Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
add soft-vits and more models
Browse files- README.md +1 -1
- app.py +59 -9
- export_model.py +13 -0
- models.py +370 -363
- saved_model/10/config.json +3 -0
- saved_model/10/cover.jpg +3 -0
- saved_model/10/model.pth +3 -0
- saved_model/11/config.json +3 -0
- saved_model/11/cover.jpg +3 -0
- saved_model/11/model.pth +3 -0
- saved_model/8/config.json +3 -0
- saved_model/8/cover.jpg +3 -0
- saved_model/8/model.pth +3 -0
- saved_model/9/config.json +3 -0
- saved_model/9/cover.jpg +3 -0
- saved_model/9/model.pth +3 -0
- saved_model/info.json +2 -2
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: πποΈ
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 3.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.3
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
app.py
CHANGED
|
@@ -84,6 +84,34 @@ def create_vc_fn(model, hps, speaker_ids):
|
|
| 84 |
return vc_fn
|
| 85 |
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
def create_to_phoneme_fn(hps):
|
| 88 |
def to_phoneme_fn(text):
|
| 89 |
return _clean_text(text, hps.data.text_cleaners) if text != "" else ""
|
|
@@ -110,7 +138,9 @@ css = """
|
|
| 110 |
"""
|
| 111 |
|
| 112 |
if __name__ == '__main__':
|
| 113 |
-
|
|
|
|
|
|
|
| 114 |
with open("saved_model/info.json", "r", encoding="utf-8") as f:
|
| 115 |
models_info = json.load(f)
|
| 116 |
for i, info in models_info.items():
|
|
@@ -132,9 +162,16 @@ if __name__ == '__main__':
|
|
| 132 |
speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
|
| 133 |
speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
app = gr.Blocks(css=css)
|
| 140 |
|
|
@@ -144,13 +181,14 @@ if __name__ == '__main__':
|
|
| 144 |
"unofficial demo for \n\n"
|
| 145 |
"- [https://github.com/CjangCjengh/MoeGoe](https://github.com/CjangCjengh/MoeGoe)\n"
|
| 146 |
"- [https://github.com/Francis-Komizu/VITS](https://github.com/Francis-Komizu/VITS)\n"
|
| 147 |
-
"- [https://github.com/luoyily/MoeTTS](https://github.com/luoyily/MoeTTS)"
|
|
|
|
| 148 |
)
|
| 149 |
with gr.Tabs():
|
| 150 |
with gr.TabItem("TTS"):
|
| 151 |
with gr.Tabs():
|
| 152 |
-
for i, (name, lang, example,
|
| 153 |
-
|
| 154 |
with gr.TabItem(f"model{i}"):
|
| 155 |
with gr.Column():
|
| 156 |
gr.Markdown(f"## {name}\n\n"
|
|
@@ -204,8 +242,7 @@ if __name__ == '__main__':
|
|
| 204 |
|
| 205 |
with gr.TabItem("Voice Conversion"):
|
| 206 |
with gr.Tabs():
|
| 207 |
-
for i, (name,
|
| 208 |
-
symbols, tts_fn, vc_fn, to_phoneme_fn) in enumerate(models):
|
| 209 |
with gr.TabItem(f"model{i}"):
|
| 210 |
gr.Markdown(f"## {name}\n\n"
|
| 211 |
f"")
|
|
@@ -218,4 +255,17 @@ if __name__ == '__main__':
|
|
| 218 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 219 |
vc_output2 = gr.Audio(label="Output Audio")
|
| 220 |
vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
app.launch()
|
|
|
|
| 84 |
return vc_fn
|
| 85 |
|
| 86 |
|
| 87 |
+
def create_soft_vc_fn(model, hps, speaker_ids):
|
| 88 |
+
def soft_vc_fn(target_speaker, input_audio):
|
| 89 |
+
if input_audio is None:
|
| 90 |
+
return "You need to upload an audio", None
|
| 91 |
+
sampling_rate, audio = input_audio
|
| 92 |
+
duration = audio.shape[0] / sampling_rate
|
| 93 |
+
if limitation and duration > 15:
|
| 94 |
+
return "Error: Audio is too long", None
|
| 95 |
+
target_speaker_id = speaker_ids[target_speaker]
|
| 96 |
+
|
| 97 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
| 98 |
+
if len(audio.shape) > 1:
|
| 99 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
| 100 |
+
if sampling_rate != 16000:
|
| 101 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
| 102 |
+
with torch.inference_mode():
|
| 103 |
+
units = hubert.units(torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0))
