Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
add model
Browse files- saved_model/7/config.json +3 -0
- saved_model/7/cover.jpg +3 -0
- saved_model/7/model.pth +3 -0
- saved_model/info.json +2 -2
- utils.py +167 -167
saved_model/7/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7df7925410fe5775f1d6085a548f816304c43ed2ce84835a4cf9f815b524bad5
|
| 3 |
+
size 1749
|
saved_model/7/cover.jpg
ADDED
|
Git LFS Details
|
saved_model/7/model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f96e046a777407883d4665777118bdfbe0a48fc18c5fdea16c1d05eaa3af7773
|
| 3 |
+
size 476818993
|
saved_model/info.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43443cfa806bfad9cbb429c96ba440913d01da1bdff63daa564c824037e8070b
|
| 3 |
+
size 1015
|
utils.py
CHANGED
|
@@ -16,211 +16,211 @@ logger = logging
|
|
| 16 |
|
| 17 |
|
| 18 |
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
|
| 46 |
def plot_spectrogram_to_numpy(spectrogram):
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
|
| 71 |
|
| 72 |
def plot_alignment_to_numpy(alignment, info=None):
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
|
| 101 |
def load_wav_to_torch(full_path):
|
| 102 |
-
|
| 103 |
-
|
| 104 |
|
| 105 |
|
| 106 |
def load_filepaths_and_text(filename, split="|"):
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
|
| 112 |
def get_hparams(init=True):
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
|
| 141 |
|
| 142 |
def get_hparams_from_dir(model_dir):
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
|
| 152 |
|
| 153 |
def get_hparams_from_file(config_path):
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
|
| 161 |
|
| 162 |
def check_git_hash(model_dir):
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
|
| 170 |
-
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
|
| 181 |
|
| 182 |
def get_logger(model_dir, filename="train.log"):
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
|
| 196 |
|
| 197 |
class HParams():
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
|
| 213 |
-
|
| 214 |
-
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
|
| 225 |
-
|
| 226 |
-
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
def load_checkpoint(checkpoint_path, model, optimizer=None):
|
| 19 |
+
assert os.path.isfile(checkpoint_path)
|
| 20 |
+
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
| 21 |
+
iteration = checkpoint_dict['iteration']
|
| 22 |
+
learning_rate = checkpoint_dict['learning_rate']
|
| 23 |
+
if optimizer is not None:
|
| 24 |
+
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
| 25 |
+
saved_state_dict = checkpoint_dict['model']
|
| 26 |
+
if hasattr(model, 'module'):
|
| 27 |
+
state_dict = model.module.state_dict()
|
| 28 |
+
else:
|
| 29 |
+
state_dict = model.state_dict()
|
| 30 |
+
new_state_dict = {}
|
| 31 |
+
for k, v in state_dict.items():
|
| 32 |
+
try:
|
| 33 |
+
new_state_dict[k] = saved_state_dict[k]
|
| 34 |
+
except:
|
| 35 |
+
logger.info("%s is not in the checkpoint" % k)
|
| 36 |
+
new_state_dict[k] = v
|
| 37 |
+
if hasattr(model, 'module'):
|
| 38 |
+
model.module.load_state_dict(new_state_dict)
|
| 39 |
+
else:
|
| 40 |
+
model.load_state_dict(new_state_dict)
|
| 41 |
+
