nielsgl commited on
Commit
c100c37
·
1 Parent(s): 1e5728b

update project

Browse files
Files changed (4) hide show
  1. .vscode/settings.json +15 -0
  2. .vscode/tasks.json +29 -0
  3. app.py +139 -144
  4. pyproject.toml +1 -1
.vscode/settings.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "files.trimFinalNewlines": true,
3
+ "files.trimTrailingWhitespace": true,
4
+ "editor.formatOnPaste": true,
5
+ "editor.formatOnSave": true,
6
+ "python.linting.pylintEnabled": true,
7
+ "python.testing.pytestEnabled": true,
8
+ "python.testing.pytestArgs": [
9
+ "tests"
10
+ ],
11
+ "python.formatting.provider": "black",
12
+ "conventionalCommits.scopes": [
13
+ "core"
14
+ ]
15
+ }
.vscode/tasks.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ // See https://go.microsoft.com/fwlink/?LinkId=733558
3
+ // for the documentation about the tasks.json format
4
+ "version": "2.0.0",
5
+ "tasks": [
6
+ {
7
+ "label": "echo",
8
+ // "type": "shell",
9
+ "command": "echo ${file}"
10
+ },
11
+ {
12
+ "label": "Export Notebook",
13
+ // "type": "shell",
14
+ // "type": "process",
15
+ "cwd": "${workspaceFolder}",
16
+ "command": "${command:jupyter.exportAsPythonScript}"
17
+ },
18
+ {
19
+ "label": "Show File",
20
+ "cwd": "${workspaceFolder}",
21
+ "command": "echo ${file}"
22
+ },
23
+ {
24
+ "label": "pre-commit",
25
+ "type": "shell",
26
+ "command": "poetry run pre-commit run -a"
27
+ }
28
+ ]
29
+ }
app.py CHANGED
@@ -1,24 +1,30 @@
1
  import gradio as gr
2
- import numpy as np
3
- import matplotlib.pyplot as plt
4
  import matplotlib
5
- from sklearn.svm import OneClassSVM
6
- from sklearn.linear_model import SGDOneClassSVM
7
  from sklearn.kernel_approximation import Nystroem
 
8
  from sklearn.pipeline import make_pipeline
 
 
 
 
 
 
9
 
10
  font = {"weight": "normal", "size": 15}
11
 
12
  matplotlib.rc("font", **font)
13
 
14
  random_state = 42
15
- rng = np.random.default_rng(random_state)
 
16
 
17
  # Generate train data
18
- X = 0.3 * rng.random((500, 2))
19
  X_train = np.r_[X + 2, X - 2]
20
  # Generate some regular novel observations
21
- X = 0.3 * rng.random((20, 2))
22
  X_test = np.r_[X + 2, X - 2]
23
  # Generate some abnormal novel observations
24
  X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
@@ -29,14 +35,6 @@ xx, yy = np.meshgrid(np.linspace(-4.5, 4.5, 50), np.linspace(-4.5, 4.5, 50))
29
  # nu = 0.05
30
  # gamma = 2.0
31
 
32
- md_description = """
33
- # A 1D regression with decision tree.
34
-
35
- The [decision trees](https://scikit-learn.org/stable/modules/tree.html#tree) is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve.
36
-
37
- We can see that if the maximum depth of the tree (controlled by the max_depth parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit.
38
- """
39
-
40
 
41
  def make_regression(nu, gamma):
42
  clf = OneClassSVM(gamma=gamma, kernel="rbf", nu=nu)
@@ -51,7 +49,6 @@ def make_regression(nu, gamma):
51
  Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
52
  Z = Z.reshape(xx.shape)
53
 
54
-
55
  # Fit the One-Class SVM using a kernel approximation and SGD
56
  transform = Nystroem(gamma=gamma, random_state=random_state)
57
  clf_sgd = SGDOneClassSVM(
@@ -68,17 +65,15 @@ def make_regression(nu, gamma):
68
 
69
  Z_sgd = pipe_sgd.decision_function(np.c_[xx.ravel(), yy.ravel()])
70
  Z_sgd = Z_sgd.reshape(xx.shape)
71
-
72
- def make_fig_1():
73
- # plot the level sets of the decision function
74
  fig = plt.figure(figsize=(9, 6))
75
- # fig, ax = plt.subplots(1, 1, figsize=(9,6))
76
  ax = fig.add_subplot(111)
77
-
78
- ax.set_title("One Class SVM")
79
- ax.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu)
80
- a = ax.contour(xx, yy, Z, levels=[0], linewidths=2, colors="darkred")
81
- ax.contourf(xx, yy, Z, levels=[0, Z.max()], colors="palevioletred")
82
 
