smirk77 commited on
Commit
90ec382
·
verified ·
1 Parent(s): ef7913b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +399 -0
app.py ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
3
+ import gradio as gr
4
+ import torch
5
+ import torchaudio
6
+ import librosa
7
+ from modules.commons import build_model, load_checkpoint, recursive_munch, str2bool
8
+ import yaml
9
+ from hf_utils import load_custom_model_from_hf
10
+ import numpy as np
11
+ from pydub import AudioSegment
12
+ import argparse
13
+
14
+ # Load model and configuration
15
+ fp16 = False
16
+ device = None
17
+ def load_models(args):
18
+ global sr, hop_length, fp16
19
+ fp16 = args.fp16
20
+ print(f"Using device: {device}")
21
+ print(f"Using fp16: {fp16}")
22
+ if args.checkpoint is None or args.checkpoint == "":
23
+ dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
24
+ "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
25
+ "config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
26
+ else:
27
+ dit_checkpoint_path = args.checkpoint
28
+ dit_config_path = args.config
29
+ config = yaml.safe_load(open(dit_config_path, "r"))
30
+ model_params = recursive_munch(config["model_params"])
31
+ model_params.dit_type = 'DiT'
32
+ model = build_model(model_params, stage="DiT")
33
+ hop_length = config["preprocess_params"]["spect_params"]["hop_length"]
34
+ sr = config["preprocess_params"]["sr"]
35
+
36
+ # Load checkpoints
37
+ model, _, _, _ = load_checkpoint(
38
+ model,
39
+ None,
40
+ dit_checkpoint_path,
41
+ load_only_params=True,
42
+ ignore_modules=[],
43
+ is_distributed=False,
44
+ )
45
+ for key in model:
46
+ model[key].eval()
47
+ model[key].to(device)
48
+ model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
49
+
50
+ # Load additional modules
51
+ from modules.campplus.DTDNN import CAMPPlus
52
+
53
+ campplus_ckpt_path = load_custom_model_from_hf(
54
+ "funasr/campplus", "campplus_cn_common.bin", config_filename=None
55
+ )
56
+ campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
57
+ campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
58
+ campplus_model.eval()
59
+ campplus_model.to(device)
60
+
61
+ vocoder_type = model_params.vocoder.type
62
+
63
+ if vocoder_type == 'bigvgan':
64
+ from modules.bigvgan import bigvgan
65
+ bigvgan_name = model_params.vocoder.name
66
+ bigvgan_model = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=False)
67
+ # remove weight norm in the model and set to eval mode
68
+ bigvgan_model.remove_weight_norm()
69
+ bigvgan_model = bigvgan_model.eval().to(device)
70
+ vocoder_fn = bigvgan_model
71
+ elif vocoder_type == 'hifigan':
72
+ from modules.hifigan.generator import HiFTGenerator
73
+ from modules.hifigan.f0_predictor import ConvRNNF0Predictor
74
+ hift_config = yaml.safe_load(open('configs/hifigan.yml', 'r'))
75
+ hift_gen = HiFTGenerator(**hift_config['hift'], f0_predictor=ConvRNNF0Predictor(**hift_config['f0_predictor']))
76
+ hift_path = load_custom_model_from_hf("FunAudioLLM/CosyVoice-300M", 'hift.pt', None)
77
+ hift_gen.load_state_dict(torch.load(hift_path, map_location='cpu'))
78
+ hift_gen.eval()
79
+ hift_gen.to(device)
80
+ vocoder_fn = hift_gen
81
+ elif vocoder_type == "vocos":
82
+ vocos_config = yaml.safe_load(open(model_params.vocoder.vocos.config, 'r'))
83
+ vocos_path = model_params.vocoder.vocos.path
84
+ vocos_model_params = recursive_munch(vocos_config['model_params'])
85
+ vocos = build_model(vocos_model_params, stage='mel_vocos')
86
+ vocos_checkpoint_path = vocos_path
87
+ vocos, _, _, _ = load_checkpoint(vocos, None, vocos_checkpoint_path,
88
+ load_only_params=True, ignore_modules=[], is_distributed=False)
89
+ _ = [vocos[key].eval().to(device) for key in vocos]
90
+ _ = [vocos[key].to(device) for key in vocos]
91
+ total_params = sum(sum(p.numel() for p in vocos[key].parameters() if p.requires_grad) for key in vocos.keys())
92
+ print(f"Vocoder model total parameters: {total_params / 1_000_000:.2f}M")
93
+ vocoder_fn = vocos.decoder
94
+ else:
95
+ raise ValueError(f"Unknown vocoder type: {vocoder_type}")
96
+
97
+ speech_tokenizer_type = model_params.speech_tokenizer.type
98
+ if speech_tokenizer_type == 'whisper':
99
+ # whisper
100
+ from transformers import AutoFeatureExtractor, WhisperModel
101
