Spaces:
Running
Running
File size: 24,473 Bytes
bd1548b c71d616 eb48e62 bd1548b aaa0ade bd1548b f1c6fd2 cd22e75 bd1548b aaa0ade c71d616 52b13b2 c71d616 eb48e62 c71d616 eb48e62 c71d616 eb48e62 c71d616 bd1548b aaa0ade 794fe4c aaa0ade 794fe4c aaa0ade 794fe4c aaa0ade 794fe4c aaa0ade bd1548b 076e877 2023b16 076e877 f55be02 abce027 f55be02 076e877 bd1548b c71d616 eb48e62 c71d616 52b13b2 bd1548b aaa0ade bd1548b f55be02 bd1548b f55be02 bd1548b f55be02 bd1548b f55be02 bd1548b 2023b16 bd1548b 2023b16 bd1548b cd22e75 bd1548b f877b6a bd1548b f877b6a bd1548b 5cbc0b0 2f6e42e a191678 2f6e42e a191678 2f6e42e a191678 2f6e42e a191678 5cbc0b0 a191678 2f6e42e a191678 2f6e42e a191678 2f6e42e a191678 5cbc0b0 abce027 5cbc0b0 2f6e42e 5cbc0b0 2f6e42e cd22e75 2f6e42e 9bb1cf9 b244b28 9bb1cf9 9ae2843 9bb1cf9 2f6e42e 4f25d60 5e7d2ae 4f25d60 5e7d2ae 4f25d60 5e7d2ae 4f25d60 10136fd 4f25d60 b6c4b94 ced6802 5e7d2ae bd1548b abce027 bd1548b a191678 64bda64 a191678 64bda64 bd1548b eb48e62 bd1548b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
"""Gradio demo Space for Trainingless – see plan.md for details."""
from __future__ import annotations
import base64
import io
import os
import time
import uuid
from datetime import datetime
from typing import Tuple, Optional
import requests
from dotenv import load_dotenv
from PIL import Image
from collections import defaultdict, deque
import threading
import gradio as gr
from supabase import create_client, Client
from transformers import pipeline
# -----------------------------------------------------------------------------
# Environment & Supabase setup
# -----------------------------------------------------------------------------
# Load .env file *once* when running locally. The HF Spaces runtime injects the
# same names via its Secrets mechanism, so calling load_dotenv() is harmless.
load_dotenv()
SUPABASE_URL: str = os.getenv("SUPABASE_URL", "")
# Use a *secret* (server-only) key so the backend bypasses RLS.
SUPABASE_SECRET_KEY: str = os.getenv("SUPABASE_SECRET_KEY", "")
# (Optional) You can override which Edge Function gets called.
SUPABASE_FUNCTION_URL: str = os.getenv(
"SUPABASE_FUNCTION_URL", f"{SUPABASE_URL}/functions/v1/process-image"
)
# Storage bucket for uploads. Must be *public*.
UPLOAD_BUCKET = os.getenv("SUPABASE_UPLOAD_BUCKET", "images")
REQUEST_TIMEOUT = int(os.getenv("SUPABASE_FN_TIMEOUT", "240")) # seconds
# Available model workflows recognised by edge function
WORKFLOW_CHOICES = [
"eyewear",
"footwear",
"dress",
"top",
]
if not SUPABASE_URL or not SUPABASE_SECRET_KEY:
raise RuntimeError(
"SUPABASE_URL and SUPABASE_SECRET_KEY must be set in the environment."