|
| 104 |
+
with no_grad():
|
| 105 |
+
unit_lengths = LongTensor([units.size(1)])
|
| 106 |
+
sid = LongTensor([target_speaker_id])
|
| 107 |
+
audio = model.infer(units, unit_lengths, sid=sid, noise_scale=.667,
|
| 108 |
+
noise_scale_w=0.8)[0][0, 0].data.cpu().float().numpy()
|
| 109 |
+
del units, unit_lengths, sid
|
| 110 |
+
return "Success", (hps.data.sampling_rate, audio)
|
| 111 |
+
|
| 112 |
+
return soft_vc_fn
|
| 113 |
+
|
| 114 |
+
|
| 115 |
def create_to_phoneme_fn(hps):
|
| 116 |
def to_phoneme_fn(text):
|
| 117 |
return _clean_text(text, hps.data.text_cleaners) if text != "" else ""
|
|
|
|
| 138 |
"""
|
| 139 |
|
| 140 |
if __name__ == '__main__':
|
| 141 |
+
models_tts = []
|
| 142 |
+
models_vc = []
|
| 143 |
+
models_soft_vc = []
|
| 144 |
with open("saved_model/info.json", "r", encoding="utf-8") as f:
|
| 145 |
models_info = json.load(f)
|
| 146 |
for i, info in models_info.items():
|
|
|
|
| 162 |
speaker_ids = [sid for sid, name in enumerate(hps.speakers) if name != "None"]
|
| 163 |
speakers = [name for sid, name in enumerate(hps.speakers) if name != "None"]
|
| 164 |
|
| 165 |
+
t = info["type"]
|
| 166 |
+
if t == "vits":
|
| 167 |
+
models_tts.append((name, cover_path, speakers, lang, example,
|
| 168 |
+
hps.symbols, create_tts_fn(model, hps, speaker_ids),
|
| 169 |
+
create_to_phoneme_fn(hps)))
|
| 170 |
+
models_vc.append((name, cover_path, speakers, create_vc_fn(model, hps, speaker_ids)))
|
| 171 |
+
elif t == "soft-vits-vc":
|
| 172 |
+
models_soft_vc.append((name, cover_path, speakers, create_soft_vc_fn(model, hps, speaker_ids)))
|
| 173 |
+
|
| 174 |
+
hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
|
| 175 |
|
| 176 |
app = gr.Blocks(css=css)
|
| 177 |
|
|
|
|
| 181 |
"unofficial demo for \n\n"
|
| 182 |
"- [https://github.com/CjangCjengh/MoeGoe](https://github.com/CjangCjengh/MoeGoe)\n"
|
| 183 |
"- [https://github.com/Francis-Komizu/VITS](https://github.com/Francis-Komizu/VITS)\n"
|
| 184 |
+
"- [https://github.com/luoyily/MoeTTS](https://github.com/luoyily/MoeTTS)\n"
|
| 185 |
+
"- [https://github.com/Francis-Komizu/Sovits](https://github.com/Francis-Komizu/Sovits)"
|
| 186 |
)
|
| 187 |
with gr.Tabs():
|
| 188 |
with gr.TabItem("TTS"):
|
| 189 |
with gr.Tabs():
|
| 190 |
+
for i, (name, cover_path, speakers, lang, example, symbols, tts_fn,
|
| 191 |
+
to_phoneme_fn) in enumerate(models_tts):
|
| 192 |
with gr.TabItem(f"model{i}"):
|
| 193 |
with gr.Column():
|
| 194 |
gr.Markdown(f"## {name}\n\n"
|
|
|
|
| 242 |
|
| 243 |
with gr.TabItem("Voice Conversion"):
|
| 244 |
with gr.Tabs():
|
| 245 |
+
for i, (name, cover_path, speakers, vc_fn) in enumerate(models_vc):
|
|
|
|
| 246 |
with gr.TabItem(f"model{i}"):
|
| 247 |
gr.Markdown(f"## {name}\n\n"
|
| 248 |
f"")
|
|
|
|
| 255 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 256 |
vc_output2 = gr.Audio(label="Output Audio")
|
| 257 |
vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
|
| 258 |
+
with gr.TabItem("Soft Voice Conversion"):
|
| 259 |
+
with gr.Tabs():
|
| 260 |
+
for i, (name, cover_path, speakers,soft_vc_fn) in enumerate(models_soft_vc):
|
| 261 |
+
with gr.TabItem(f"model{i}"):
|
| 262 |
+
gr.Markdown(f"## {name}\n\n"
|
| 263 |
+
f"")
|
| 264 |
+
vc_input1 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
| 265 |
+
value=speakers[0])
|
| 266 |
+
vc_input2 = gr.Audio(label="Input Audio (15s limitation)")
|
| 267 |
+
vc_submit = gr.Button("Convert", variant="primary")
|
| 268 |
+
vc_output1 = gr.Textbox(label="Output Message")
|
| 269 |
+
vc_output2 = gr.Audio(label="Output Audio")
|
| 270 |
+
vc_submit.click(soft_vc_fn, [vc_input1, vc_input2], [vc_output1, vc_output2])
|
| 271 |
app.launch()
