the number of classes that data should have.", step=1)
|
97 |
n_labels = gr.Slider(1, 10, label="n_labels", info="the average number of labels per instance", step=1)
|
|
|
92 |
|
93 |
with gr.Blocks() as demo:
|
94 |
|
95 |
+
gr.Markdown("""
|
96 |
+
|
97 |
+
# Multilabel Classification
|
98 |
+
|
99 |
+
This space is an implementation of the scikit-learn document [Multilabel Classification](https://scikit-learn.org/stable/auto_examples/miscellaneous/plot_multilabel.html#sphx-glr-auto-examples-miscellaneous-plot-multilabel-py).
|
100 |
+
The objective of this space is to simulate a multi-label document classification problem, where the data is generated randomly.
|
101 |
+
|
102 |
+
""")
|
103 |
+
|
104 |
n_samples = gr.Slider(100, 10_000, label="n_samples", info="the number of samples")
|
105 |
n_classes = gr.Slider(2, 10, label="n_classes", info="the number of classes that data should have.", step=1)
|
106 |
n_labels = gr.Slider(1, 10, label="n_labels", info="the average number of labels per instance", step=1)
|