)
# -----------------------------------------------------------------------------
# Supabase client – server-side: authenticate with secret key (bypasses RLS)
# -----------------------------------------------------------------------------
supabase: Client = create_client(SUPABASE_URL, SUPABASE_SECRET_KEY)
# Ensure the uploads bucket exists (idempotent). This requires service role *once*;
try:
buckets = supabase.storage.list_buckets() # type: ignore[attr-defined]
bucket_names = {b["name"] for b in buckets} if isinstance(buckets, list) else set()
if UPLOAD_BUCKET not in bucket_names:
# Attempt to create bucket (will fail w/ anon key – inform user to create)
try:
supabase.storage.create_bucket(
UPLOAD_BUCKET,
public=True,
)
print(f"[startup] Created bucket '{UPLOAD_BUCKET}'.")
except Exception as create_exc: # noqa: BLE001
print(f"[startup] Could not create bucket '{UPLOAD_BUCKET}': {create_exc!r}")
except Exception as exc: # noqa: BLE001
# Non-fatal. The bucket probably already exists or we don't have perms.
print(f"[startup] Bucket check/create raised {exc!r}. Continuing…")
# -----------------------------------------------------------------------------
# NSFW Filter Setup
# -----------------------------------------------------------------------------
# Initialize NSFW classifier at startup
print("[startup] Loading NSFW classifier...")
try:
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")
print("[startup] NSFW classifier loaded successfully")
except Exception as exc:
print(f"[startup] Failed to load NSFW classifier: {exc!r}")
nsfw_classifier = None
# -----------------------------------------------------------------------------
# Rate Limiting
# -----------------------------------------------------------------------------
# Rate limiter: 5 requests per IP per hour
RATE_LIMIT_REQUESTS = 5
RATE_LIMIT_WINDOW = 3600 # 1 hour in seconds
request_tracker = defaultdict(deque)
def get_client_ip(request: gr.Request) -> str:
"""Extract client IP with multiple fallback methods."""
if not request:
return "no-request"
# Try multiple sources for IP address
ip_sources = [
# Direct client host
getattr(request.client, 'host', None) if hasattr(request, 'client') and request.client else None,
# Common proxy headers
request.headers.get('X-Forwarded-For', '').split(',')[0].strip() if hasattr(request, 'headers') else None,
request.headers.get('X-Real-IP', '') if hasattr(request, 'headers') else None,
request.headers.get('CF-Connecting-IP', '') if hasattr(request, 'headers') else None, # Cloudflare
request.headers.get('True-Client-IP', '') if hasattr(request, 'headers') else None,
request.headers.get('X-Client-IP', '') if hasattr(request, 'headers') else None,
]
# Return first valid IP found
for ip in ip_sources:
if ip and ip.strip() and ip != '::1' and not ip.startswith('127.'):
return ip.strip()
# Final fallbacks
if hasattr(request, 'client') and request.client:
client_host = getattr(request.client, 'host', None)
if client_host:
return client_host
# If all else fails, use a session-based identifier
session_id = getattr(request, 'session_hash', 'unknown-session')
return f"session-{session_id}"
def check_rate_limit(client_ip: str) -> bool:
"""Check if IP has exceeded rate limit. Returns True if allowed, False if blocked."""
current_time = time.time()
user_requests = request_tracker[client_ip]
# Remove requests outside the time window
while user_requests and current_time - user_requests[0] > RATE_LIMIT_WINDOW:
user_requests.popleft()
# Check if under limit
if len(user_requests) < RATE_LIMIT_REQUESTS:
user_requests.append(current_time)
return True
else:
# Log rate limit hit for monitoring
print(f"[RATE_LIMIT] IP {client_ip} exceeded limit ({len(user_requests)}/{RATE_LIMIT_REQUESTS})")
return False
def cleanup_rate_limiter():
"""Periodic cleanup to prevent memory issues."""
current_time = time.time()
ips_to_remove = []
for ip, requests in request_tracker.items():
# Remove old requests
while requests and current_time - requests[0] > RATE_LIMIT_WINDOW:
requests.popleft()
# If no recent requests, mark IP for removal
if not requests:
ips_to_remove.append(ip)
# Clean up empty entries
for ip in ips_to_remove:
del request_tracker[ip]
print(f"[RATE_LIMITER] Cleaned up {len(ips_to_remove)} inactive IPs. Active IPs: {len(request_tracker)}")
# -----------------------------------------------------------------------------
# Helper functions
# -----------------------------------------------------------------------------
def pil_to_bytes(img: Image.Image) -> bytes:
"""Convert PIL Image to PNG bytes."""
