Spaces:
Sleeping
Sleeping
File size: 18,162 Bytes
3cff715 3139db4 3cff715 33e257e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
<<<<<<< HEAD
import gradio as gr
import math
import spacy
from datasets import load_dataset
from transformers import pipeline, T5Tokenizer
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer, T5ForConditionalGeneration
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import evaluate
import nltk
from nltk.corpus import stopwords
import subprocess
import sys
import random
from textwrap import fill
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model_base = "results/checkpoint-17000"
nltk.download('stopwords')
nlp = spacy.load("en_core_web_sm")
stops = stopwords.words("english")
ROMAN_CONSTANTS = (
( "", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX" ),
( "", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC" ),
( "", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM" ),
( "", "M", "MM", "MMM", "", "", "-", "", "", "" ),
( "", "i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix" ),
( "", "x", "xx", "xxx", "xl", "l", "lx", "lxx", "lxxx", "xc" ),
( "", "c", "cc", "ccc", "cd", "d", "dc", "dcc", "dccc", "cm" ),
( "", "m", "mm", "mmm", "", "", "-", "", "", "" ),
)
# answer = "Pizza"
guesses = []
return_guesses = []
answer = "Moon"
word1 = "Black"
word2 = "White"
word3 = "Sun"
base_prompts = ["Sun is to Moon as ", "Black is to White as ", "Atom is to Element as",
"Athens is to Greece as ", "Cat is to Dog as ", "Robin is to Bird as",
"Hunger is to Ambition as "]
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output['token_embeddings'] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def normalize(comment, lowercase, remove_stopwords):
if lowercase:
comment = comment.lower()
comment = nlp(comment)
lemmatized = list()
for word in comment:
lemma = word.lemma_.strip()
if lemma:
if not remove_stopwords or (remove_stopwords and lemma not in stops):
lemmatized.append(lemma)
return " ".join(lemmatized)
# def tokenize_function(examples):
# return tokenizer(examples["text"])
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
metric = evaluate.load("accuracy")
return metric.compute(predictions=predictions, references=labels)
def get_model():
global model_base
# last_checkpoint = "./results/checkpoint-22500"
finetuned_model = T5ForConditionalGeneration.from_pretrained(model_base)
tokenizer = T5Tokenizer.from_pretrained(model_base)
# model = SentenceTransformer(model_base)
gpu_available = torch.cuda.is_available()
device = torch.device("cuda" if gpu_available else "cpu")
finetuned_model = finetuned_model.to(device)
return finetuned_model, tokenizer
def cosine_scores(model, sentence):
global word1
global word2
global word3
# sentence1 = f"{word1} is to {word2} as"
embeddings1 = model.encode(sentence, convert_to_tensor=True)
def embeddings(model, sentences, tokenizer):
global word1
global word2
global word3
global model_base
gpu_available = torch.cuda.is_available()
device = torch.device("cuda" if gpu_available else "cpu")
# device = torch.device('cuda:0')
# embeddings = model.encode(sentences)
question = "Please answer to this question: " + sentences
inputs = tokenizer(question, return_tensors="pt")
print(inputs)
# print(inputs.device)
print(model.device)
print(inputs['input_ids'].device)
print(inputs['attention_mask'].device)
inputs['attention_mask'] = inputs['attention_mask'].to(device)
inputs['input_ids'] = inputs['input_ids'].to(device)
outputs = model.generate(**inputs)
answer = tokenizer.decode(outputs[0])
answer = answer[6:-4]
# print(fill(answer, width=80))
print("ANSWER IS", answer)
return answer
def random_word(model, tokenizer):
global model_base
vocab = tokenizer.get_vocab()
# with open(model_base + '/vocab.txt', 'r') as file:
line = ""
# content = file.readlines()
length = tokenizer.vocab_size
# print(vocab)
while line == "":
rand_line = random.randrange(0, length)
# print("TRYING TO FIND", rand_line, "OUT OF", length, "WITH VOCAB OF TYPE", type(vocab))
for word, id in vocab.items():
if id == rand_line and word[0].isalpha() and word not in stops and word not in ROMAN_CONSTANTS:
# if vocab[rand_line][0].isalpha() and vocab[rand_line][:-1] not in stops and vocab[rand_line][:-1] not in ROMAN_CONSTANTS:
line = word
elif id == rand_line:
print(f"{word} is not alpha or is a stop word")
# for num, aline in enumerate(file, 1997):
# if random.randrange(num) and aline.isalpha():
# continue
# # elif not aline.isalpha():
# line = aline
print(line)
return line
def generate_prompt(model, tokenizer):
global word1
global word2
global word3
global answer
global base_prompts
word1 = random_word(model, tokenizer)
# word2 = random_word()
word2 = embeddings(model, f"{base_prompts[random.randint(0, len(base_prompts) - 1)]}{word1} is to ___.", tokenizer)
word3 = random_word(model, tokenizer)
sentence = f"{word1} is to {word2} as {word3} is to ___."
print(sentence)
answer = embeddings(model, sentence, tokenizer)
print("ANSWER IS", answer)
return f"# {word1} is to {word2} as {word3} is to ___."
