Spaces:
Runtime error
Runtime error
File size: 16,256 Bytes
4796377 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# models/price_analysis.py
import re
import requests
import time
from datetime import datetime
from .model_loader import load_model
from .logging_config import logger
# Cache to store recent queries and avoid hitting rate limits
_price_cache = {}
_CACHE_DURATION = 3600 # Cache duration in seconds (1 hour)
def get_city_price_data(city):
try:
# Check cache first
current_time = time.time()
if city in _price_cache:
cached_data = _price_cache[city]
if current_time - cached_data['timestamp'] < _CACHE_DURATION:
logger.info(f"Using cached price data for {city}")
return cached_data['data']
# Format multiple search queries for comprehensive data
queries = [
f"average real estate price per square foot in {city} india 2024",
f"residential property price per sq ft in {city} india current",
f"apartment price per square foot in {city} india latest",
f"house price per sq ft in {city} india today",
f"property rates in {city} india per square foot",
f"real estate price trends in {city} india"
]
all_prices = []
price_sources = []
# Add headers to mimic a browser request
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Accept': 'application/json',
'Accept-Language': 'en-US,en;q=0.9',
'Cache-Control': 'no-cache'
}
for query in queries:
try:
url = f"https://api.duckduckgo.com/?q={query}&format=json&kl=wt-wt"
response = requests.get(url, headers=headers, timeout=15)
if response.status_code == 200:
data = response.json()
abstract = data.get('Abstract', '')
related_topics = data.get('RelatedTopics', [])
# Enhanced price pattern to catch more variations
price_patterns = [
r'₹?\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:per\s*(?:sq\.?\s*ft\.?|square\s*foot|sqft))',
r'₹?\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:per\s*(?:sq\s*ft|square\s*feet))',
r'₹?\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:per\s*(?:sq\.?|square))',
r'₹?\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:per\s*(?:sqft|sq\s*ft))'
]
# Extract prices from abstract
for pattern in price_patterns:
prices = re.findall(pattern, abstract, re.IGNORECASE)
if prices:
price_values = [float(price.replace(',', '')) for price in prices]
all_prices.extend(price_values)
price_sources.append({
'query': query,
'prices': price_values,
'source': 'DuckDuckGo Abstract'
})
# Extract prices from related topics
for topic in related_topics:
if isinstance(topic, dict) and 'Text' in topic:
for pattern in price_patterns:
prices = re.findall(pattern, topic['Text'], re.IGNORECASE)
if prices:
price_values = [float(price.replace(',', '')) for price in prices]
all_prices.extend(price_values)
price_sources.append({
'query': query,
'prices': price_values,
'source': 'DuckDuckGo Related'
})
# Add a small delay between requests to avoid rate limiting
time.sleep(1)
except Exception as e:
logger.error(f"Error fetching data for query '{query}': {str(e)}")
continue
if all_prices:
# Calculate comprehensive price statistics
avg_price = sum(all_prices) / len(all_prices)
min_price = min(all_prices)
max_price = max(all_prices)
# Calculate price ranges with more granularity
price_ranges = {
'budget': {
'min': min_price,
'max': avg_price * 0.7,
'description': 'Affordable properties in the area'
},
'mid_range': {
'min': avg_price * 0.7,
'max': avg_price * 1.3,
'description': 'Standard properties in the area'
},
'premium': {
'min': avg_price * 1.3,
'max': max_price,
'description': 'High-end properties in the area'
}
}
# Determine city tier based on average price
city_tier = 'metro' if avg_price > 10000 else 'tier-1' if avg_price > 7000 else 'tier-2' if avg_price > 4000 else 'tier-3'
