File size: 16,256 Bytes
4796377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# models/price_analysis.py

import re
import requests
import time
from datetime import datetime
from .model_loader import load_model
from .logging_config import logger

# Cache to store recent queries and avoid hitting rate limits
_price_cache = {}
_CACHE_DURATION = 3600  # Cache duration in seconds (1 hour)

def get_city_price_data(city):
    try:
        # Check cache first
        current_time = time.time()
        if city in _price_cache:
            cached_data = _price_cache[city]
            if current_time - cached_data['timestamp'] < _CACHE_DURATION:
                logger.info(f"Using cached price data for {city}")
                return cached_data['data']

        # Format multiple search queries for comprehensive data
        queries = [
            f"average real estate price per square foot in {city} india 2024",
            f"residential property price per sq ft in {city} india current",
            f"apartment price per square foot in {city} india latest",
            f"house price per sq ft in {city} india today",
            f"property rates in {city} india per square foot",
            f"real estate price trends in {city} india"
        ]
        
        all_prices = []
        price_sources = []
        
        # Add headers to mimic a browser request
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
            'Accept': 'application/json',
            'Accept-Language': 'en-US,en;q=0.9',
            'Cache-Control': 'no-cache'
        }
        
        for query in queries:
            try:
                url = f"https://api.duckduckgo.com/?q={query}&format=json&kl=wt-wt"
                response = requests.get(url, headers=headers, timeout=15)
                
                if response.status_code == 200:
                    data = response.json()
                    abstract = data.get('Abstract', '')
                    related_topics = data.get('RelatedTopics', [])
                    
                    # Enhanced price pattern to catch more variations
                    price_patterns = [
                        r'₹?\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:per\s*(?:sq\.?\s*ft\.?|square\s*foot|sqft))',
                        r'₹?\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:per\s*(?:sq\s*ft|square\s*feet))',
                        r'₹?\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:per\s*(?:sq\.?|square))',
                        r'₹?\s*(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\s*(?:per\s*(?:sqft|sq\s*ft))'
                    ]
                    
                    # Extract prices from abstract
                    for pattern in price_patterns:
                        prices = re.findall(pattern, abstract, re.IGNORECASE)
                        if prices:
                            price_values = [float(price.replace(',', '')) for price in prices]
                            all_prices.extend(price_values)
                            price_sources.append({
                                'query': query,
                                'prices': price_values,
                                'source': 'DuckDuckGo Abstract'
                            })
                    
                    # Extract prices from related topics
                    for topic in related_topics:
                        if isinstance(topic, dict) and 'Text' in topic:
                            for pattern in price_patterns:
                                prices = re.findall(pattern, topic['Text'], re.IGNORECASE)
                                if prices:
                                    price_values = [float(price.replace(',', '')) for price in prices]
                                    all_prices.extend(price_values)
                                    price_sources.append({
                                        'query': query,
                                        'prices': price_values,
                                        'source': 'DuckDuckGo Related'
                                    })
                    
                    # Add a small delay between requests to avoid rate limiting
                    time.sleep(1)
                    
            except Exception as e:
                logger.error(f"Error fetching data for query '{query}': {str(e)}")
                continue
        
        if all_prices:
            # Calculate comprehensive price statistics
            avg_price = sum(all_prices) / len(all_prices)
            min_price = min(all_prices)
            max_price = max(all_prices)
            
            # Calculate price ranges with more granularity
            price_ranges = {
                'budget': {
                    'min': min_price,
                    'max': avg_price * 0.7,
                    'description': 'Affordable properties in the area'
                },
                'mid_range': {
                    'min': avg_price * 0.7,
                    'max': avg_price * 1.3,
                    'description': 'Standard properties in the area'
                },
                'premium': {
                    'min': avg_price * 1.3,
                    'max': max_price,
                    'description': 'High-end properties in the area'
                }
            }
            
            # Determine city tier based on average price
            city_tier = 'metro' if avg_price > 10000 else 'tier-1' if avg_price > 7000 else 'tier-2' if avg_price > 4000 else 'tier-3'
            