with io.BytesIO() as buffer:
img.save(buffer, format="PNG")
return buffer.getvalue()
def upload_image_to_supabase(img: Image.Image, path: str) -> str:
"""Upload image under `UPLOAD_BUCKET/path` and return **public URL**."""
data = pil_to_bytes(img)
# Overwrite if exists
supabase.storage.from_(UPLOAD_BUCKET).upload(
path,
data,
{"content-type": "image/png", "upsert": "true"}, # upsert must be string
) # type: ignore[attr-defined]
public_url = (
f"{SUPABASE_URL}/storage/v1/object/public/{UPLOAD_BUCKET}/{path}"
)
return public_url
def wait_for_job_completion(job_id: str, timeout_s: int = 600) -> Optional[str]:
"""Subscribe to the single row via Realtime. Fallback to polling every 5 s."""
# First try realtime subscription (non-blocking). If it errors, fall back.
completed_image: Optional[str] = None
did_subscribe = False
try:
# Docs: https://supabase.com/docs/reference/python/creating-channels
channel = (
supabase.channel("job_channel")
.on(
"postgres_changes",
{
"event": "UPDATE",
"schema": "public",
"table": "processing_jobs",
"filter": f"id=eq.{job_id}",
},
lambda payload: _realtime_callback(payload, job_id),
)
.subscribe()
)
did_subscribe = True
except Exception as exc: # noqa: BLE001
print(f"[wait] Realtime subscription failed – will poll: {exc!r}")
start = time.time()
while time.time() - start < timeout_s:
if _RESULT_CACHE.get(job_id):
completed_image = _RESULT_CACHE.pop(job_id)
break
if not did_subscribe or (time.time() - start) % 5 == 0:
# Poll once every ~5 s
data = (
supabase.table("processing_jobs")
.select("status,result_image_url")
.eq("id", job_id)
.single()
.execute()
)
if data.data and data.data["status"] == "completed":
completed_image = data.data.get("result_image_url")
break
time.sleep(1)
try:
if did_subscribe:
supabase.remove_channel(channel)
except Exception: # noqa: PIE786, BLE001
pass
return completed_image
_RESULT_CACHE: dict[str, str] = {}
def _realtime_callback(payload: dict, job_id: str) -> None:
new = payload.get("new", {}) # type: ignore[index]
if new.get("status") == "completed":
_RESULT_CACHE[job_id] = new.get("result_image_url")
MAX_PIXELS = 1_500_000 # 1.5 megapixels ceiling for each uploaded image
def downscale_image(img: Image.Image, max_pixels: int = MAX_PIXELS) -> Image.Image:
"""Downscale *img* proportionally so that width×height ≤ *max_pixels*.
If the image is already small enough, it is returned unchanged.
"""
w, h = img.size
if w * h <= max_pixels:
return img
scale = (max_pixels / (w * h)) ** 0.5 # uniform scaling factor
new_size = (max(1, int(w * scale)), max(1, int(h * scale)))
return img.resize(new_size, Image.LANCZOS)
def _public_storage_url(path: str) -> str:
"""Return a public (https) URL given an object *path* inside any bucket.
If *path* already looks like a full URL, it is returned unchanged.
"""
if path.startswith("http://") or path.startswith("https://"):
return path
# Ensure no leading slash.
return f"{SUPABASE_URL}/storage/v1/object/public/{path.lstrip('/')}"
def is_nsfw_content(img: Image.Image) -> bool:
"""Check if image contains explicit pornographic content using Hugging Face transformer.
Designed to allow legitimate fashion content (lingerie, swimwear) while blocking explicit porn.
