zhiweili commited on
Commit
3a274a9
·
1 Parent(s): 598f3c2

test single adapter

Browse files
Files changed (1) hide show
  1. app_haircolor_inpaint_adapter_15.py +24 -16
app_haircolor_inpaint_adapter_15.py CHANGED
@@ -41,21 +41,26 @@ lineart_detector = lineart_detector.to(DEVICE)
41
  pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
42
  pidiNet_detector = pidiNet_detector.to(DEVICE)
43
 
44
- adapters = MultiAdapter(
45
- [
46
- T2IAdapter.from_pretrained(
47
- "TencentARC/t2iadapter_canny_sd14v1",
48
- torch_dtype=torch.float16,
49
- varient="fp16",
50
- ),
51
- T2IAdapter.from_pretrained(
52
- "TencentARC/t2iadapter_sketch_sd14v1",
53
- torch_dtype=torch.float16,
54
- varient="fp16",
55
- ),
56
- ]
 
 
 
 
 
 
57
  )
58
- adapters = adapters.to(torch.float16)
59
 
60
  basepipeline = DiffusionPipeline.from_pretrained(
61
  BASE_MODEL,
@@ -80,8 +85,8 @@ def image_to_image(
80
  num_steps: int,
81
  guidance_scale: float,
82
  generate_size: int,
83
- cond_scale1: float = 0.8,
84
- cond_scale2: float = 0.8,
85
  ):
86
  run_task_time = 0
87
  time_cost_str = ''
@@ -92,6 +97,9 @@ def image_to_image(
92
  pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
93
  cond_image = [canny_image, pidiNet_image]
94
  cond_scale = [cond_scale1, cond_scale2]
 
 
 
95
 
96
  generator = torch.Generator(device=DEVICE).manual_seed(seed)
97
  generated_image = basepipeline(
 
41
  pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
42
  pidiNet_detector = pidiNet_detector.to(DEVICE)
43
 
44
+ # adapters = MultiAdapter(
45
+ # [
46
+ # T2IAdapter.from_pretrained(
47
+ # "TencentARC/t2iadapter_canny_sd15v2",
48
+ # torch_dtype=torch.float16,
49
+ # varient="fp16",
50
+ # ),
51
+ # T2IAdapter.from_pretrained(
52
+ # "TencentARC/t2iadapter_sketch_sd15v2",
53
+ # torch_dtype=torch.float16,
54
+ # varient="fp16",
55
+ # ),
56
+ # ]
57
+ # )
58
+ # adapters = adapters.to(torch.float16)
59
+ adapters = T2IAdapter.from_pretrained(
60
+ "TencentARC/t2iadapter_canny_sd15v2",
61
+ torch_dtype=torch.float16,
62
+ varient="fp16",
63
  )
 
64
 
65
  basepipeline = DiffusionPipeline.from_pretrained(
66
  BASE_MODEL,
 
85
  num_steps: int,
86
  guidance_scale: float,
87
  generate_size: int,
88
+ cond_scale1: float = 1.2,
89
+ cond_scale2: float = 1.2,
90
  ):
91
  run_task_time = 0
92
  time_cost_str = ''
 
97
  pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
98
  cond_image = [canny_image, pidiNet_image]
99
  cond_scale = [cond_scale1, cond_scale2]
100
+
101
+ cond_image = canny_image
102
+ cond_scale = cond_scale1
103
 
104
  generator = torch.Generator(device=DEVICE).manual_seed(seed)
105
  generated_image = basepipeline(