add brightness
Browse files- app_base.py +28 -87
- segment_utils.py +23 -1
app_base.py
CHANGED
|
@@ -2,15 +2,13 @@ import spaces
|
|
| 2 |
import gradio as gr
|
| 3 |
import time
|
| 4 |
import torch
|
| 5 |
-
import tempfile
|
| 6 |
import os
|
| 7 |
import gc
|
| 8 |
|
| 9 |
-
from
|
| 10 |
-
|
| 11 |
from segment_utils import(
|
| 12 |
segment_image,
|
| 13 |
-
|
| 14 |
)
|
| 15 |
from enhance_utils import enhance_sd_image
|
| 16 |
from inversion_run_base import run as base_run
|
|
@@ -20,8 +18,11 @@ DEFAULT_EDIT_PROMPT = "a person with perfect face"
|
|
| 20 |
|
| 21 |
DEFAULT_CATEGORY = "face"
|
| 22 |
|
|
|
|
|
|
|
|
|
|
| 23 |
def image_to_image(
|
| 24 |
-
|
| 25 |
input_image_prompt: str,
|
| 26 |
edit_prompt: str,
|
| 27 |
seed: int,
|
|
@@ -29,35 +30,14 @@ def image_to_image(
|
|
| 29 |
num_steps: int,
|
| 30 |
start_step: int,
|
| 31 |
guidance_scale: float,
|
| 32 |
-
|
| 33 |
-
mask_expansion: int = 50,
|
| 34 |
-
mask_dilation: int = 2,
|
| 35 |
-
save_quality: int = 95,
|
| 36 |
-
enable_segment: bool = True,
|
| 37 |
):
|
| 38 |
-
segment_category = "face"
|
| 39 |
w2 = 1.0
|
| 40 |
run_task_time = 0
|
| 41 |
time_cost_str = ''
|
| 42 |
|
| 43 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 44 |
-
|
| 45 |
-
icc_profile = input_image.info.get('icc_profile')
|
| 46 |
-
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'load_image done')
|
| 47 |
-
|
| 48 |
-
if enable_segment:
|
| 49 |
-
target_area_image, croper = segment_image(
|
| 50 |
-
input_image,
|
| 51 |
-
segment_category,
|
| 52 |
-
generate_size,
|
| 53 |
-
mask_expansion,
|
| 54 |
-
mask_dilation,
|
| 55 |
-
)
|
| 56 |
-
else:
|
| 57 |
-
target_area_image = resize_image(input_image, generate_size)
|
| 58 |
-
croper = None
|
| 59 |
-
|
| 60 |
-
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'segment_image done')
|
| 61 |
|
| 62 |
run_model = base_run
|
| 63 |
try:
|
|
@@ -82,30 +62,16 @@ def image_to_image(
|
|
| 82 |
enhanced_image = enhance_sd_image(res_image)
|
| 83 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'enhance_image done')
|
| 84 |
|
| 85 |
-
if enable_segment:
|
| 86 |
-
restored_image = restore_result(croper, segment_category, enhanced_image)
|
| 87 |
-
else:
|
| 88 |
-
restored_image = enhanced_image.resize(input_image.size)
|
| 89 |
-
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'restore_result done')
|
| 90 |
-
|
| 91 |
torch.cuda.empty_cache()
|
| 92 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'cuda_empty_cache done')
|
| 93 |
if os.getenv('ENABLE_GC', False):
|
| 94 |
gc.collect()
|
| 95 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'gc_collect done')
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
extension = 'png'
|
| 100 |
-
else:
|
| 101 |
-
extension = 'webp'
|
| 102 |
-
|
| 103 |
-
output_path = tempfile.mktemp(suffix=f".{extension}")
|
| 104 |
-
restored_image.save(output_path, format=extension, quality=save_quality, icc_profile=icc_profile)
|
| 105 |
-
|
| 106 |
-
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'save_image done')
|
| 107 |
|
| 108 |
-
return
|
| 109 |
|
| 110 |
def get_time_cost(
|
| 111 |
run_task_time,
|
|
@@ -134,49 +100,16 @@ def resize_image(image, target_size = 1024):
|
|
| 134 |
w = target_size
|
| 135 |
return image.resize((w, h))
|
| 136 |
|
| 137 |
-
|
| 138 |
-
def infer(
|
| 139 |
-
input_image_path: str,
|
| 140 |
-
input_image_prompt: str,
|
| 141 |
-
edit_prompt: str,
|
| 142 |
-
seed: int,
|
| 143 |
-
w1: float,
|
| 144 |
-
num_steps: int,
|
| 145 |
-
start_step: int,
|
| 146 |
-
guidance_scale: float,
|
| 147 |
-
generate_size: int,
|
| 148 |
-
mask_expansion: int = 50,
|
| 149 |
-
mask_dilation: int = 2,
|
| 150 |
-
save_quality: int = 95,
|
| 151 |
-
enable_segment: bool = True,
|
| 152 |
-
):
|
| 153 |
-
return image_to_image(
|
| 154 |
-
input_image_path,
|