|
export_model.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
if __name__ == '__main__':
|
| 4 |
+
model_path = "saved_model/11/model.pth"
|
| 5 |
+
output_path = "saved_model/11/model1.pth"
|
| 6 |
+
checkpoint_dict = torch.load(model_path, map_location='cpu')
|
| 7 |
+
checkpoint_dict_new = {}
|
| 8 |
+
for k, v in checkpoint_dict.items():
|
| 9 |
+
if k == "optimizer":
|
| 10 |
+
print("remove optimizer")
|
| 11 |
+
continue
|
| 12 |
+
checkpoint_dict_new[k] = v
|
| 13 |
+
torch.save(checkpoint_dict_new, output_path)
|
models.py
CHANGED
|
@@ -14,234 +14,239 @@ from commons import init_weights, get_padding
|
|
| 14 |
|
| 15 |
|
| 16 |
class StochasticDurationPredictor(nn.Module):
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
|
| 96 |
|
| 97 |
class DurationPredictor(nn.Module):
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
|
| 133 |
|
| 134 |
class TextEncoder(nn.Module):
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
| 176 |
|
| 177 |
|
| 178 |
class ResidualCouplingBlock(nn.Module):
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
| 209 |
|
| 210 |
|
| 211 |
class PosteriorEncoder(nn.Module):
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
|
| 242 |
|
| 243 |
class Generator(torch.nn.Module):
|
| 244 |
-
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
|
|
|
| 245 |
super(Generator, self).__init__()
|
| 246 |
self.num_kernels = len(resblock_kernel_sizes)
|
| 247 |
self.num_upsamples = len(upsample_rates)
|
|
@@ -251,12 +256,12 @@ class Generator(torch.nn.Module):
|
|
| 251 |
self.ups = nn.ModuleList()
|
| 252 |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 253 |
self.ups.append(weight_norm(
|
| 254 |
-
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
| 255 |
-
k, u, padding=(k-u)//2)))
|
| 256 |
|
| 257 |
self.resblocks = nn.ModuleList()
|
| 258 |
for i in range(len(self.ups)):
|
| 259 |
-
ch = upsample_initial_channel//(2**(i+1))
|
| 260 |
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
| 261 |
self.resblocks.append(resblock(ch, k, d))
|
| 262 |
|
|
@@ -269,7 +274,7 @@ class Generator(torch.nn.Module):
|
|
| 269 |
def forward(self, x, g=None):
|
| 270 |
x = self.conv_pre(x)
|
| 271 |
if g is not None:
|
| 272 |
-
|
| 273 |
|
| 274 |
for i in range(self.num_upsamples):
|
| 275 |
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
@@ -277,9 +282,9 @@ class Generator(torch.nn.Module):
|
|
| 277 |
xs = None
|
| 278 |
for j in range(self.num_kernels):
|
| 279 |
if xs is None:
|
| 280 |
-
xs = self.resblocks[i*self.num_kernels+j](x)
|
| 281 |
else:
|
| 282 |
-
xs += self.resblocks[i*self.num_kernels+j](x)
|
| 283 |
x = xs / self.num_kernels
|
| 284 |
x = F.leaky_relu(x)
|
| 285 |
x = self.conv_post(x)
|
|
@@ -315,7 +320,7 @@ class DiscriminatorP(torch.nn.Module):
|
|
| 315 |
|
| 316 |
# 1d to 2d
|
| 317 |
b, c, t = x.shape
|
| 318 |
-
if t % self.period != 0:
|
| 319 |
n_pad = self.period - (t % self.period)
|
| 320 |
x = F.pad(x, (0, n_pad), "reflect")
|
| 321 |
t = t + n_pad
|
|
@@ -363,7 +368,7 @@ class DiscriminatorS(torch.nn.Module):
|
|
| 363 |
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 364 |
def __init__(self, use_spectral_norm=False):
|
| 365 |
super(MultiPeriodDiscriminator, self).__init__()
|
| 366 |
-
periods = [2,3,5,7,11]
|
| 367 |
|
| 368 |
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 369 |
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
|
@@ -385,149 +390,151 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
|
| 385 |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 386 |
|
| 387 |
|
| 388 |
-
|
| 389 |
class SynthesizerTrn(nn.Module):
|
| 390 |
-
|
| 391 |
Synthesizer for Training
|
| 392 |
"""
|
| 393 |
