Spaces:
Runtime error
Runtime error
zhiweili
commited on
Commit
·
6b4da21
1
Parent(s):
f77d828
test multi adapter
Browse files
app_haircolor_inpaint_adapter_15.py
CHANGED
|
@@ -27,6 +27,7 @@ from controlnet_aux import (
|
|
| 27 |
)
|
| 28 |
|
| 29 |
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
|
|
|
| 30 |
|
| 31 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
|
|
@@ -42,26 +43,26 @@ lineart_detector = lineart_detector.to(DEVICE)
|
|
| 42 |
pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
|
| 43 |
pidiNet_detector = pidiNet_detector.to(DEVICE)
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# )
|
| 59 |
-
# adapters = adapters.to(torch.float16)
|
| 60 |
-
adapters = T2IAdapter.from_pretrained(
|
| 61 |
-
"TencentARC/t2iadapter_sketch_sd15v2",
|
| 62 |
-
torch_dtype=torch.float16,
|
| 63 |
-
varient="fp16",
|
| 64 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
basepipeline = DiffusionPipeline.from_pretrained(
|
| 67 |
BASE_MODEL,
|
|
@@ -93,16 +94,16 @@ def image_to_image(
|
|
| 93 |
time_cost_str = ''
|
| 94 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 95 |
# canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
|
| 96 |
-
|
| 97 |
# lineart_image = lineart_detector(input_image, int(generate_size*1), generate_size)
|
| 98 |
# run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 99 |
pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
|
| 100 |
pidiNet_image = pidiNet_image.convert("L")
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
-
cond_image = pidiNet_image
|
| 105 |
-
cond_scale = cond_scale1
|
| 106 |
|
| 107 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 108 |
generated_image = basepipeline(
|
|
|
|
| 27 |
)
|
| 28 |
|
| 29 |
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
| 30 |
+
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-inpainting"
|
| 31 |
|
| 32 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
|
|
|
|
| 43 |
pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
|
| 44 |
pidiNet_detector = pidiNet_detector.to(DEVICE)
|
| 45 |
|
| 46 |
+
adapters = MultiAdapter(
|
| 47 |
+
[
|
| 48 |
+
T2IAdapter.from_pretrained(
|
| 49 |
+
"TencentARC/t2iadapter_canny_sd15v2",
|
| 50 |
+
torch_dtype=torch.float16,
|
| 51 |
+
varient="fp16",
|
| 52 |
+
),
|
| 53 |
+
T2IAdapter.from_pretrained(
|
| 54 |
+
"TencentARC/t2iadapter_sketch_sd15v2",
|
| 55 |
+
torch_dtype=torch.float16,
|
| 56 |
+
varient="fp16",
|
| 57 |
+
),
|
| 58 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
)
|
| 60 |
+
adapters = adapters.to(torch.float16)
|
| 61 |
+
# adapters = T2IAdapter.from_pretrained(
|
| 62 |
+
# "TencentARC/t2iadapter_sketch_sd15v2",
|
| 63 |
+
# torch_dtype=torch.float16,
|
| 64 |
+
# varient="fp16",
|
| 65 |
+
# )
|
| 66 |
|
| 67 |
basepipeline = DiffusionPipeline.from_pretrained(
|
| 68 |
BASE_MODEL,
|
|
|
|
| 94 |
time_cost_str = ''
|
| 95 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 96 |
# canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
|
| 97 |
+
canny_image = custom_canny_detector(input_image)
|
| 98 |
# lineart_image = lineart_detector(input_image, int(generate_size*1), generate_size)
|
| 99 |
# run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 100 |
pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
|
| 101 |
pidiNet_image = pidiNet_image.convert("L")
|
| 102 |
+
cond_image = [canny_image, pidiNet_image]
|
| 103 |
+
cond_scale = [cond_scale1, cond_scale2]
|
| 104 |
|
| 105 |
+
# cond_image = pidiNet_image
|
| 106 |
+
# cond_scale = cond_scale1
|
| 107 |
|
| 108 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
| 109 |
generated_image = basepipeline(
|