File size: 18,162 Bytes
3cff715
3139db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cff715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e257e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
<<<<<<< HEAD
import gradio as gr
import math
import spacy
from datasets import load_dataset
from transformers import pipeline, T5Tokenizer
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer, T5ForConditionalGeneration
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import evaluate
import nltk
from nltk.corpus import stopwords
import subprocess
import sys
import random
from textwrap import fill

# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model_base = "results/checkpoint-17000"
nltk.download('stopwords')
nlp = spacy.load("en_core_web_sm")
stops = stopwords.words("english")
ROMAN_CONSTANTS = (
            ( "", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX" ),
            ( "", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC" ),
            ( "", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM" ),
            ( "", "M", "MM", "MMM", "",   "",  "-",  "",    "",     ""   ),
            ( "", "i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix" ),
            ( "", "x", "xx", "xxx", "xl", "l", "lx", "lxx", "lxxx", "xc" ),
            ( "", "c", "cc", "ccc", "cd", "d", "dc", "dcc", "dccc", "cm" ),
            ( "", "m", "mm", "mmm", "",   "",  "-",  "",    "",     ""   ),
        )

# answer = "Pizza"
guesses = []
return_guesses = []
answer = "Moon"
word1 = "Black"
word2 = "White"
word3 = "Sun"
base_prompts = ["Sun is to Moon as ", "Black is to White as ", "Atom is to Element as",
                "Athens is to Greece as ", "Cat is to Dog as ", "Robin is to Bird as",
                "Hunger is to Ambition as "]


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output['token_embeddings'] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


def normalize(comment, lowercase, remove_stopwords):
    if lowercase:
        comment = comment.lower()
    comment = nlp(comment)
    lemmatized = list()
    for word in comment:
        lemma = word.lemma_.strip()
        if lemma:
            if not remove_stopwords or (remove_stopwords and lemma not in stops):
                lemmatized.append(lemma)
    return " ".join(lemmatized)


# def tokenize_function(examples):
#     return tokenizer(examples["text"])


def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    metric = evaluate.load("accuracy")
    return metric.compute(predictions=predictions, references=labels)
    
    
def get_model():
    global model_base
    # last_checkpoint = "./results/checkpoint-22500"

    finetuned_model = T5ForConditionalGeneration.from_pretrained(model_base)
    tokenizer = T5Tokenizer.from_pretrained(model_base)
    # model = SentenceTransformer(model_base)
    gpu_available = torch.cuda.is_available()
    device = torch.device("cuda" if gpu_available else "cpu")
    finetuned_model = finetuned_model.to(device)
    return finetuned_model, tokenizer


def cosine_scores(model, sentence):
    global word1
    global word2
    global word3
    # sentence1 = f"{word1} is to {word2} as"
    embeddings1 = model.encode(sentence, convert_to_tensor=True)

def embeddings(model, sentences, tokenizer):
    global word1
    global word2
    global word3
    global model_base
    gpu_available = torch.cuda.is_available()
    device = torch.device("cuda" if gpu_available else "cpu")
    # device = torch.device('cuda:0')
    # embeddings = model.encode(sentences)
    question = "Please answer to this question: " + sentences
    
    inputs = tokenizer(question, return_tensors="pt")
    
    print(inputs)
    # print(inputs.device)
    print(model.device)
    print(inputs['input_ids'].device)
    print(inputs['attention_mask'].device)
    
    inputs['attention_mask'] = inputs['attention_mask'].to(device)
    inputs['input_ids'] = inputs['input_ids'].to(device)
    
    outputs = model.generate(**inputs)
    answer = tokenizer.decode(outputs[0])
    answer = answer[6:-4]
    # print(fill(answer, width=80))
    
    print("ANSWER IS", answer)