"""
if nsfw_classifier is None:
print("[NSFW] Classifier not available, skipping check")
return False
try:
# Run classification
results = nsfw_classifier(img)
print(f"[NSFW] Classification results: {results}")
# Check for explicit pornographic content only
for result in results:
label = result['label'].lower()
score = result['score']
print(f"[NSFW] Label: {label}, Score: {score:.3f}")
# Only block explicit pornographic content with very high confidence
# Allow fashion content (lingerie, swimwear) by being more restrictive
if label == 'porn' and score > 0.85: # Higher threshold, only "porn" label
print(f"[NSFW] BLOCKED - Explicit pornographic content detected with {score:.3f} confidence")
return True
elif label in ['nsfw', 'explicit'] and score > 0.95: # Very high threshold for broader categories
print(f"[NSFW] BLOCKED - {label} detected with {score:.3f} confidence")
return True
print("[NSFW] Content approved (fashion/lingerie content allowed)")
return False
except Exception as exc:
print(f"[NSFW] Error during classification: {exc!r}")
# Fail open - don't block if classifier has issues
return False
# -----------------------------------------------------------------------------
# Main generate function
# -----------------------------------------------------------------------------
def fetch_image_if_url(img):
"""
If img is a string and looks like a URL, download and return as PIL.Image.
Otherwise, return as-is (assume already PIL.Image).
"""
if isinstance(img, str) and (img.startswith("http://") or img.startswith("https://")):
print(f"[FETCH] Downloading image from URL: {img}")
resp = requests.get(img, headers={"x-api-origin": "hf/demo"})
resp.raise_for_status()
from PIL import Image
return Image.open(io.BytesIO(resp.content)).convert("RGB")
return img
def generate(
base_img: Image.Image,
garment_img: Image.Image,
workflow_choice: str,
mask_img: Optional[Image.Image], # NEW: Optional mask parameter
request: gr.Request
) -> Image.Image:
base_img = fetch_image_if_url(base_img)
garment_img = fetch_image_if_url(garment_img)
if mask_img is not None:
mask_img = fetch_image_if_url(mask_img)
if base_img is None or garment_img is None:
raise gr.Error("Please provide both images.")
# Rate limiting check
client_ip = get_client_ip(request)
if not check_rate_limit(client_ip):
raise gr.Error("Rate Limit Quota Exceeded - Visit studio.yourmirror.io to sign up for unlimited use")
# NSFW content filtering - only check product image
print(f"[NSFW] Checking product image for inappropriate content...")
if is_nsfw_content(garment_img):
raise gr.Error("Product image contains inappropriate content. Please use a different image.")
# 1. Persist both images to Supabase storage
job_id = str(uuid.uuid4())
folder = f"user_uploads/gradio/{job_id}"
base_filename = f"{uuid.uuid4().hex}.png"
garment_filename = f"{uuid.uuid4().hex}.png"
base_path = f"{folder}/{base_filename}"
garment_path = f"{folder}/{garment_filename}"
base_img = downscale_image(base_img)
garment_img = downscale_image(garment_img)
base_url = upload_image_to_supabase(base_img, base_path)
garment_url = upload_image_to_supabase(garment_img, garment_path)
# Handle optional mask image (if provided by ComfyUI or future web UI)
mask_url = None
if mask_img is not None:
print(f"[MASK] Processing user-provided mask image")
mask_filename = f"{uuid.uuid4().hex}.png"
mask_path = f"{folder}/{mask_filename}"
mask_img = downscale_image(mask_img)
mask_url = upload_image_to_supabase(mask_img, mask_path)
print(f"[MASK] Uploaded mask: {mask_url}")
else:
print(f"[MASK] No mask provided - will use base image fallback")
# 2. Insert new row into processing_jobs (anon key, relies on open RLS)
token_for_row = str(uuid.uuid4())
insert_payload = {
"id": job_id,
"status": "queued",
"base_image_path": base_url,
"garment_image_path": garment_url,
"mask_image_path": mask_url if mask_url else base_url, # Track actual mask used
"access_token": token_for_row,
"created_at": datetime.utcnow().isoformat(),
}
supabase.table("processing_jobs").insert(insert_payload).execute()
# 3. Trigger edge function
workflow_choice = (workflow_choice or "eyewear").lower()
if workflow_choice not in WORKFLOW_CHOICES:
workflow_choice = "eyewear"