83
  s = 20
84
  b1 = ax.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k")
@@ -100,35 +95,106 @@ def make_regression(nu, gamma):
100
  ax.set_xlabel(
101
  "error train: %d/%d; errors novel regular: %d/%d; errors novel abnormal: %d/%d"
102
  % (
103
- n_error_train,
104
  X_train.shape[0],
105
- n_error_test,
106
  X_test.shape[0],
107
- n_error_outliers,
108
  X_outliers.shape[0],
109
  )
110
  )
111
-
112
  return fig
113
 
114
- def make_fig_2():
115
- fig = plt.figure(figsize=(9, 6))
116
- ax = fig.add_subplot(111)
117
- # fig, ax = plt.subplots(1, 1)
118
-
119
- ax.set_title("Online One-Class SVM2")
120
- ax.contourf(xx, yy, Z_sgd, levels=np.linspace(Z_sgd.min(), 0, 7), cmap=plt.cm.PuBu)
121
- a = plt.contour(xx, yy, Z_sgd, levels=[0], linewidths=2, colors="darkred")
122
- ax.contourf(xx, yy, Z_sgd, levels=[0, Z_sgd.max()], colors="palevioletred")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  s = 20
125
- b1 = ax.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k")
126
- b2 = ax.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k")
127
- c = ax.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k")
128
- ax.axis("tight")
129
- ax.set_xlim((-4.5, 4.5))
130
- ax.set_ylim((-4.5, 4.5))
131
- ax.legend(
132
  [a.collections[0], b1, b2, c],
133
  [
134
  "learned frontier",
@@ -138,123 +204,52 @@ def make_regression(nu, gamma):
138
  ],
139
  loc="upper left",
140
  )
141
- ax.set_xlabel(
142
  "error train: %d/%d; errors novel regular: %d/%d; errors novel abnormal: %d/%d"
143
  % (
144
- n_error_train_sgd,
145
  X_train.shape[0],
146
- n_error_test_sgd,
147
  X_test.shape[0],
148
- n_error_outliers_sgd,
149
  X_outliers.shape[0],
150
  )
151
  )
152
-
153
- return fig
154
-
155
-
156
-
157
-
158
- return make_fig_2(), make_fig_2()
159
-
160
- # def make_figure():
161
- # fig = plt.figure(figsize=(9, 6))
162
-
163
- # plt.title("One Class SVM")
164
- # plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu)
165
- # a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors="darkred")
166
- # plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors="palevioletred")
167
-
168
- # s = 20
169
- # b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k")
170
- # b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k")
171
- # c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k")
172
- # plt.axis("tight")
173
- # plt.xlim((-4.5, 4.5))
174
- # plt.ylim((-4.5, 4.5))
175
- # plt.legend(
176
- # [a.collections[0], b1, b2, c],
177
- # [
178
- # "learned frontier",
179
- # "training observations",
180
- # "new regular observations",
181
- # "new abnormal observations",
182
- # ],
183
- # loc="upper left",
184
- # )
185
- # plt.xlabel(
186
- # "error train: %d/%d; errors novel regular: %d/%d; errors novel abnormal: %d/%d"
187
- # % (
188
- # n_error_train,
189
- # X_train.shape[0],
190
- # n_error_test,
191
- # X_test.shape[0],
192
- # n_error_outliers,
193
- # X_outliers.shape[0],
194
- # )
195
- # )
196
- # plt.show()
197
-
198
-
199
- def make_example(model_1_depth, model_2_depth):
200
- return f"""
201
- With the following code you can reproduce this example with the current values of the sliders and the same data in a notebook:
202
-
203
- ```python
204
- import numpy as np
205
- import plotly.graph_objects as go
206
- from sklearn.tree import DecisionTreeRegressor
207
-
208
- rng = np.random.default_rng(0)
209
-
210
- X = np.sort(5 * rng.random((80, 1)), axis=0)
211
- y = np.sin(X).ravel()
212
- y[::5] += 3 * (0.5 - rng.random(16))
213
 
214
- regr_1 = DecisionTreeRegressor(max_depth={model_1_depth}, random_state=0)
215
- regr_2 = DecisionTreeRegressor(max_depth={model_2_depth}, random_state=0)
216
- regr_1.fit(X, y)
217
- regr_2.fit(X, y)
218
 
219
- # Predict
220
- X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
221
- y_1 = regr_1.predict(X_test)
222
- y_2 = regr_2.predict(X_test)
223
 
224
-
225
- fig = go.Figure()
226
- fig.add_trace(go.Scatter(x=X[:,0], y=y, mode='markers', name='data'))
227
- fig.add_trace(go.Scatter(x=X_test[:,0], y=y_1, mode='lines', name=f"max_depth={model_1_depth}"))
228
- fig.add_trace(go.Scatter(x=X_test[:,0], y=y_2, mode='lines', name=f"max_depth={model_2_depth}"))
229
-
230
- fig.update_layout(title='Decision Tree Regression')
231
- fig.update_xaxes(title_text='data')
232
- fig.update_yaxes(title_text='target')
233
- fig.show()
234
  ```
235
  """
236
 