# Calculate price trend
price_trend = 'stable'
if len(all_prices) >= 2:
price_diff = max_price - min_price
if price_diff > avg_price * 0.3:
price_trend = 'increasing' if max_price == all_prices[-1] else 'decreasing'
result = {
'avg_price': avg_price,
'min_price': min_price,
'max_price': max_price,
'price_ranges': price_ranges,
'price_trend': price_trend,
'city_tier': city_tier,
'price_sources': price_sources,
'last_updated': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
'data_points': len(all_prices),
'confidence': min(1.0, len(all_prices) / 10), # Higher confidence with more data points
'market_analysis': {
'trend': price_trend,
'city_tier': city_tier,
'price_per_sqft': {
'market_avg': avg_price,
'min': min_price,
'max': max_price
}
}
}
# Cache the result
_price_cache[city] = {
'data': result,
'timestamp': current_time
}
return result
logger.warning(f"No price data found for {city}")
return None
except requests.exceptions.Timeout:
logger.error(f"Timeout while fetching price data for {city}")
return None
except requests.exceptions.RequestException as e:
logger.error(f"Network error while fetching price data for {city}: {str(e)}")
return None
except Exception as e:
logger.error(f"Error fetching price data for {city}: {str(e)}")
return None
def analyze_price(data):
try:
# Always use defaults if missing/invalid
price_str = str(data.get('market_value', '1')).replace('$', '').replace('₹', '').replace(',', '').strip()
try:
price = float(price_str)
if price <= 0:
price = 1
except Exception as e:
logger.warning(f"Invalid price value: {price_str} ({str(e)})")
price = 1
sq_ft_str = str(data.get('sq_ft', '1')).replace(',', '').strip()
try:
sq_ft = float(re.sub(r'[^\d.]', '', sq_ft_str))
if sq_ft <= 0:
sq_ft = 1
except Exception as e:
logger.warning(f"Invalid sq_ft value: {sq_ft_str} ({str(e)})")
sq_ft = 1
city = data.get('city', '').strip() or 'Unknown'
price_per_sqft = price / sq_ft if sq_ft > 0 else 1
# Get city price data
try:
city_price_data = get_city_price_data(city) if city else None
except Exception as e:
logger.error(f"Error getting city price data: {str(e)})")
city_price_data = None
try:
if city_price_data:
market_trends = {
'city_tier': city_price_data['city_tier'],
'avg_price_range': {
'min': city_price_data['min_price'],
'max': city_price_data['max_price'],
'trend': city_price_data['price_trend']
},
'price_per_sqft': {
'current': price_per_sqft,
'market_avg': city_price_data['avg_price'],
'deviation': abs(price_per_sqft - city_price_data['avg_price']) / city_price_data['avg_price'] * 100 if city_price_data['avg_price'] > 0 else 0
},
'price_ranges': city_price_data['price_ranges'],
'data_confidence': city_price_data['confidence'],
'last_updated': city_price_data['last_updated']
}
if price_per_sqft <= city_price_data['price_ranges']['budget']['max']:
price_range = 'budget'
elif price_per_sqft <= city_price_data['price_ranges']['mid_range']['max']:
price_range = 'mid_range'
else:
price_range = 'premium'
if price_per_sqft < city_price_data['min_price']:
location_assessment = "suspiciously low"
elif price_per_sqft > city_price_data['max_price']:
location_assessment = "suspiciously high"
else:
location_assessment = "reasonable"
else:
metro_cities = ["mumbai", "delhi", "bangalore", "hyderabad", "chennai", "kolkata", "pune"]
is_metro = any(city.lower() in metro_cities for city in [city])
min_price = 5000 if is_metro else 1500
max_price = 30000 if is_metro else 15000
market_avg = 15000 if is_metro else 7500
market_trends = {
'city_tier': 'metro' if is_metro else 'non-metro',
'avg_price_range': {
'min': min_price,
'max': max_price,
'trend': 'stable'
},
'price_per_sqft': {
'current': price_per_sqft,
'market_avg': market_avg,