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
x,
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
class StochasticDurationPredictor(nn.Module):
|
| 17 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
| 18 |
+
super().__init__()
|
| 19 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
| 20 |
+
self.in_channels = in_channels
|
| 21 |
+
self.filter_channels = filter_channels
|
| 22 |
+
self.kernel_size = kernel_size
|
| 23 |
+
self.p_dropout = p_dropout
|
| 24 |
+
self.n_flows = n_flows
|
| 25 |
+
self.gin_channels = gin_channels
|
| 26 |
+
|
| 27 |
+
self.log_flow = modules.Log()
|
| 28 |
+
self.flows = nn.ModuleList()
|
| 29 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
| 30 |
+
for i in range(n_flows):
|
| 31 |
+
self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
| 32 |
+
self.flows.append(modules.Flip())
|
| 33 |
+
|
| 34 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
| 35 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 36 |
+
self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
| 37 |
+
self.post_flows = nn.ModuleList()
|
| 38 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
| 39 |
+
for i in range(4):
|
| 40 |
+
self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
| 41 |
+
self.post_flows.append(modules.Flip())
|
| 42 |
+
|
| 43 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
| 44 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 45 |
+
self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
| 46 |
+
if gin_channels != 0:
|
| 47 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
| 48 |
+
|
| 49 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
| 50 |
+
x = torch.detach(x)
|
| 51 |
+
x = self.pre(x)
|
| 52 |
+
if g is not None:
|
| 53 |
+
g = torch.detach(g)
|
| 54 |
+
x = x + self.cond(g)
|
| 55 |
+
x = self.convs(x, x_mask)
|
| 56 |
+
x = self.proj(x) * x_mask
|
| 57 |
+
|
| 58 |
+
if not reverse:
|
| 59 |
+
flows = self.flows
|
| 60 |
+
assert w is not None
|
| 61 |
+
|
| 62 |
+
logdet_tot_q = 0
|
| 63 |
+
h_w = self.post_pre(w)
|
| 64 |
+
h_w = self.post_convs(h_w, x_mask)
|
| 65 |
+
h_w = self.post_proj(h_w) * x_mask
|
| 66 |
+
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
| 67 |
+
z_q = e_q
|
| 68 |
+
for flow in self.post_flows:
|
| 69 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
| 70 |
+
logdet_tot_q += logdet_q
|
| 71 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
| 72 |
+
u = torch.sigmoid(z_u) * x_mask
|
| 73 |
+
z0 = (w - u) * x_mask
|
| 74 |
+
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2])
|
| 75 |
+
logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q
|
| 76 |
+
|
| 77 |
+
logdet_tot = 0
|
| 78 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
| 79 |
+
logdet_tot += logdet
|
| 80 |
+
z = torch.cat([z0, z1], 1)
|
| 81 |
+
for flow in flows:
|
| 82 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
| 83 |
+
logdet_tot = logdet_tot + logdet
|
| 84 |
+
nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot
|
| 85 |
+
return nll + logq # [b]
|
| 86 |
+
else:
|
| 87 |
+
flows = list(reversed(self.flows))
|
| 88 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
| 89 |
+
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
| 90 |
+
for flow in flows:
|
| 91 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
| 92 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
| 93 |
+
logw = z0
|
| 94 |
+
return logw
|
| 95 |
|
| 96 |
|
| 97 |
class DurationPredictor(nn.Module):
|
| 98 |
+
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
| 99 |
+
super().__init__()
|
| 100 |
+
|
| 101 |
+
self.in_channels = in_channels
|
| 102 |
+
self.filter_channels = filter_channels
|
| 103 |
+
self.kernel_size = kernel_size
|
| 104 |
+