 
237
  with gr.Blocks() as demo:
238
  with gr.Row():
239
- gr.Markdown(md_description)
240
  with gr.Row():
241
- # with gr.Column():
242
- slider_nu = gr.Slider(minimum=0.01, maximum=1, label='Nu', step=0.025, value=0.05)
243
- slider_gamma = gr.Slider(minimum=0.1, maximum=3, label='Gamma', step=0.1, value=2.0)
244
- button = gr.Button("Generate")
 
 
245
  with gr.Row():
246
- plot1 = gr.Plot(label='Output')
 
 
 
247
  with gr.Row():
248
- plot2 = gr.Plot(label='Output')
249
 
250
- with gr.Row():
251
- example = gr.Markdown(make_example(slider_nu.value, slider_gamma.value))
252
- slider_nu.change(fn=make_regression,
253
- inputs=[slider_nu, slider_gamma],
254
- outputs=[plot1, plot2])
255
- slider_gamma.change(fn=make_regression,
256
- inputs=[slider_nu, slider_gamma],
257
- outputs=[plot1, plot2])
258
- button.click(make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2])
259
 
260
  demo.launch()
 
1
  import gradio as gr
 
 
2
  import matplotlib
3
+ import matplotlib.pyplot as plt
4
+ import numpy as np
5
  from sklearn.kernel_approximation import Nystroem
6
+ from sklearn.linear_model import SGDOneClassSVM
7
  from sklearn.pipeline import make_pipeline
8
+ from sklearn.svm import OneClassSVM
9
+
10
+ md_description = """
11
+ This example shows how to approximate the solution of [sklearn.svm.OneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) in the case of an RBF kernel with [sklearn.linear_model.SGDOneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM), a Stochastic Gradient Descent (SGD) version of the One-Class SVM. A kernel approximation is first used in order to apply [sklearn.linear_model.SGDOneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) which implements a linear One-Class SVM using SGD.
12
+ Note that [sklearn.linear_model.SGDOneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) scales linearly with the number of samples whereas the complexity of a kernelized [sklearn.svm.OneClassSVM](https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html#sklearn.svm.OneClassSVM) is at best quadratic with respect to the number of samples. It is not the purpose of this example to illustrate the benefits of such an approximation in terms of computation time but rather to show that we obtain similar results on a toy dataset.
13
+ """
14
 
15
  font = {"weight": "normal", "size": 15}
16
 
17
  matplotlib.rc("font", **font)
18
 
19
  random_state = 42
20
+ rng = np.random.RandomState(random_state)
21
+ # rng = np.random.default_rng(random_state)
22
 
23
  # Generate train data
24
+ X = 0.3 * rng.randn(500, 2)
25
  X_train = np.r_[X + 2, X - 2]
26
  # Generate some regular novel observations
27
+ X = 0.3 * rng.randn(20, 2)
28
  X_test = np.r_[X + 2, X - 2]
29
  # Generate some abnormal novel observations
30
  X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
 
35
  # nu = 0.05
36
  # gamma = 2.0
37
 
 
 
 
 
 
 
 
 
38
 
39
  def make_regression(nu, gamma):
40
  clf = OneClassSVM(gamma=gamma, kernel="rbf", nu=nu)
 