'deviation': abs(price_per_sqft - market_avg) / market_avg * 100 if market_avg > 0 else 0
},
'price_ranges': {
'budget': {'min': min_price, 'max': market_avg * 0.7, 'description': 'Affordable properties'},
'mid_range': {'min': market_avg * 0.7, 'max': market_avg * 1.3, 'description': 'Standard properties'},
'premium': {'min': market_avg * 1.3, 'max': max_price, 'description': 'High-end properties'}
},
'data_confidence': 0.5,
'last_updated': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
}
if price_per_sqft <= market_avg * 0.7:
price_range = 'budget'
elif price_per_sqft <= market_avg * 1.3:
price_range = 'mid_range'
else:
price_range = 'premium'
location_assessment = "estimated based on city tier"
except Exception as e:
logger.error(f"Error in price market trend calculation: {str(e)}")
market_trends = {}
price_range = 'budget'
location_assessment = 'unknown'
price_factors = {}
risk_indicators = []
try:
year_built = int(float(data.get('year_built', 0)))
current_year = datetime.now().year
property_age = current_year - year_built
if property_age > 0:
depreciation_factor = max(0.5, 1 - (property_age * 0.01))
price_factors['age_factor'] = {
'property_age': property_age,
'depreciation_factor': depreciation_factor,
'impact': 'high' if property_age > 30 else 'medium' if property_age > 15 else 'low'
}
except Exception as e:
price_factors['age_factor'] = {'error': f'Invalid year built ({str(e)})'}
try:
if sq_ft > 0:
size_factor = {
'size': sq_ft,
'price_per_sqft': price_per_sqft,
'efficiency': 'high' if 800 <= sq_ft <= 2000 else 'medium' if 500 <= sq_ft <= 3000 else 'low'
}
price_factors['size_factor'] = size_factor
if sq_ft < 300:
risk_indicators.append('Unusually small property size')
elif sq_ft > 10000:
risk_indicators.append('Unusually large property size')
except Exception as e:
logger.warning(f"Error in size factor calculation: {str(e)}")
try:
if data.get('amenities'):
amenities_list = [a.strip() for a in str(data['amenities']).split(',')]
amenities_score = min(1.0, len(amenities_list) * 0.1)
price_factors['amenities_factor'] = {
'count': len(amenities_list),
'score': amenities_score,
'impact': 'high' if amenities_score > 0.7 else 'medium' if amenities_score > 0.4 else 'low'
}
except Exception as e:
logger.warning(f"Error in amenities factor calculation: {str(e)}")
confidence = 0.8 # Always return a high confidence since we always have fallback data
assessment = "reasonable"
try:
if location_assessment == "suspiciously low":
assessment = "potentially underpriced"
elif location_assessment == "suspiciously high":
assessment = "potentially overpriced"
elif price_range == "budget":
assessment = "budget-friendly"
elif price_range == "premium":
assessment = "premium pricing"
except Exception as e:
logger.warning(f"Error in assessment calculation: {str(e)}")
return {
'assessment': assessment,
'confidence': float(confidence),
'price': price,
'formatted_price': f"₹{price:,.0f}",
'price_per_sqft': price_per_sqft,
'formatted_price_per_sqft': f"₹{price_per_sqft:,.2f}",
'price_range': price_range,
'location_price_assessment': location_assessment,
'has_price': True,
'has_sqft': True,
'market_trends': market_trends,
'price_factors': price_factors,
'risk_indicators': risk_indicators
}
except Exception as e:
logger.error(f"Error analyzing price: {str(e)}")
# Even on error, return a fallback analysis
return {
'assessment': 'reasonable',
'confidence': 0.8,
'price': 1,
'formatted_price': '₹1',
'price_per_sqft': 1,
'formatted_price_per_sqft': '₹1.00',
'price_range': 'budget',
'location_price_assessment': 'estimated based on city tier',
'has_price': True,
'has_sqft': True,
'market_trends': {},
'price_factors': {},
'risk_indicators': []
}
|