self.p_dropout = p_dropout
|
| 105 |
+
self.gin_channels = gin_channels
|
| 106 |
+
|
| 107 |
+
self.drop = nn.Dropout(p_dropout)
|
| 108 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
| 109 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
| 110 |
+
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
|
| 111 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
| 112 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
| 113 |
+
|
| 114 |
+
if gin_channels != 0:
|
| 115 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
| 116 |
+
|
| 117 |
+
def forward(self, x, x_mask, g=None):
|
| 118 |
+
x = torch.detach(x)
|
| 119 |
+
if g is not None:
|
| 120 |
+
g = torch.detach(g)
|
| 121 |
+
x = x + self.cond(g)
|
| 122 |
+
x = self.conv_1(x * x_mask)
|
| 123 |
+
x = torch.relu(x)
|
| 124 |
+
x = self.norm_1(x)
|
| 125 |
+
x = self.drop(x)
|
| 126 |
+
x = self.conv_2(x * x_mask)
|
| 127 |
+
x = torch.relu(x)
|
| 128 |
+
x = self.norm_2(x)
|
| 129 |
+
x = self.drop(x)
|
| 130 |
+
x = self.proj(x * x_mask)
|
| 131 |
+
return x * x_mask
|
| 132 |
|
| 133 |
|
| 134 |
class TextEncoder(nn.Module):
|
| 135 |
+
def __init__(self,
|
| 136 |
+
n_vocab,
|
| 137 |
+
out_channels,
|
| 138 |
+
hidden_channels,
|
| 139 |
+
filter_channels,
|
| 140 |
+
n_heads,
|
| 141 |
+
n_layers,
|
| 142 |
+
kernel_size,
|
| 143 |
+
p_dropout):
|
| 144 |
+
super().__init__()
|
| 145 |
+
self.n_vocab = n_vocab
|
| 146 |
+
self.out_channels = out_channels
|
| 147 |
+
self.hidden_channels = hidden_channels
|
| 148 |
+
self.filter_channels = filter_channels
|
| 149 |
+
self.n_heads = n_heads
|
| 150 |
+
self.n_layers = n_layers
|
| 151 |
+
self.kernel_size = kernel_size
|
| 152 |
+
self.p_dropout = p_dropout
|
| 153 |
+
|
| 154 |
+
if self.n_vocab != 0:
|
| 155 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
| 156 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5)
|
| 157 |
+
|
| 158 |
+
self.encoder = attentions.Encoder(
|
| 159 |
+
hidden_channels,
|
| 160 |
+
filter_channels,
|
| 161 |
+
n_heads,
|
| 162 |
+
n_layers,
|
| 163 |
+
kernel_size,
|
| 164 |
+
p_dropout)
|
| 165 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 166 |
+
|
| 167 |
+
def forward(self, x, x_lengths):
|
| 168 |
+
if self.n_vocab != 0:
|
| 169 |
+
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
| 170 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 171 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
| 172 |
+
|
| 173 |
+
x = self.encoder(x * x_mask, x_mask)
|
| 174 |
+
stats = self.proj(x) * x_mask
|
| 175 |
+
|
| 176 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 177 |
+
return x, m, logs, x_mask
|
| 178 |
|
| 179 |
|
| 180 |
class ResidualCouplingBlock(nn.Module):
|
| 181 |
+
def __init__(self,
|
| 182 |
+
channels,
|
| 183 |
+
hidden_channels,
|
| 184 |
+
kernel_size,
|
| 185 |
+
dilation_rate,
|
| 186 |
+
n_layers,
|
| 187 |
+
n_flows=4,
|
| 188 |
+
gin_channels=0):
|
| 189 |
+
super().__init__()
|
| 190 |
+
self.channels = channels
|
| 191 |
+
self.hidden_channels = hidden_channels
|
| 192 |
+
self.kernel_size = kernel_size
|
| 193 |
+
self.dilation_rate = dilation_rate
|
| 194 |
+
self.n_layers = n_layers
|
| 195 |
+
self.n_flows = n_flows
|
| 196 |
+
self.gin_channels = gin_channels
|
| 197 |
+
|
| 198 |
+
self.flows = nn.ModuleList()
|
| 199 |
+
for i in range(n_flows):
|
| 200 |
+
self.flows.append(
|
| 201 |
+
modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
|
| 202 |
+
gin_channels=gin_channels, mean_only=True))
|
| 203 |
+
self.flows.append(modules.Flip())
|
| 204 |
+
|
| 205 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 206 |
+
if not reverse:
|
| 207 |
+
for flow in self.flows:
|
| 208 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 209 |