49
  Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
50
  Z = Z.reshape(xx.shape)
51
 
 
52
  # Fit the One-Class SVM using a kernel approximation and SGD
53
  transform = Nystroem(gamma=gamma, random_state=random_state)
54
  clf_sgd = SGDOneClassSVM(
 
65
 
66
  Z_sgd = pipe_sgd.decision_function(np.c_[xx.ravel(), yy.ravel()])
67
  Z_sgd = Z_sgd.reshape(xx.shape)
68
+
69
+ def make_plot(title, curr_z):
 
70
  fig = plt.figure(figsize=(9, 6))
 
71
  ax = fig.add_subplot(111)
72
+
73
+ ax.set_title(title)
74
+ ax.contourf(xx, yy, curr_z, levels=np.linspace(curr_z.min(), 0, 7), cmap=plt.cm.PuBu)
75
+ a = ax.contour(xx, yy, curr_z, levels=[0], linewidths=2, colors="darkred")
76
+ ax.contourf(xx, yy, curr_z, levels=[0, curr_z.max()], colors="palevioletred")
77
 
78
  s = 20
79
  b1 = ax.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k")
 
95
  ax.set_xlabel(
96
  "error train: %d/%d; errors novel regular: %d/%d; errors novel abnormal: %d/%d"
97
  % (
98
+ n_error_train_sgd,
99
  X_train.shape[0],
100
+ n_error_test_sgd,
101
  X_test.shape[0],
102
+ n_error_outliers_sgd,
103
  X_outliers.shape[0],
104
  )
105
  )
106
+
107
  return fig
108
 
109
+ return (
110
+ make_plot("One Class SVM", Z),
111
+ make_plot("Online One-Class SVM", Z_sgd),
112
+ make_example(nu, gamma),
113
+ )
114
+
115
+
116
+ def make_example(nu, gamma):
117
+ return f"""
118
+ With the following code you can reproduce this example with the current values of the sliders and the same data in a notebook:
119
+
120
+ ```python
121
+ import numpy as np
122
+ import matplotlib.pyplot as plt
123
+ import matplotlib
124
+ from sklearn.svm import OneClassSVM
125
+ from sklearn.linear_model import SGDOneClassSVM
126
+ from sklearn.kernel_approximation import Nystroem
127
+ from sklearn.pipeline import make_pipeline
128
+
129
+ font = {{"weight": "normal", "size": 15}}
130
+
131
+ matplotlib.rc("font", **font)
132
+
133
+ rng = np.random.RandomState(random_state)
134
+
135
+ # Generate train data
136
+ X = 0.3 * rng.randn(500, 2)
137
+ X_train = np.r_[X + 2, X - 2]
138
+ # Generate some regular novel observations
139
+ X = 0.3 * rng.randn(20, 2)
140
+ X_test = np.r_[X + 2, X - 2]
141
+ # Generate some abnormal novel observations
142
+ X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))
143
+
144
+ xx, yy = np.meshgrid(np.linspace(-4.5, 4.5, 50), np.linspace(-4.5, 4.5, 50))
145
+
146
+ # OCSVM hyperparameters
147
+ nu = {nu}
148
+ gamma = {gamma}
149
+
150
+ # Fit the One-Class SVM
151
+ clf = OneClassSVM(gamma=gamma, kernel="rbf", nu=nu)
152
+ clf.fit(X_train)
153
+ y_pred_train = clf.predict(X_train)
154
+ y_pred_test = clf.predict(X_test)
155
+ y_pred_outliers = clf.predict(X_outliers)
156
+ n_error_train = y_pred_train[y_pred_train == -1].size
157
+ n_error_test = y_pred_test[y_pred_test == -1].size
158
+ n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size
159
+
160
+ Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
161
+ Z = Z.reshape(xx.shape)
162
+
163
+
164
+ # Fit the One-Class SVM using a kernel approximation and SGD
165
+ transform = Nystroem(gamma=gamma, random_state=random_state)
166
+ clf_sgd = SGDOneClassSVM(
167
+ nu=nu, shuffle=True, fit_intercept=True, random_state=random_state, tol=1e-4
168
+ )
169
+ pipe_sgd = make_pipeline(transform, clf_sgd)
170
+ pipe_sgd.fit(X_train)
171
+ y_pred_train_sgd = pipe_sgd.predict(X_train)
172
+ y_pred_test_sgd = pipe_sgd.predict(X_test)
173
+ y_pred_outliers_sgd = pipe_sgd.predict(X_outliers)
174
+ n_error_train_sgd = y_pred_train_sgd[y_pred_train_sgd == -1].size
175
+ n_error_test_sgd = y_pred_test_sgd[y_pred_test_sgd == -1].size
176
+ n_error_outliers_sgd = y_pred_outliers_sgd[y_pred_outliers_sgd == 1].size
177
+
178
+ Z_sgd = pipe_sgd.decision_function(np.c_[xx.ravel(), yy.ravel()])
179
+ Z_sgd = Z_sgd.reshape(xx.shape)
180
+
181
+
182
+ # plot the level sets of the decision function
183
+ def make_plot(Z_curr, title):
184
+ plt.figure(figsize=(9, 6))
185
+ plt.title(title)
186
+ plt.contourf(xx, yy, Z_curr, levels=np.linspace(Z_curr.min(), 0, 7), cmap=plt.cm.PuBu)
187
+ a = plt.contour(xx, yy, Z_curr, levels=[0], linewidths=2, colors="darkred")
188
+ plt.contourf(xx, yy, Z_curr, levels=[0, Z_curr.max()], colors="palevioletred")
189
 
190
  s = 20
191
+ b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c="white", s=s, edgecolors="k")
192
+ b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c="blueviolet", s=s, edgecolors="k")
193
+ c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c="gold", s=s, edgecolors="k")
194
+ plt.axis("tight")
195
+ plt.xlim((-4.5, 4.5))
196
+ plt.ylim((-4.5, 4.5))
197
+ plt.legend(
198
  [a.collections[0], b1, b2, c],
199
  [
200
  "learned frontier",
 
204
  ],
205
  loc="upper left",
206
  )
207
+ plt.xlabel(
208
  "error train: %d/%d; errors novel regular: %d/%d; errors novel abnormal: %d/%d"
209
  % (
210
+ n_error_train,
211
  X_train.shape[0],
212
+ n_error_test,
213
  X_test.shape[0],
214
+ n_error_outliers,
215
  X_outliers.shape[0],
216
  )
217
  )
218
+ plt.show()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
 
 
 
 
 
220
 
221
+ make_plot(Z, "One-Class SVM")
222
+ make_plot(Z_sgd, "Online One-Class SVM")
 
 
223
 
 
 
 
 
 
 
 
 
 
 
224
  ```
225
  """
226
 