    return answer


def random_word(model, tokenizer):
    global model_base
    vocab = tokenizer.get_vocab()
    # with open(model_base + '/vocab.txt', 'r') as file:
    line = ""
    # content = file.readlines()
    length = tokenizer.vocab_size
    # print(vocab)
    while line == "":
        rand_line = random.randrange(0, length)
        # print("TRYING TO FIND", rand_line, "OUT OF", length, "WITH VOCAB OF TYPE", type(vocab))
        for word, id in vocab.items():
            if id == rand_line and word[0].isalpha() and word not in stops and word not in ROMAN_CONSTANTS:
        # if vocab[rand_line][0].isalpha() and vocab[rand_line][:-1] not in stops and vocab[rand_line][:-1] not in ROMAN_CONSTANTS:
                line = word
            elif id == rand_line:
                print(f"{word} is not alpha or is a stop word")
    # for num, aline in enumerate(file, 1997):
    #     if random.randrange(num) and aline.isalpha():
    #         continue
    #     # elif not aline.isalpha():
            
    #     line = aline
    print(line)
    return line


def generate_prompt(model, tokenizer):
    global word1
    global word2
    global word3
    global answer
    global base_prompts
    word1 = random_word(model, tokenizer)
    # word2 = random_word()
    
    word2 = embeddings(model, f"{base_prompts[random.randint(0, len(base_prompts) - 1)]}{word1} is to ___.", tokenizer)
    word3 = random_word(model, tokenizer)
    sentence = f"{word1} is to {word2} as {word3} is to ___."
    print(sentence)
    answer = embeddings(model, sentence, tokenizer)
    print("ANSWER IS", answer)
    return f"# {word1} is to {word2} as {word3} is to ___."
    # cosine_scores(model, sentence)


def greet(name):
    return "Hello " + name + "!!"

def check_answer(guess:str):
    global guesses
    global answer
    global return_guesses
    global word1
    global word2
    global word3
    
    model, tokenizer = get_model()
    output = ""
    protected_guess = guess
    sentence = f"{word1} is to {word2} as [MASK] is to {guess}."
   
    other_word = embeddings(model, sentence, tokenizer)
    guesses.append(guess)
    
    
    
    for guess in return_guesses:
        output += ("- " + guess + "<br>")
    
    # output = output[:-1]
    prompt = f"{word1} is to {word2} as {word3} is to ___."
    # print("IS", protected_guess, "EQUAL TO", answer, ":", protected_guess.lower() == answer.lower())
    
    if protected_guess.lower() == answer.lower():
        return_guesses.append(f"{protected_guess}: {word1} is to {word2} as {word3} is to {protected_guess}.")
        output += f"<span style='color:green'>- {return_guesses[-1]}</span><br>"
        new_prompt = generate_prompt(model, tokenizer)
        return new_prompt, "Correct!", output
    else:
        return_guess = f"{protected_guess}: {word1} is to {word2} as {other_word} is to {protected_guess}."
        return_guesses.append(return_guess)
        output += ("- " + return_guess + " <br>")
        return prompt, "Try again!", output

def main():
    global word1
    global word2
    global word3
    global answer
    # answer = "Moon"
    global guesses
    
    
    # num_rows, data_type, value, example, embeddings = training()
    # sent_embeddings = embeddings()
    model, tokenizer = get_model() 
    generate_prompt(model, tokenizer)
    
    prompt = f"{word1} is to {word2} as {word3} is to ____"
    print(prompt)
    print("TESTING EMBEDDINGS")
    with gr.Blocks() as iface:
        mark_question = gr.Markdown(prompt)
        with gr.Tab("Guess"):
            text_input = gr.Textbox()
            text_output = gr.Textbox()
            text_button = gr.Button("Submit")
        with gr.Accordion("Open for previous guesses"):
            text_guesses = gr.Markdown()
        # with gr.Tab("Testing"):
        #     gr.Markdown(f"""The Embeddings are {sent_embeddings}.""")
        text_button.click(check_answer, inputs=[text_input], outputs=[mark_question, text_output, text_guesses])
    # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
    iface.launch()
    