+
else:
|
| 210 |
+
for flow in reversed(self.flows):
|
| 211 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 212 |
+
return x
|
| 213 |
|
| 214 |
|
| 215 |
class PosteriorEncoder(nn.Module):
|
| 216 |
+
def __init__(self,
|
| 217 |
+
in_channels,
|
| 218 |
+
out_channels,
|
| 219 |
+
hidden_channels,
|
| 220 |
+
kernel_size,
|
| 221 |
+
dilation_rate,
|
| 222 |
+
n_layers,
|
| 223 |
+
gin_channels=0):
|
| 224 |
+
super().__init__()
|
| 225 |
+
self.in_channels = in_channels
|
| 226 |
+
self.out_channels = out_channels
|
| 227 |
+
self.hidden_channels = hidden_channels
|
| 228 |
+
self.kernel_size = kernel_size
|
| 229 |
+
self.dilation_rate = dilation_rate
|
| 230 |
+
self.n_layers = n_layers
|
| 231 |
+
self.gin_channels = gin_channels
|
| 232 |
+
|
| 233 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 234 |
+
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
| 235 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 236 |
+
|
| 237 |
+
def forward(self, x, x_lengths, g=None):
|
| 238 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
| 239 |
+
x = self.pre(x) * x_mask
|
| 240 |
+
x = self.enc(x, x_mask, g=g)
|
| 241 |
+
stats = self.proj(x) * x_mask
|
| 242 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 243 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
| 244 |
+
return z, m, logs, x_mask
|
| 245 |
|
| 246 |
|
| 247 |
class Generator(torch.nn.Module):
|
| 248 |
+
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
| 249 |
+
upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
| 250 |
super(Generator, self).__init__()
|
| 251 |
self.num_kernels = len(resblock_kernel_sizes)
|
| 252 |
self.num_upsamples = len(upsample_rates)
|
|
|
|
| 256 |
self.ups = nn.ModuleList()
|
| 257 |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 258 |
self.ups.append(weight_norm(
|
| 259 |
+
ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
|
| 260 |
+
k, u, padding=(k - u) // 2)))
|
| 261 |
|
| 262 |
self.resblocks = nn.ModuleList()
|
| 263 |
for i in range(len(self.ups)):
|
| 264 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 265 |
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
| 266 |
self.resblocks.append(resblock(ch, k, d))
|
| 267 |
|
|
|
|
| 274 |
def forward(self, x, g=None):
|
| 275 |
x = self.conv_pre(x)
|
| 276 |
if g is not None:
|
| 277 |
+
x = x + self.cond(g)
|
| 278 |
|
| 279 |
for i in range(self.num_upsamples):
|
| 280 |
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
|
|
| 282 |
xs = None
|
| 283 |
for j in range(self.num_kernels):
|
| 284 |
if xs is None:
|
| 285 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 286 |
else:
|
| 287 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 288 |
x = xs / self.num_kernels
|
| 289 |
x = F.leaky_relu(x)
|
| 290 |
x = self.conv_post(x)
|
|
|
|
| 320 |
|
| 321 |
# 1d to 2d
|
| 322 |
b, c, t = x.shape
|
| 323 |
+
if t % self.period != 0: # pad first
|
| 324 |
n_pad = self.period - (t % self.period)
|
| 325 |
x = F.pad(x, (0, n_pad), "reflect")
|
| 326 |
t = t + n_pad
|
|
|
|
| 368 |
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 369 |
def __init__(self, use_spectral_norm=False):
|
| 370 |
super(MultiPeriodDiscriminator, self).__init__()
|
| 371 |
+
periods = [2, 3, 5, 7, 11]
|
| 372 |
|
| 373 |
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 374 |
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
|
|
|
| 390 |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 391 |
|
| 392 |
|
|
|
|
| 393 |
class SynthesizerTrn(nn.Module):
|
| 394 |
+
"""
|
| 395 |
Synthesizer for Training
|
| 396 |
"""
|
| 397 |
|
| 398 |
+
def __init__(self,
|
| 399 |
+
n_vocab,
|
| 400 |
+
spec_channels,
|
| 401 |
+
segment_size,
|
| 402 |