fn_payload = {
"baseImageUrl": base_url,
"garmentImageUrl": garment_url,
# 🎭 Smart fallback: use provided mask OR base image (much better than garment!)
"maskImageUrl": mask_url if mask_url else base_url,
"jobId": job_id,
"workflowType": workflow_choice,
}
# Log mask selection for debugging
if mask_url:
print(f"[API] Using user-provided mask: {mask_url}")
else:
print(f"[API] Using base image as mask fallback: {base_url}")
headers = {
"Content-Type": "application/json",
"apikey": SUPABASE_SECRET_KEY,
"Authorization": f"Bearer {SUPABASE_SECRET_KEY}",
"x-api-origin": "hf/demo",
}
resp = requests.post(
SUPABASE_FUNCTION_URL,
json=fn_payload,
headers=headers,
timeout=REQUEST_TIMEOUT,
)
if not resp.ok:
raise gr.Error(f"Backend error: {resp.text}")
# 4. Wait for completion via realtime (or polling fallback)
result = wait_for_job_completion(job_id)
if not result:
raise gr.Error("Timed out waiting for job to finish.")
# Result may be base64 data URI or http URL; normalise.
if result.startswith("data:image"):
header, b64 = result.split(",", 1)
img_bytes = base64.b64decode(b64)
result_img = Image.open(io.BytesIO(img_bytes)).convert("RGBA")
else:
result_url = _public_storage_url(result)
resp_img = requests.get(result_url, timeout=30, headers={"x-api-origin": "hf/demo"})
resp_img.raise_for_status()
result_img = Image.open(io.BytesIO(resp_img.content)).convert("RGBA")
return result_img
# -----------------------------------------------------------------------------
# Gradio UI
# -----------------------------------------------------------------------------
description = "Upload a person photo (Base) and a product image. Select between Eyewear, Footwear, Full-Body Garments, or Top Garments to switch between the four available models. Click 👉 **Generate** to try on a product." # noqa: E501
with gr.Blocks(title="YOURMIRROR.IO - SM4LL-VTON Demo") as demo:
# Header
gr.Markdown("# SM4LL-VTON PRE-RELEASE DEMO | YOURMIRROR.IO | Virtual Try-On")
gr.Markdown(description)
IMG_SIZE = 256
with gr.Row():
# Left column: Example images
with gr.Column(scale=1):
gr.Markdown("### base image examples")
with gr.Row():
base_example_1 = gr.Image(
value="assets/base_image-1.jpg",
interactive=False,
height=120,
width=120,
show_label=False,
)
base_example_2 = gr.Image(
value="assets/base_image-2.jpg",
interactive=False,
height=120,
width=120,
show_label=False,
)
base_example_3 = gr.Image(
value="assets/base_image-3.jpg",
interactive=False,
height=120,
width=120,
show_label=False,
)
gr.Markdown("### product examples")
with gr.Row():
product_example_1 = gr.Image(
value="assets/product_image-1.jpg",
interactive=False,
height=120,
width=120,
show_label=False,
)
product_example_2 = gr.Image(
value="assets/product_image-2.jpg",
interactive=False,
height=120,
width=120,
show_label=False,
)
product_example_3 = gr.Image(
value="assets/product_image-3.jpg",
interactive=False,
height=120,
width=120,
show_label=False,
)
# Second column: Input fields
with gr.Column(scale=1):
base_in = gr.Image(
label="Base Image",
type="pil",
height=IMG_SIZE,
width=IMG_SIZE,
)
garment_in = gr.Image(
label="Product Image",
type="pil",
height=IMG_SIZE,
width=IMG_SIZE,
)
mask_in = gr.Image(
label="Mask Image (Optional)",
type="pil",
height=IMG_SIZE,
width=IMG_SIZE,