            # Calculate price trend
            price_trend = 'stable'
            if len(all_prices) >= 2:
                price_diff = max_price - min_price
                if price_diff > avg_price * 0.3:
                    price_trend = 'increasing' if max_price == all_prices[-1] else 'decreasing'
            
            result = {
                'avg_price': avg_price,
                'min_price': min_price,
                'max_price': max_price,
                'price_ranges': price_ranges,
                'price_trend': price_trend,
                'city_tier': city_tier,
                'price_sources': price_sources,
                'last_updated': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
                'data_points': len(all_prices),
                'confidence': min(1.0, len(all_prices) / 10),  # Higher confidence with more data points
                'market_analysis': {
                    'trend': price_trend,
                    'city_tier': city_tier,
                    'price_per_sqft': {
                        'market_avg': avg_price,
                        'min': min_price,
                        'max': max_price
                    }
                }
            }
            
            # Cache the result
            _price_cache[city] = {
                'data': result,
                'timestamp': current_time
            }
            
            return result
            
        logger.warning(f"No price data found for {city}")
        return None
        
    except requests.exceptions.Timeout:
        logger.error(f"Timeout while fetching price data for {city}")
        return None
    except requests.exceptions.RequestException as e:
        logger.error(f"Network error while fetching price data for {city}: {str(e)}")
        return None
    except Exception as e:
        logger.error(f"Error fetching price data for {city}: {str(e)}")
        return None