+
inter_channels,
|
| 403 |
+
hidden_channels,
|
| 404 |
+
filter_channels,
|
| 405 |
+
n_heads,
|
| 406 |
+
n_layers,
|
| 407 |
+
kernel_size,
|
| 408 |
+
p_dropout,
|
| 409 |
+
resblock,
|
| 410 |
+
resblock_kernel_sizes,
|
| 411 |
+
resblock_dilation_sizes,
|
| 412 |
+
upsample_rates,
|
| 413 |
+
upsample_initial_channel,
|
| 414 |
+
upsample_kernel_sizes,
|
| 415 |
+
n_speakers=0,
|
| 416 |
+
gin_channels=0,
|
| 417 |
+
use_sdp=True,
|
| 418 |
+
**kwargs):
|
| 419 |
+
|
| 420 |
+
super().__init__()
|
| 421 |
+
self.n_vocab = n_vocab
|
| 422 |
+
self.spec_channels = spec_channels
|
| 423 |
+
self.inter_channels = inter_channels
|
| 424 |
+
self.hidden_channels = hidden_channels
|
| 425 |
+
self.filter_channels = filter_channels
|
| 426 |
+
self.n_heads = n_heads
|
| 427 |
+
self.n_layers = n_layers
|
| 428 |
+
self.kernel_size = kernel_size
|
| 429 |
+
self.p_dropout = p_dropout
|
| 430 |
+
self.resblock = resblock
|
| 431 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 432 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 433 |
+
self.upsample_rates = upsample_rates
|
| 434 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 435 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 436 |
+
self.segment_size = segment_size
|
| 437 |
+
self.n_speakers = n_speakers
|
| 438 |
+
self.gin_channels = gin_channels
|
| 439 |
+
|
| 440 |
+
self.use_sdp = use_sdp
|
| 441 |
+
|
| 442 |
+
self.enc_p = TextEncoder(n_vocab,
|
| 443 |
+
inter_channels,
|
| 444 |
+
hidden_channels,
|
| 445 |
+
filter_channels,
|
| 446 |
+
n_heads,
|
| 447 |
+
n_layers,
|
| 448 |
+
kernel_size,
|
| 449 |
+
p_dropout)
|
| 450 |
+
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
|
| 451 |
+
upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
| 452 |
+
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16,
|
| 453 |
+
gin_channels=gin_channels)
|
| 454 |
+
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
| 455 |
+
|
| 456 |
+
if use_sdp:
|
| 457 |
+
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
| 458 |
+
else:
|
| 459 |
+
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
| 460 |
+
|
| 461 |
+
if n_speakers > 1:
|
| 462 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
| 463 |
+
|
| 464 |
+
def forward(self, x, x_lengths, y, y_lengths, sid=None):
|
| 465 |
+
|
| 466 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
| 467 |
+
if self.n_speakers > 1:
|
| 468 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 469 |
+
else:
|
| 470 |
+
g = None
|
| 471 |
+
|
| 472 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 473 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 474 |
+
|
| 475 |
+
with torch.no_grad():
|
| 476 |
+
# negative cross-entropy
|
| 477 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
| 478 |
+
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
| 479 |
+
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2),
|
| 480 |
+
s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 481 |
+
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 482 |
+
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
| 483 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
| 484 |
+
|
| 485 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 486 |
+
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
| 487 |
+
|
| 488 |
+
w = attn.sum(2)
|
| 489 |
+
if self.use_sdp:
|
| 490 |
+
l_length = self.dp(x, x_mask, w, g=g)
|
| 491 |
+
l_length = l_length / torch.sum(x_mask)
|
| 492 |
+
else:
|
| 493 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
| 494 |
+
logw = self.dp(x, x_mask, g=g)
|
| 495 |
+
l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging
|
| 496 |
+
|
| 497 |
+
# expand prior
|
