Spaces:
Runtime error
Runtime error
Initial Commit
Browse files- app.py +83 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
from sklearn.pipeline import Pipeline
|
6 |
+
from sklearn.preprocessing import PolynomialFeatures
|
7 |
+
from sklearn.linear_model import LinearRegression
|
8 |
+
from sklearn.model_selection import cross_val_score
|
9 |
+
|
10 |
+
plt.switch_backend("agg")
|
11 |
+
|
12 |
+
def true_fn(X):
|
13 |
+
return np.cos(1.5 * np.pi * X)
|
14 |
+
|
15 |
+
|
16 |
+
def modelData(n_samples: int, degree: int, cv: int) -> "plt.Figure":
|
17 |
+
"""
|
18 |
+
This function demonstrate the principle of overfitting vs underfitting by
|
19 |
+
modeling a dataset using Linear Regression.
|
20 |
+
|
21 |
+
:param n_samples: the number of samples required in the data.
|
22 |
+
:param degree: the number of degrees for the polynomial features.
|
23 |
+
|
24 |
+
:returns: the matplotlib figures
|
25 |
+
"""
|
26 |
+
|
27 |
+
X = np.sort(np.random.rand(n_samples))
|
28 |
+
y = true_fn(X) + np.random.randn(n_samples) * .1
|
29 |
+
|
30 |
+
fig, ax = plt.subplots(1, 1, figsize=(24, 15))
|
31 |
+
|
32 |
+
poly_feats = PolynomialFeatures(degree=degree, include_bias=False)
|
33 |
+
model = LinearRegression()
|
34 |
+
|
35 |
+
pipeline = Pipeline([
|
36 |
+
("polynomial_feats", poly_feats),
|
37 |
+
("lr", model)
|
38 |
+
])
|
39 |
+
|
40 |
+
pipeline.fit(X[:, np.newaxis], y)
|
41 |
+
scores = cross_val_score(
|
42 |
+
pipeline, X[:, np.newaxis], y, scoring="neg_mean_squared_error", cv=cv
|
43 |
+
)
|
44 |
+
|
45 |
+
X_test = np.linspace(0, 1, 1000)
|
46 |
+
|
47 |
+
ax.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), "--", linewidth=2.5, color="#C73E1D", label="Model")
|
48 |
+
ax.plot(X_test, true_fn(X_test), linewidth=2.5, color="#2E86AB", label="True function")
|
49 |
+
ax.scatter(X, y, s=20, alpha=.75, edgecolors="#3B1F2B", label="Samples")
|
50 |
+
ax.set_xlabel("x")
|
51 |
+
ax.set_ylabel("y")
|
52 |
+
ax.set_xticks(())
|
53 |
+
ax.set_yticks(())
|
54 |
+
ax.set_xlim((0, 1))
|
55 |
+
ax.set_ylim((-2, 2))
|
56 |
+
ax.legend(loc="best")
|
57 |
+
ax.set_title(f"Degree : {degree} \n MSE: {-scores.mean():.2e}(+/- {scores.std():.2e})")
|
58 |
+
|
59 |
+
return fig
|
60 |
+
|
61 |
+
|
62 |
+
with gr.Blocks() as demo:
|
63 |
+
|
64 |
+
gr.Markdown("""
|
65 |
+
# Underfitting vs Overfitting
|
66 |
+
|
67 |
+
This space is a re-implementation of the original scikit-learn docs [Underfitting vs Overfitting](https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html#sphx-glr-auto-examples-model-selection-plot-underfitting-overfitting-py)
|
68 |
+
In this space you can vary the sliders to get a picture of what an **underfitted** model looks like and what an **overfitted** model looks like.
|
69 |
+
If you want more details you can always head onto the scikit-learn doc mentioned above.
|
70 |
+
|
71 |
+
Have fun enjoying the tool 🤗
|
72 |
+
""")
|
73 |
+
|
74 |
+
n_samples = gr.Slider(30, 10_000, label="n_samples", info="number of samples", step=1, value=100)
|
75 |
+
degree = gr.Slider(1, 20, label="degree", info="the polynomial features degree", step=1, value=4)
|
76 |
+
cv = gr.Slider(1, 10, label="cv", info="number of cross-validation to run", step=1, value=5)
|
77 |
+
|
78 |
+
output = gr.Plot(label="Plot")
|
79 |
+
|
80 |
+
btn = gr.Button("Show")
|
81 |
+
btn.click(fn=modelData, inputs=[n_samples, degree, cv], outputs=output, api_name="overfitunderfit")
|
82 |
+
|
83 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
scikit-learn
|
2 |
+
scipy
|
3 |
+
numpy
|
4 |
+
pandas
|
5 |
+
matplotlib
|