| 155 |
-
input_image_prompt,
|
| 156 |
-
edit_prompt,
|
| 157 |
-
seed,
|
| 158 |
-
w1,
|
| 159 |
-
num_steps,
|
| 160 |
-
start_step,
|
| 161 |
-
guidance_scale,
|
| 162 |
-
generate_size,
|
| 163 |
-
mask_expansion,
|
| 164 |
-
mask_dilation,
|
| 165 |
-
save_quality,
|
| 166 |
-
enable_segment
|
| 167 |
-
)
|
| 168 |
-
|
| 169 |
-
infer = spaces.GPU(infer)
|
| 170 |
-
|
| 171 |
def create_demo() -> gr.Blocks:
|
| 172 |
|
| 173 |
with gr.Blocks() as demo:
|
|
|
|
| 174 |
with gr.Row():
|
| 175 |
with gr.Column():
|
| 176 |
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
|
| 177 |
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
|
|
|
|
| 178 |
with gr.Accordion("Advanced Options", open=False):
|
| 179 |
-
enable_segment = gr.Checkbox(label="Enable Segment", value=True)
|
| 180 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
| 181 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
| 182 |
save_quality = gr.Slider(minimum=1, maximum=100, value=95, step=1, label="Save Quality")
|
|
@@ -192,18 +125,26 @@ def create_demo() -> gr.Blocks:
|
|
| 192 |
|
| 193 |
with gr.Row():
|
| 194 |
with gr.Column():
|
| 195 |
-
|
|
|
|
| 196 |
with gr.Column():
|
| 197 |
restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False)
|
| 198 |
download_path = gr.File(label="Download the output image", interactive=False)
|
|
|
|
| 199 |
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
|
| 200 |
-
|
| 201 |
g_btn.click(
|
| 202 |
-
fn=
|
| 203 |
-
inputs=[
|
| 204 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
)
|
| 206 |
-
|
| 207 |
-
|
| 208 |
|
| 209 |
return demo
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import time
|
| 4 |
import torch
|
|
|
|
| 5 |
import os
|
| 6 |
import gc
|
| 7 |
|
| 8 |
+
from PIL import Image, ImageEnhance
|
|
|
|
| 9 |
from segment_utils import(
|
| 10 |
segment_image,
|
| 11 |
+
restore_result_and_save,
|
| 12 |
)
|
| 13 |
from enhance_utils import enhance_sd_image
|
| 14 |
from inversion_run_base import run as base_run
|
|
|
|
| 18 |
|
| 19 |
DEFAULT_CATEGORY = "face"
|
| 20 |
|
| 21 |
+
@spaces.GPU(duration=10)
|
| 22 |
+
@torch.inference_mode()
|
| 23 |
+
@torch.no_grad()
|
| 24 |
def image_to_image(
|
| 25 |
+
input_image: Image,
|
| 26 |
input_image_prompt: str,
|
| 27 |
edit_prompt: str,
|
| 28 |
seed: int,
|
|
|
|
| 30 |
num_steps: int,
|
| 31 |
start_step: int,
|
| 32 |
guidance_scale: float,
|
| 33 |
+
brightness: float = 1.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
):
|
|
|
|
| 35 |
w2 = 1.0
|
| 36 |
run_task_time = 0
|
| 37 |
time_cost_str = ''
|
| 38 |
|
| 39 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
| 40 |
+
target_area_image = input_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
run_model = base_run
|
| 43 |
try:
|
|
|
|
| 62 |
enhanced_image = enhance_sd_image(res_image)
|
| 63 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'enhance_image done')
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
torch.cuda.empty_cache()
|
| 66 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'cuda_empty_cache done')
|
| 67 |
if os.getenv('ENABLE_GC', False):
|
| 68 |
gc.collect()
|
| 69 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str, 'gc_collect done')
|
| 70 |
|
| 71 |
+
enhancer = ImageEnhance.Brightness(enhanced_image)
|
| 72 |
+
enhanced_image = enhancer.enhance(brightness)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
return enhanced_image, time_cost_str
|
| 75 |
|
| 76 |
def get_time_cost(
|
| 77 |
run_task_time,
|
|
|
|
| 100 |
w = target_size
|
| 101 |
return image.resize((w, h))
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
def create_demo() -> gr.Blocks:
|
| 104 |
|
| 105 |
with gr.Blocks() as demo:
|
| 106 |
+
cropper = gr.State()
|
| 107 |
with gr.Row():
|
| 108 |
with gr.Column():
|
| 109 |
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