| 498 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
| 499 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
| 500 |
+
|
| 501 |
+
z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
|
| 502 |
+
o = self.dec(z_slice, g=g)
|
| 503 |
+
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
| 504 |
+
|
| 505 |
+
def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
| 506 |
+
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
|
| 507 |
+
if self.n_speakers > 1:
|
| 508 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 509 |
+
else:
|
| 510 |
+
g = None
|
| 511 |
+
|
| 512 |
+
if self.use_sdp:
|
| 513 |
+
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
| 514 |
+
else:
|
| 515 |
+
logw = self.dp(x, x_mask, g=g)
|
| 516 |
+
w = torch.exp(logw) * x_mask * length_scale
|
| 517 |
+
w_ceil = torch.ceil(w)
|
| 518 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
| 519 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
| 520 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 521 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
| 522 |
+
|
| 523 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 524 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1,
|
| 525 |
+
2) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 526 |
+
|
| 527 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
| 528 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
| 529 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
| 530 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
| 531 |
+
|
| 532 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
|
| 533 |
+
assert self.n_speakers > 1, "n_speakers have to be larger than 1."
|
| 534 |
+
g_src = self.emb_g(sid_src).unsqueeze(-1)
|
| 535 |
+
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
|
| 536 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
|
| 537 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
| 538 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
| 539 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
| 540 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|
saved_model/10/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:06b3c77565155ac550a3264e24f5c59627c6f8e4f9953a5f2423f6d375823e52
|
| 3 |
+
size 1228
|
saved_model/10/cover.jpg
ADDED
|
Git LFS Details
|
saved_model/10/model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d7d3dc42ad38c3479b41c1060c442ba33018069be637e664fefafb4bb4ad764
|
| 3 |
+
size 220972879
|
saved_model/11/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2aa2128f54f61bf1b01951f7d2e0e2d5a835a9750a4a9ef8b4854ac25324823
|
| 3 |
+
size 1187
|
saved_model/11/cover.jpg
ADDED
|
Git LFS Details
|
saved_model/11/model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:56d55e4672c5f335ebae30728529e5efb8a9c3975a9b63e6590454ef8769ae70
|
| 3 |
+
size 203264375
|
saved_model/8/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4304293bb85d90daa3b5fa2dc3a35ce0842f0282f54298df68103932fee0e9f2
|
| 3 |
+
size 1873
|
saved_model/8/cover.jpg
ADDED
|
Git LFS Details
|
saved_model/8/model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70ba2e6a192f836d58dcb4e36b8d5dde2e2a06c88d03dda107c07b9aa35ee4db
|
| 3 |
+
size 158902605
|
saved_model/9/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2040ad22b30868bb031f4d2e2af91fdcfe057753f68e8cb135be5459374cba73
|
| 3 |
+
size 816
|
saved_model/9/cover.jpg
ADDED
|
Git LFS Details
|
saved_model/9/model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:20b38cc55191ec02c2809e80d758ff0d56bd44760841704feb9921aa58a4d9de
|
| 3 |
+
size 203264375
|
saved_model/info.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:33b7a2042589990eb609c4e87044b7d5d6d80da206c88f54b70175ce0d2a535c
|
| 3 |
+
size 1616
|