    


    
if __name__ == "__main__":
=======
import gradio as gr
import math
import spacy
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers import InputExample
from sentence_transformers import losses
from sentence_transformers import util
from transformers import pipeline, T5Tokenizer
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer, T5ForConditionalGeneration
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import evaluate
import nltk
from nltk.corpus import stopwords
import subprocess
import sys
import random
from textwrap import fill

# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model_base = "results/checkpoint-17000"
nltk.download('stopwords')
nlp = spacy.load("en_core_web_sm")
stops = stopwords.words("english")
ROMAN_CONSTANTS = (
            ( "", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX" ),
            ( "", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC" ),
            ( "", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM" ),
            ( "", "M", "MM", "MMM", "",   "",  "-",  "",    "",     ""   ),
            ( "", "i", "ii", "iii", "iv", "v", "vi", "vii", "viii", "ix" ),
            ( "", "x", "xx", "xxx", "xl", "l", "lx", "lxx", "lxxx", "xc" ),
            ( "", "c", "cc", "ccc", "cd", "d", "dc", "dcc", "dccc", "cm" ),
            ( "", "m", "mm", "mmm", "",   "",  "-",  "",    "",     ""   ),
        )

# answer = "Pizza"
guesses = []
return_guesses = []
answer = "Moon"
word1 = "Black"
word2 = "White"
word3 = "Sun"
base_prompts = ["Sun is to Moon as ", "Black is to White as ", "Atom is to Element as",
                "Athens is to Greece as ", "Cat is to Dog as ", "Robin is to Bird as",
                "Hunger is to Ambition as "]


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output['token_embeddings'] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


def normalize(comment, lowercase, remove_stopwords):
    if lowercase:
        comment = comment.lower()
    comment = nlp(comment)
    lemmatized = list()
    for word in comment:
        lemma = word.lemma_.strip()
        if lemma:
            if not remove_stopwords or (remove_stopwords and lemma not in stops):
                lemmatized.append(lemma)
    return " ".join(lemmatized)


# def tokenize_function(examples):
#     return tokenizer(examples["text"])


def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    metric = evaluate.load("accuracy")
    return metric.compute(predictions=predictions, references=labels)
    
    
def get_model():
    global model_base
    # last_checkpoint = "./results/checkpoint-22500"

    finetuned_model = T5ForConditionalGeneration.from_pretrained(model_base)
    tokenizer = T5Tokenizer.from_pretrained(model_base)
    # model = SentenceTransformer(model_base)
    gpu_available = torch.cuda.is_available()
    device = torch.device("cuda" if gpu_available else "cpu")
    finetuned_model = finetuned_model.to(device)
    return finetuned_model, tokenizer


def cosine_scores(model, sentence):
    global word1
    global word2
    global word3
    # sentence1 = f"{word1} is to {word2} as"
    embeddings1 = model.encode(sentence, convert_to_tensor=True)

def embeddings(model, sentences, tokenizer):
    global word1
    global word2
    global word3
    global model_base
    gpu_available = torch.cuda.is_available()
    device = torch.device("cuda" if gpu_available else "cpu")
    # device = torch.device('cuda:0')
    # embeddings = model.encode(sentences)
    question = "Please answer to this question: " + sentences
    
    inputs = tokenizer(question, return_tensors="pt")
    
    print(inputs)
    # print(inputs.device)
    print(model.device)
    print(inputs['input_ids'].device)
    print(inputs['attention_mask'].device)
    
    inputs['attention_mask'] = inputs['attention_mask'].to(device)
    inputs['input_ids'] = inputs['input_ids'].to(device)
    
    outputs = model.generate(**inputs)
    answer = tokenizer.decode(outputs[0])
    answer = answer[6:-4]
    # print(fill(answer, width=80))
    
    print("ANSWER IS", answer)