227
+
228
  with gr.Blocks() as demo:
229
  with gr.Row():
230
+ gr.Markdown("# One-Class SVM versus One-Class SVM using Stochastic Gradient Descent")
231
  with gr.Row():
232
+ with gr.Column():
233
+ gr.Markdown(md_description)
234
+ with gr.Column():
235
+ slider_nu = gr.Slider(minimum=0.01, maximum=1, label="Nu", step=0.025, value=0.05)
236
+ slider_gamma = gr.Slider(minimum=0.1, maximum=3, label="Gamma", step=0.1, value=2.0)
237
+ button = gr.Button("Generate")
238
  with gr.Row():
239
+ with gr.Column():
240
+ plot1 = gr.Plot(label="Output")
241
+ with gr.Column():
242
+ plot2 = gr.Plot(label="Output")
243
  with gr.Row():
244
+ example = gr.Markdown("")
245
 
246
+ slider_nu.change(
247
+ fn=make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example]
248
+ )
249
+ slider_gamma.change(
250
+ fn=make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example]
251
+ )
252
+ button.click(make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example])
253
+ demo.load(make_regression, inputs=[slider_nu, slider_gamma], outputs=[plot1, plot2, example])
 
254
 
255
  demo.launch()
pyproject.toml CHANGED
@@ -1,5 +1,5 @@
1
  [tool.poetry]
2
- name = "sklearn-decision-tree-regression"
3
  version = "0.1.0"
4
  description = "Hugging Face Scikit Learn Demos"
5
  authors = ["Niels van Galen Last <[email protected]>"]
 
1
  [tool.poetry]
2
+ name = "sklearn-ocsvm-vs-sgdocsvm"
3
  version = "0.1.0"
4
  description = "Hugging Face Scikit Learn Demos"
5
  authors = ["Niels van Galen Last <[email protected]>"]