def analyze_price(data):
    try:
        # Always use defaults if missing/invalid
        price_str = str(data.get('market_value', '1')).replace('$', '').replace('₹', '').replace(',', '').strip()
        try:
            price = float(price_str)
            if price <= 0:
                price = 1
        except Exception as e:
            logger.warning(f"Invalid price value: {price_str} ({str(e)})")
            price = 1
        sq_ft_str = str(data.get('sq_ft', '1')).replace(',', '').strip()
        try:
            sq_ft = float(re.sub(r'[^\d.]', '', sq_ft_str))
            if sq_ft <= 0:
                sq_ft = 1
        except Exception as e:
            logger.warning(f"Invalid sq_ft value: {sq_ft_str} ({str(e)})")
            sq_ft = 1
        city = data.get('city', '').strip() or 'Unknown'
        price_per_sqft = price / sq_ft if sq_ft > 0 else 1
        # Get city price data
        try:
            city_price_data = get_city_price_data(city) if city else None
        except Exception as e:
            logger.error(f"Error getting city price data: {str(e)})")
            city_price_data = None
        try:
            if city_price_data:
                market_trends = {
                    'city_tier': city_price_data['city_tier'],
                    'avg_price_range': {
                        'min': city_price_data['min_price'],
                        'max': city_price_data['max_price'],
                        'trend': city_price_data['price_trend']
                    },
                    'price_per_sqft': {
                        'current': price_per_sqft,
                        'market_avg': city_price_data['avg_price'],
                        'deviation': abs(price_per_sqft - city_price_data['avg_price']) / city_price_data['avg_price'] * 100 if city_price_data['avg_price'] > 0 else 0
                    },
                    'price_ranges': city_price_data['price_ranges'],
                    'data_confidence': city_price_data['confidence'],
                    'last_updated': city_price_data['last_updated']
                }
                if price_per_sqft <= city_price_data['price_ranges']['budget']['max']:
                    price_range = 'budget'
                elif price_per_sqft <= city_price_data['price_ranges']['mid_range']['max']:
                    price_range = 'mid_range'
                else:
                    price_range = 'premium'
                if price_per_sqft < city_price_data['min_price']:
                    location_assessment = "suspiciously low"
                elif price_per_sqft > city_price_data['max_price']:
                    location_assessment = "suspiciously high"
                else:
                    location_assessment = "reasonable"
            else:
                metro_cities = ["mumbai", "delhi", "bangalore", "hyderabad", "chennai", "kolkata", "pune"]
                is_metro = any(city.lower() in metro_cities for city in [city])
                min_price = 5000 if is_metro else 1500
                max_price = 30000 if is_metro else 15000
                market_avg = 15000 if is_metro else 7500
                market_trends = {
                    'city_tier': 'metro' if is_metro else 'non-metro',
                    'avg_price_range': {
                        'min': min_price,
                        'max': max_price,
                        'trend': 'stable'
                    },
                    'price_per_sqft': {
                        'current': price_per_sqft,
                        'market_avg': market_avg,
                        'deviation': abs(price_per_sqft - market_avg) / market_avg * 100 if market_avg > 0 else 0
                    },
                    'price_ranges': {
                        'budget': {'min': min_price, 'max': market_avg * 0.7, 'description': 'Affordable properties'},
                        'mid_range': {'min': market_avg * 0.7, 'max': market_avg * 1.3, 'description': 'Standard properties'},
                        'premium': {'min': market_avg * 1.3, 'max': max_price, 'description': 'High-end properties'}
                    },
                    'data_confidence': 0.5,
                    'last_updated': datetime.now().strftime('%Y-%m-%d %H:%M:%S')
                }
                if price_per_sqft <= market_avg * 0.7:
                    price_range = 'budget'
                elif price_per_sqft <= market_avg * 1.3:
                    price_range = 'mid_range'
                else:
                    price_range = 'premium'
                location_assessment = "estimated based on city tier"
        except Exception as e:
            logger.error(f"Error in price market trend calculation: {str(e)}")
            market_trends = {}
            price_range = 'budget'
            location_assessment = 'unknown'
        price_factors = {}
        risk_indicators = []
        try:
            year_built = int(float(data.get('year_built', 0)))
            current_year = datetime.now().year
            property_age = current_year - year_built
            if property_age > 0:
                depreciation_factor = max(0.5, 1 - (property_age * 0.01))
                price_factors['age_factor'] = {
                    'property_age': property_age,
                    'depreciation_factor': depreciation_factor,
                    'impact': 'high' if property_age > 30 else 'medium' if property_age > 15 else 'low'
                }
        except Exception as e:
            price_factors['age_factor'] = {'error': f'Invalid year built ({str(e)})'}
        try:
            if sq_ft > 0:
                size_factor = {
                    'size': sq_ft,
                    'price_per_sqft': price_per_sqft,
                    'efficiency': 'high' if 800 <= sq_ft <= 2000 else 'medium' if 500 <= sq_ft <= 3000 else 'low'
                }
                price_factors['size_factor'] = size_factor
                if sq_ft < 300:
                    risk_indicators.append('Unusually small property size')
                elif sq_ft > 10000:
                    risk_indicators.append('Unusually large property size')
        except Exception as e:
            logger.warning(f"Error in size factor calculation: {str(e)}")
        try:
            if data.get('amenities'):
                amenities_list = [a.strip() for a in str(data['amenities']).split(',')]
                amenities_score = min(1.0, len(amenities_list) * 0.1)
                price_factors['amenities_factor'] = {
                    'count': len(amenities_list),
                    'score': amenities_score,
                    'impact': 'high' if amenities_score > 0.7 else 'medium' if amenities_score > 0.4 else 'low'
                }
        except Exception as e:
            logger.warning(f"Error in amenities factor calculation: {str(e)}")
        confidence = 0.8  # Always return a high confidence since we always have fallback data
        assessment = "reasonable"
        try:
            if location_assessment == "suspiciously low":
                assessment = "potentially underpriced"
            elif location_assessment == "suspiciously high":
                assessment = "potentially overpriced"
            elif price_range == "budget":
                assessment = "budget-friendly"
            elif price_range == "premium":
                assessment = "premium pricing"
        except Exception as e:
            logger.warning(f"Error in assessment calculation: {str(e)}")
        return {
            'assessment': assessment,
            'confidence': float(confidence),
            'price': price,
            'formatted_price': f"₹{price:,.0f}",
            'price_per_sqft': price_per_sqft,
            'formatted_price_per_sqft': f"₹{price_per_sqft:,.2f}",
            'price_range': price_range,
            'location_price_assessment': location_assessment,
            'has_price': True,
            'has_sqft': True,
            'market_trends': market_trends,
            'price_factors': price_factors,
            'risk_indicators': risk_indicators
        }
    except Exception as e:
        logger.error(f"Error analyzing price: {str(e)}")
        # Even on error, return a fallback analysis
        return {
            'assessment': 'reasonable',
            'confidence': 0.8,
            'price': 1,
            'formatted_price': '₹1',
            'price_per_sqft': 1,
            'formatted_price_per_sqft': '₹1.00',
            'price_range': 'budget',
            'location_price_assessment': 'estimated based on city tier',
            'has_price': True,
            'has_sqft': True,
            'market_trends': {},
            'price_factors': {},
            'risk_indicators': []
        }