    return answer


def random_word(model, tokenizer):
    global model_base
    vocab = tokenizer.get_vocab()
    # with open(model_base + '/vocab.txt', 'r') as file:
    line = ""
    # content = file.readlines()
    length = tokenizer.vocab_size
    # print(vocab)
    while line == "":
        rand_line = random.randrange(0, length)
        # print("TRYING TO FIND", rand_line, "OUT OF", length, "WITH VOCAB OF TYPE", type(vocab))
        for word, id in vocab.items():
            if id == rand_line and word[0].isalpha() and word not in stops and word not in ROMAN_CONSTANTS:
        # if vocab[rand_line][0].isalpha() and vocab[rand_line][:-1] not in stops and vocab[rand_line][:-1] not in ROMAN_CONSTANTS:
                line = word
            elif id == rand_line:
                print(f"{word} is not alpha or is a stop word")
    # for num, aline in enumerate(file, 1997):
    #     if random.randrange(num) and aline.isalpha():
    #         continue
    #     # elif not aline.isalpha():
            
    #     line = aline
    print(line)
    return line


def generate_prompt(model, tokenizer):
    global word1
    global word2
    global word3
    global answer
    global base_prompts
    word1 = random_word(model, tokenizer)
    # word2 = random_word()
    
    word2 = embeddings(model, f"{base_prompts[random.randint(0, len(base_prompts) - 1)]}{word1} is to ___.", tokenizer)
    word3 = random_word(model, tokenizer)
    sentence = f"{word1} is to {word2} as {word3} is to ___."
    print(sentence)
    answer = embeddings(model, sentence, tokenizer)
    print("ANSWER IS", answer)
    return f"# {word1} is to {word2} as {word3} is to ___."
    # cosine_scores(model, sentence)


def greet(name):
    return "Hello " + name + "!!"

def check_answer(guess:str):
    global guesses
    global answer
    global return_guesses
    global word1
    global word2
    global word3
    
    model, tokenizer = get_model()
    output = ""
    protected_guess = guess
    sentence = f"{word1} is to {word2} as [MASK] is to {guess}."
   
    other_word = embeddings(model, sentence, tokenizer)
    guesses.append(guess)
    
    
    
    for guess in return_guesses:
        output += ("- " + guess + "<br>")
    
    # output = output[:-1]
    prompt = f"{word1} is to {word2} as {word3} is to ___."
    # print("IS", protected_guess, "EQUAL TO", answer, ":", protected_guess.lower() == answer.lower())
    
    if protected_guess.lower() == answer.lower():
        return_guesses.append(f"{protected_guess}: {word1} is to {word2} as {word3} is to {protected_guess}.")
        output += f"<span style='color:green'>- {return_guesses[-1]}</span><br>"
        new_prompt = generate_prompt(model, tokenizer)
        return new_prompt, "Correct!", output
    else:
        return_guess = f"{protected_guess}: {word1} is to {word2} as {other_word} is to {protected_guess}."
        return_guesses.append(return_guess)
        output += ("- " + return_guess + " <br>")
        return prompt, "Try again!", output

def main():
    global word1
    global word2
    global word3
    global answer
    # answer = "Moon"
    global guesses
    
    
    # num_rows, data_type, value, example, embeddings = training()
    # sent_embeddings = embeddings()
    model, tokenizer = get_model() 
    generate_prompt(model, tokenizer)
    
    prompt = f"{word1} is to {word2} as {word3} is to ____"
    print(prompt)
    print("TESTING EMBEDDINGS")
    with gr.Blocks() as iface:
        mark_question = gr.Markdown(prompt)
        with gr.Tab("Guess"):
            text_input = gr.Textbox()
            text_output = gr.Textbox()
            text_button = gr.Button("Submit")
        with gr.Accordion("Open for previous guesses"):
            text_guesses = gr.Markdown()
        # with gr.Tab("Testing"):
        #     gr.Markdown(f"""The Embeddings are {sent_embeddings}.""")
        text_button.click(check_answer, inputs=[text_input], outputs=[mark_question, text_output, text_guesses])
    # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
    iface.launch()
    
    


    
if __name__ == "__main__":
>>>>>>> 5058aea (Problems)
    main()