visible=False, # Hidden from UI but available for API
)
# Third column: Result
with gr.Column(scale=2):
result_out = gr.Image(
label="Result",
height=512,
width=512,
)
# Right column: Controls
with gr.Column(scale=1):
workflow_selector = gr.Radio(
choices=[
("Eyewear", "eyewear"),
("Footwear", "footwear"),
("Full-Body Garment", "dress"),
("Top Garment", "top"),
],
value="eyewear",
label="Model",
)
generate_btn = gr.Button("Generate", variant="primary", size="lg")
# Disclaimer box
gr.Markdown("""
<div style="background-color: #495057; color: white; border-radius: 8px; padding: 15px; margin-top: 15px; font-size: 14px;">
<strong>Disclaimer:</strong>
<ul style="margin: 8px 0; padding-left: 20px;">
<li>Depending on whether the selected model is already loaded, generations take between 20 and 80 seconds</li>
<li>If the automasking process doesn't find a target, it will throw an error (e.g.: no feet in a Footwear request)</li>
<li>The Full-Body Garment model is able to generate dresses AND copy full looks, although this latter feature is highly experimental. You can provide a target full look worn by another person, and the model will treat it as a single full-body garment</li>
<li>Supported formats: JPG, JPEG, WEBP, PNG; unsupported formats: GIF, AVIF</li>
</ul>
</div>
""")
# Add spacing
gr.Markdown("<br><br>")
# Information section
with gr.Row():
with gr.Column():
gr.Markdown("""
<div style="font-size: 18px; line-height: 2.0;">
📄 <strong>Read the Technical Report here:</strong> <a href="https://sm4ll-vton.github.io/sm4llvton/" target="_blank">sm4ll-vton.github.io/sm4llvton/</a>
<br><br>
🎥 <strong>Watch the in-depth YouTube video here:</strong> <a href="https://youtu.be/5o1OjWV4gsk" target="_blank">YouTube Video Tutorial</a>
<br><br>
🚀 <strong>Sign up for APIs and SDK on YourMirror:</strong> <a href="https://yourmirror.io" target="_blank">yourmirror.io</a>
<br><br>
💬 <strong>Want to chat?</strong><br>
[email protected] | [email protected]<br>
[email protected] | [email protected]
</div>
""")
# Wire up interaction
generate_btn.click(
generate,
inputs=[base_in, garment_in, workflow_selector, mask_in],
outputs=result_out,
)
# Select handlers for example images
base_example_1.select(lambda: Image.open("assets/base_image-1.jpg"), outputs=base_in)
base_example_2.select(lambda: Image.open("assets/base_image-2.jpg"), outputs=base_in)
base_example_3.select(lambda: Image.open("assets/base_image-3.jpg"), outputs=base_in)
product_example_1.select(lambda: Image.open("assets/product_image-1.jpg"), outputs=garment_in)
product_example_2.select(lambda: Image.open("assets/product_image-2.jpg"), outputs=garment_in)
product_example_3.select(lambda: Image.open("assets/product_image-3.jpg"), outputs=garment_in)
# Periodic cleanup for rate limiter (runs every 10 minutes)
def periodic_cleanup():
cleanup_rate_limiter()
# Schedule next cleanup
threading.Timer(600.0, periodic_cleanup).start() # 10 minutes
# Start cleanup timer
threading.Timer(600.0, periodic_cleanup).start()
# Run app if executed directly (e.g. `python app.py`). HF Spaces launches via
# `python app.py` automatically if it finds `app.py` at repo root, but our file
# lives in a sub-folder, so we keep the guard.
if __name__ == "__main__":
demo.launch() |