|
| 110 |
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
|
| 111 |
+
brightness = gr.Slider(minimum=0, maximum=2, value=1.0, step=0.1, label="Brightness")
|
| 112 |
with gr.Accordion("Advanced Options", open=False):
|
|
|
|
| 113 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
| 114 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
| 115 |
save_quality = gr.Slider(minimum=1, maximum=100, value=95, step=1, label="Save Quality")
|
|
|
|
| 125 |
|
| 126 |
with gr.Row():
|
| 127 |
with gr.Column():
|
| 128 |
+
input_image = gr.Image(label="Input Image", type="pil", interactive=True)
|
| 129 |
+
origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False)
|
| 130 |
with gr.Column():
|
| 131 |
restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False)
|
| 132 |
download_path = gr.File(label="Download the output image", interactive=False)
|
| 133 |
+
enhanced_image = gr.Image(label="Enhanced Image", format="png", type="pil", interactive=False)
|
| 134 |
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
|
| 135 |
+
|
| 136 |
g_btn.click(
|
| 137 |
+
fn=segment_image,
|
| 138 |
+
inputs=[input_image, DEFAULT_CATEGORY, generate_size, mask_expansion, mask_dilation],
|
| 139 |
+
outputs=[origin_area_image, cropper],
|
| 140 |
+
).success(
|
| 141 |
+
fn=image_to_image,
|
| 142 |
+
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale],
|
| 143 |
+
outputs=[enhanced_image, generated_cost],
|
| 144 |
+
).success(
|
| 145 |
+
fn=restore_result_and_save,
|
| 146 |
+
inputs=[cropper, DEFAULT_CATEGORY, enhanced_image, save_quality],
|
| 147 |
+
outputs=[restored_image, download_path],
|
| 148 |
)
|
|
|
|
|
|
|
| 149 |
|
| 150 |
return demo
|
segment_utils.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import mediapipe as mp
|
| 3 |
-
import
|
| 4 |
|
| 5 |
from PIL import Image
|
| 6 |
from scipy.ndimage import binary_dilation
|
|
@@ -22,6 +22,28 @@ def restore_result(croper, category, generated_image):
|
|
| 22 |
|
| 23 |
return restored_image
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def segment_image(input_image, category, input_size, mask_expansion, mask_dilation):
|
| 26 |
mask_size = int(input_size)
|
| 27 |
mask_expansion = int(mask_expansion)
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import mediapipe as mp
|
| 3 |
+
import tempfile
|
| 4 |
|
| 5 |
from PIL import Image
|
| 6 |
from scipy.ndimage import binary_dilation
|
|
|
|
| 22 |
|
| 23 |
return restored_image
|
| 24 |
|
| 25 |
+
def restore_result_and_save(croper, category, generated_image,save_quality=95):
|
| 26 |
+
square_length = croper.square_length
|
| 27 |
+
generated_image = generated_image.resize((square_length, square_length))
|
| 28 |
+
|
| 29 |
+
cropped_generated_image = generated_image.crop((croper.square_start_x, croper.square_start_y, croper.square_end_x, croper.square_end_y))
|
| 30 |
+
cropped_square_mask_image = get_restore_mask_image(croper, category, cropped_generated_image)
|
| 31 |
+
|
| 32 |
+
restored_image = croper.input_image.copy()
|
| 33 |
+
restored_image.paste(cropped_generated_image, (croper.origin_start_x, croper.origin_start_y), cropped_square_mask_image)
|
| 34 |
+
|
| 35 |
+
extension = 'png'
|
| 36 |
+
if restored_image.mode == 'RGBA':
|
| 37 |
+
extension = 'png'
|
| 38 |
+
else:
|
| 39 |
+
extension = 'webp'
|
| 40 |
+
|
| 41 |
+
icc_profile = croper.input_image.info.get('icc_profile')
|
| 42 |
+
output_path = tempfile.mktemp(suffix=f".{extension}")
|
| 43 |
+
restored_image.save(output_path, format=extension, quality=save_quality, icc_profile=icc_profile)
|
| 44 |
+
|
| 45 |
+
return restored_image, output_path
|
| 46 |
+
|
| 47 |
def segment_image(input_image, category, input_size, mask_expansion, mask_dilation):
|
| 48 |
mask_size = int(input_size)
|
| 49 |
mask_expansion = int(mask_expansion)
|