# cosine_scores(model, sentence)
def greet(name):
return "Hello " + name + "!!"
def check_answer(guess:str):
global guesses
global answer
global return_guesses
global word1
global word2
global word3
model, tokenizer = get_model()
output = ""
protected_guess = guess
sentence = f"{word1} is to {word2} as [MASK] is to {guess}."
other_word = embeddings(model, sentence, tokenizer)
guesses.append(guess)
for guess in return_guesses:
output += ("- " + guess + "<br>")
# output = output[:-1]
prompt = f"{word1} is to {word2} as {word3} is to ___."
# print("IS", protected_guess, "EQUAL TO", answer, ":", protected_guess.lower() == answer.lower())
if protected_guess.lower() == answer.lower():
return_guesses.append(f"{protected_guess}: {word1} is to {word2} as {word3} is to {protected_guess}.")
output += f"<span style='color:green'>- {return_guesses[-1]}</span><br>"
new_prompt = generate_prompt(model, tokenizer)
return new_prompt, "Correct!", output
else:
return_guess = f"{protected_guess}: {word1} is to {word2} as {other_word} is to {protected_guess}."
return_guesses.append(return_guess)
output += ("- " + return_guess + " <br>")
return prompt, "Try again!", output
def main():
global word1
global word2
global word3
global answer
# answer = "Moon"
global guesses
# num_rows, data_type, value, example, embeddings = training()
# sent_embeddings = embeddings()
model, tokenizer = get_model()
generate_prompt(model, tokenizer)
prompt = f"{word1} is to {word2} as {word3} is to ____"
print(prompt)
print("TESTING EMBEDDINGS")
with gr.Blocks() as iface:
mark_question = gr.Markdown(prompt)
with gr.Tab("Guess"):
text_input = gr.Textbox()
text_output = gr.Textbox()
text_button = gr.Button("Submit")
with gr.Accordion("Open for previous guesses"):
text_guesses = gr.Markdown()
# with gr.Tab("Testing"):
# gr.Markdown(f"""The Embeddings are {sent_embeddings}.""")
text_button.click(check_answer, inputs=[text_input], outputs=[mark_question, text_output, text_guesses])
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
if __name__ == "__main__":
=======
import gradio as gr
import math
import spacy
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers import InputExample
from sentence_transformers import losses
from sentence_transformers import util
from transformers import pipeline, T5Tokenizer
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer, T5ForConditionalGeneration
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import evaluate
import nltk
from nltk.corpus import stopwords
import subprocess
import sys
import random
from textwrap import fill
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model_base = "results/checkpoint-17000"
nltk.download('stopwords')
nlp = spacy.load("en_core_web_sm")
stops = stopwords.words("english")
ROMAN_CONSTANTS = (
( "", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX" ),
( "", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC" ),
( "", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM" ),
( "", "M", "MM", "MMM", "", "", "-", "", "", "" ),
( "", "i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix" ),
( "", "x", "xx", "xxx", "xl", "l", "lx", "lxx", "lxxx", "xc" ),
( "", "c", "cc", "ccc", "cd", "d", "dc", "dcc", "dccc", "cm" ),
( "", "m", "mm", "mmm", "", "", "-", "", "", "" ),
)
# answer = "Pizza"
guesses = []
return_guesses = []
answer = "Moon"
word1 = "Black"
word2 = "White"
word3 = "Sun"
base_prompts = ["Sun is to Moon as ", "Black is to White as ", "Atom is to Element as",
"Athens is to Greece as ", "Cat is to Dog as ", "Robin is to Bird as",
"Hunger is to Ambition as "]
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output['token_embeddings'] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def normalize(comment, lowercase, remove_stopwords):
if lowercase:
comment = comment.lower()
comment = nlp(comment)
lemmatized = list()
for word in comment:
lemma = word.lemma_.strip()
if lemma:
if not remove_stopwords or (remove_stopwords and lemma not in stops):
lemmatized.append(lemma)
return " ".join(lemmatized)
# def tokenize_function(examples):
# return tokenizer(examples["text"])
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
metric = evaluate.load("accuracy")
return metric.compute(predictions=predictions, references=labels)
def get_model():
global model_base
# last_checkpoint = "./results/checkpoint-22500"
finetuned_model = T5ForConditionalGeneration.from_pretrained(model_base)
tokenizer = T5Tokenizer.from_pretrained(model_base)
# model = SentenceTransformer(model_base)
gpu_available = torch.cuda.is_available()