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
| 42 |
+
checkpoint_path, iteration))
|
| 43 |
+
return model, optimizer, learning_rate, iteration
|
| 44 |
|
| 45 |
|
| 46 |
def plot_spectrogram_to_numpy(spectrogram):
|
| 47 |
+
global MATPLOTLIB_FLAG
|
| 48 |
+
if not MATPLOTLIB_FLAG:
|
| 49 |
+
import matplotlib
|
| 50 |
+
matplotlib.use("Agg")
|
| 51 |
+
MATPLOTLIB_FLAG = True
|
| 52 |
+
mpl_logger = logging.getLogger('matplotlib')
|
| 53 |
+
mpl_logger.setLevel(logging.WARNING)
|
| 54 |
+
import matplotlib.pylab as plt
|
| 55 |
+
import numpy as np
|
| 56 |
+
|
| 57 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
| 58 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
| 59 |
+
interpolation='none')
|
| 60 |
+
plt.colorbar(im, ax=ax)
|
| 61 |
+
plt.xlabel("Frames")
|
| 62 |
+
plt.ylabel("Channels")
|
| 63 |
+
plt.tight_layout()
|
| 64 |
+
|
| 65 |
+
fig.canvas.draw()
|
| 66 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
| 67 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 68 |
+
plt.close()
|
| 69 |
+
return data
|
| 70 |
|
| 71 |
|
| 72 |
def plot_alignment_to_numpy(alignment, info=None):
|
| 73 |
+
global MATPLOTLIB_FLAG
|
| 74 |
+
if not MATPLOTLIB_FLAG:
|
| 75 |
+
import matplotlib
|
| 76 |
+
matplotlib.use("Agg")
|
| 77 |
+
MATPLOTLIB_FLAG = True
|
| 78 |
+
mpl_logger = logging.getLogger('matplotlib')
|
| 79 |
+
mpl_logger.setLevel(logging.WARNING)
|
| 80 |
+
import matplotlib.pylab as plt
|
| 81 |
+
import numpy as np
|
| 82 |
+
|
| 83 |
+
fig, ax = plt.subplots(figsize=(6, 4))
|
| 84 |
+
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
| 85 |
+
interpolation='none')
|
| 86 |
+
fig.colorbar(im, ax=ax)
|
| 87 |
+
xlabel = 'Decoder timestep'
|
| 88 |
+
if info is not None:
|
| 89 |
+
xlabel += '\n\n' + info
|
| 90 |
+
plt.xlabel(xlabel)
|
| 91 |
+
plt.ylabel('Encoder timestep')
|
| 92 |
+
plt.tight_layout()
|
| 93 |
+
|
| 94 |
+
fig.canvas.draw()
|
| 95 |
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
| 96 |
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
| 97 |
+
plt.close()
|
| 98 |
+
return data
|
| 99 |
|
| 100 |
|
| 101 |
def load_wav_to_torch(full_path):
|
| 102 |
+
sampling_rate, data = read(full_path)
|
| 103 |
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
| 104 |
|
| 105 |
|
| 106 |
def load_filepaths_and_text(filename, split="|"):
|
| 107 |
+
with open(filename, encoding='utf-8') as f:
|
| 108 |
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
| 109 |
+
return filepaths_and_text
|
| 110 |
|
| 111 |
|
| 112 |
def get_hparams(init=True):
|
| 113 |
+
parser = argparse.ArgumentParser()
|
| 114 |
+
parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
|
| 115 |
+
help='JSON file for configuration')
|
| 116 |
+
parser.add_argument('-m', '--model', type=str, required=True,
|
| 117 |
+
help='Model name')
|
| 118 |
+
|
| 119 |
+
args = parser.parse_args()
|
| 120 |
+
model_dir = os.path.join("./logs", args.model)
|
| 121 |
+
|
| 122 |
+
if not os.path.exists(model_dir):
|
| 123 |
+
os.makedirs(model_dir)
|
| 124 |
+
|
| 125 |
+
config_path = args.config
|
| 126 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
| 127 |
+
if init:
|
| 128 |
+
with open(config_path, "r") as f:
|
| 129 |
