init
Browse files
main.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from PIL import Image
|
3 |
+
import scipy
|
4 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoProcessor, MusicgenForConditionalGeneration
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
def image_to_music(raw_image):
|
8 |
+
img_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
9 |
+
img_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
10 |
+
|
11 |
+
inputs = img_processor(raw_image, return_tensors="pt")
|
12 |
+
|
13 |
+
out = img_model.generate(**inputs)
|
14 |
+
txt = img_processor.decode(out[0], skip_special_tokens=True)
|
15 |
+
|
16 |
+
audio_processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
17 |
+
audio_model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
18 |
+
|
19 |
+
inputs = audio_processor(
|
20 |
+
text=[txt],
|
21 |
+
padding=True,
|
22 |
+
return_tensors="pt",
|
23 |
+
)
|
24 |
+
|
25 |
+
audio_values = audio_model.generate(**inputs, max_new_tokens=256)
|
26 |
+
sampling_rate = audio_model.config.audio_encoder.sampling_rate
|
27 |
+
scipy.io.wavfile.write("music.wav", rate=sampling_rate, data=audio_values[0, 0].numpy())
|
28 |
+
|
29 |
+
st.header("VisTune: an AI Image-to-Music generator")
|
30 |
+
|
31 |
+
uploaded_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
|
32 |
+
|
33 |
+
if uploaded_image:
|
34 |
+
st.image(uploaded_image, caption="Uploaded Image.", use_column_width=True)
|
35 |
+
|
36 |
+
if st.button("Generate Music") and uploaded_image:
|
37 |
+
raw_image = Image.open(uploaded_image).convert('RGB')
|
38 |
+
image_to_music(raw_image)
|
39 |
+
st.audio("music.wav")
|