device = torch.device("cuda" if gpu_available else "cpu")
finetuned_model = finetuned_model.to(device)
return finetuned_model, tokenizer
def cosine_scores(model, sentence):
global word1
global word2
global word3
# sentence1 = f"{word1} is to {word2} as"
embeddings1 = model.encode(sentence, convert_to_tensor=True)
def embeddings(model, sentences, tokenizer):
global word1
global word2
global word3
global model_base
gpu_available = torch.cuda.is_available()
device = torch.device("cuda" if gpu_available else "cpu")
# device = torch.device('cuda:0')
# embeddings = model.encode(sentences)
question = "Please answer to this question: " + sentences
inputs = tokenizer(question, return_tensors="pt")
print(inputs)
# print(inputs.device)
print(model.device)
print(inputs['input_ids'].device)
print(inputs['attention_mask'].device)
inputs['attention_mask'] = inputs['attention_mask'].to(device)
inputs['input_ids'] = inputs['input_ids'].to(device)
outputs = model.generate(**inputs)
answer = tokenizer.decode(outputs[0])
answer = answer[6:-4]
# print(fill(answer, width=80))
print("ANSWER IS", answer)
return answer
def random_word(model, tokenizer):
global model_base
vocab = tokenizer.get_vocab()
# with open(model_base + '/vocab.txt', 'r') as file:
line = ""
# content = file.readlines()
length = tokenizer.vocab_size
# print(vocab)
while line == "":
rand_line = random.randrange(0, length)
# print("TRYING TO FIND", rand_line, "OUT OF", length, "WITH VOCAB OF TYPE", type(vocab))
for word, id in vocab.items():
if id == rand_line and word[0].isalpha() and word not in stops and word not in ROMAN_CONSTANTS:
# if vocab[rand_line][0].isalpha() and vocab[rand_line][:-1] not in stops and vocab[rand_line][:-1] not in ROMAN_CONSTANTS:
line = word
elif id == rand_line:
print(f"{word} is not alpha or is a stop word")
# for num, aline in enumerate(file, 1997):
# if random.randrange(num) and aline.isalpha():
# continue
# # elif not aline.isalpha():
# line = aline
print(line)
return line
def generate_prompt(model, tokenizer):
global word1
global word2
global word3
global answer
global base_prompts
word1 = random_word(model, tokenizer)
# word2 = random_word()
word2 = embeddings(model, f"{base_prompts[random.randint(0, len(base_prompts) - 1)]}{word1} is to ___.", tokenizer)
word3 = random_word(model, tokenizer)
sentence = f"{word1} is to {word2} as {word3} is to ___."
print(sentence)
answer = embeddings(model, sentence, tokenizer)
print("ANSWER IS", answer)
return f"# {word1} is to {word2} as {word3} is to ___."
# cosine_scores(model, sentence)
def greet(name):
return "Hello " + name + "!!"
def check_answer(guess:str):
global guesses
global answer
global return_guesses
global word1
global word2
global word3
model, tokenizer = get_model()
output = ""
protected_guess = guess
sentence = f"{word1} is to {word2} as [MASK] is to {guess}."
other_word = embeddings(model, sentence, tokenizer)
guesses.append(guess)
for guess in return_guesses:
output += ("- " + guess + "<br>")
# output = output[:-1]
prompt = f"{word1} is to {word2} as {word3} is to ___."
# print("IS", protected_guess, "EQUAL TO", answer, ":", protected_guess.lower() == answer.lower())
if protected_guess.lower() == answer.lower():
return_guesses.append(f"{protected_guess}: {word1} is to {word2} as {word3} is to {protected_guess}.")
output += f"<span style='color:green'>- {return_guesses[-1]}</span><br>"
new_prompt = generate_prompt(model, tokenizer)
return new_prompt, "Correct!", output
else:
return_guess = f"{protected_guess}: {word1} is to {word2} as {other_word} is to {protected_guess}."
return_guesses.append(return_guess)
output += ("- " + return_guess + " <br>")
return prompt, "Try again!", output
def main():
global word1
global word2
global word3
global answer
# answer = "Moon"
global guesses
# num_rows, data_type, value, example, embeddings = training()
# sent_embeddings = embeddings()
model, tokenizer = get_model()
generate_prompt(model, tokenizer)
prompt = f"{word1} is to {word2} as {word3} is to ____"
print(prompt)
print("TESTING EMBEDDINGS")
with gr.Blocks() as iface:
mark_question = gr.Markdown(prompt)
with gr.Tab("Guess"):
text_input = gr.Textbox()
text_output = gr.Textbox()
text_button = gr.Button("Submit")
with gr.Accordion("Open for previous guesses"):
text_guesses = gr.Markdown()
# with gr.Tab("Testing"):
# gr.Markdown(f"""The Embeddings are {sent_embeddings}.""")
text_button.click(check_answer, inputs=[text_input], outputs=[mark_question, text_output, text_guesses])
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
if __name__ == "__main__":
>>>>>>> 5058aea (Problems)
main() |