+
data = f.read()
|
| 130 |
+
with open(config_save_path, "w") as f:
|
| 131 |
+
f.write(data)
|
| 132 |
+
else:
|
| 133 |
+
with open(config_save_path, "r") as f:
|
| 134 |
+
data = f.read()
|
| 135 |
+
config = json.loads(data)
|
| 136 |
+
|
| 137 |
+
hparams = HParams(**config)
|
| 138 |
+
hparams.model_dir = model_dir
|
| 139 |
+
return hparams
|
| 140 |
|
| 141 |
|
| 142 |
def get_hparams_from_dir(model_dir):
|
| 143 |
+
config_save_path = os.path.join(model_dir, "config.json")
|
| 144 |
+
with open(config_save_path, "r") as f:
|
| 145 |
+
data = f.read()
|
| 146 |
+
config = json.loads(data)
|
| 147 |
|
| 148 |
+
hparams = HParams(**config)
|
| 149 |
+
hparams.model_dir = model_dir
|
| 150 |
+
return hparams
|
| 151 |
|
| 152 |
|
| 153 |
def get_hparams_from_file(config_path):
|
| 154 |
+
with open(config_path, "r", encoding="utf-8") as f:
|
| 155 |
+
data = f.read()
|
| 156 |
+
config = json.loads(data)
|
| 157 |
|
| 158 |
+
hparams = HParams(**config)
|
| 159 |
+
return hparams
|
| 160 |
|
| 161 |
|
| 162 |
def check_git_hash(model_dir):
|
| 163 |
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
| 164 |
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
| 165 |
+
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
| 166 |
+
source_dir
|
| 167 |
+
))
|
| 168 |
+
return
|
| 169 |
|
| 170 |
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
| 171 |
|
| 172 |
+
path = os.path.join(model_dir, "githash")
|
| 173 |
+
if os.path.exists(path):
|
| 174 |
+
saved_hash = open(path).read()
|
| 175 |
+
if saved_hash != cur_hash:
|
| 176 |
+
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
| 177 |
+
saved_hash[:8], cur_hash[:8]))
|
| 178 |
+
else:
|
| 179 |
+
open(path, "w").write(cur_hash)
|
| 180 |
|
| 181 |
|
| 182 |
def get_logger(model_dir, filename="train.log"):
|
| 183 |
+
global logger
|
| 184 |
+
logger = logging.getLogger(os.path.basename(model_dir))
|
| 185 |
+
logger.setLevel(logging.DEBUG)
|
| 186 |
+
|
| 187 |
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
| 188 |
+
if not os.path.exists(model_dir):
|
| 189 |
+
os.makedirs(model_dir)
|
| 190 |
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
| 191 |
+
h.setLevel(logging.DEBUG)
|
| 192 |
+
h.setFormatter(formatter)
|
| 193 |
+
logger.addHandler(h)
|
| 194 |
+
return logger
|
| 195 |
|
| 196 |
|
| 197 |
class HParams():
|
| 198 |
+
def __init__(self, **kwargs):
|
| 199 |
+
for k, v in kwargs.items():
|
| 200 |
+
if type(v) == dict:
|
| 201 |
+
v = HParams(**v)
|
| 202 |
+
self[k] = v
|
| 203 |
+
|
| 204 |
+
def keys(self):
|
| 205 |
+
return self.__dict__.keys()
|
| 206 |
|
| 207 |
+
def items(self):
|
| 208 |
+
return self.__dict__.items()
|
| 209 |
|
| 210 |
+
def values(self):
|
| 211 |
+
return self.__dict__.values()
|
| 212 |
|
| 213 |
+
def __len__(self):
|
| 214 |
+
return len(self.__dict__)
|
| 215 |
|
| 216 |
+
def __getitem__(self, key):
|
| 217 |
+
return getattr(self, key)
|
| 218 |
|
| 219 |
+
def __setitem__(self, key, value):
|
| 220 |
+
return setattr(self, key, value)
|
| 221 |
|
| 222 |
+
def __contains__(self, key):
|
| 223 |
+
return key in self.__dict__
|
| 224 |
|
| 225 |
+
def __repr__(self):
|
| 226 |
+
return self.__dict__.__repr__()
|