+ whisper_name = model_params.speech_tokenizer.name
102
+ whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
103
+ del whisper_model.decoder
104
+ whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
105
+
106
+ def semantic_fn(waves_16k):
107
+ ori_inputs = whisper_feature_extractor([waves_16k.squeeze(0).cpu().numpy()],
108
+ return_tensors="pt",
109
+ return_attention_mask=True)
110
+ ori_input_features = whisper_model._mask_input_features(
111
+ ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
112
+ with torch.no_grad():
113
+ ori_outputs = whisper_model.encoder(
114
+ ori_input_features.to(whisper_model.encoder.dtype),
115
+ head_mask=None,
116
+ output_attentions=False,
117
+ output_hidden_states=False,
118
+ return_dict=True,
119
+ )
120
+ S_ori = ori_outputs.last_hidden_state.to(torch.float32)
121
+ S_ori = S_ori[:, :waves_16k.size(-1) // 320 + 1]
122
+ return S_ori
123
+ elif speech_tokenizer_type == 'cnhubert':
124
+ from transformers import (
125
+ Wav2Vec2FeatureExtractor,
126
+ HubertModel,
127
+ )
128
+ hubert_model_name = config['model_params']['speech_tokenizer']['name']
129
+ hubert_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_name)
130
+ hubert_model = HubertModel.from_pretrained(hubert_model_name)
131
+ hubert_model = hubert_model.to(device)
132
+ hubert_model = hubert_model.eval()
133
+ hubert_model = hubert_model.half()
134
+
135
+ def semantic_fn(waves_16k):
136
+ ori_waves_16k_input_list = [
137
+ waves_16k[bib].cpu().numpy()
138
+ for bib in range(len(waves_16k))
139
+ ]
140
+ ori_inputs = hubert_feature_extractor(ori_waves_16k_input_list,
141
+ return_tensors="pt",
142
+ return_attention_mask=True,
143
+ padding=True,
144
+ sampling_rate=16000).to(device)
145
+ with torch.no_grad():
146
+ ori_outputs = hubert_model(
147
+ ori_inputs.input_values.half(),
148
+ )
149
+ S_ori = ori_outputs.last_hidden_state.float()
150
+ return S_ori
151
+ elif speech_tokenizer_type == 'xlsr':
152
+ from transformers import (
153
+ Wav2Vec2FeatureExtractor,
154
+ Wav2Vec2Model,
155
+ )
156
+ model_name = config['model_params']['speech_tokenizer']['name']
157
+ output_layer = config['model_params']['speech_tokenizer']['output_layer']
158
+ wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
159
+ wav2vec_model = Wav2Vec2Model.from_pretrained(model_name)
160
+ wav2vec_model.encoder.layers = wav2vec_model.encoder.layers[:output_layer]
161
+ wav2vec_model = wav2vec_model.to(device)
162
+ wav2vec_model = wav2vec_model.eval()
163
+ wav2vec_model = wav2vec_model.half()
164
+
165
+ def semantic_fn(waves_16k):
166
+ ori_waves_16k_input_list = [
167
+ waves_16k[bib].cpu().numpy()
168
+ for bib in range(len(waves_16k))
169
+ ]
170
+ ori_inputs = wav2vec_feature_extractor(ori_waves_16k_input_list,
171
+ return_tensors="pt",
172
+ return_attention_mask=True,
173
+ padding=True,
174
+ sampling_rate=16000).to(device)
175
+ with torch.no_grad():
176
+ ori_outputs = wav2vec_model(
177
+ ori_inputs.input_values.half(),
178
+ )
179
+ S_ori = ori_outputs.last_hidden_state.float()
180
+ return S_ori
181
+ else:
182
+ raise ValueError(f"Unknown speech tokenizer type: {speech_tokenizer_type}")
183
+ # Generate mel spectrograms
184
+ mel_fn_args = {
185
+ "n_fft": config['preprocess_params']['spect_params']['n_fft'],
186
+ "win_size": config['preprocess_params']['spect_params']['win_length'],
187
+ "hop_size": config['preprocess_params']['spect_params']['hop_length'],
188
+ "num_mels": config['preprocess_params']['spect_params']['n_mels'],
189
+ "sampling_rate": sr,
190
+ "fmin": config['preprocess_params']['spect_params'].get('fmin', 0),
191
+ "fmax": None if config['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000,
192
+ "center": False
193
+ }
194
+ from modules.audio import mel_spectrogram
195
+
196
+ to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
197
+
198
+ return (
199
+ model,
200
+ semantic_fn,
201
+ vocoder_fn,
202
+ campplus_model,
203
+ to_mel,
204
+ mel_fn_args,
205
+ )
206
+ def crossfade(chunk1, chunk2, overlap):
207
+ fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
208
+ fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
209
+ chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
210
+ return chunk2
211
+
212
+ bitrate = "320k"
213
+
214
+ model, semantic_fn, vocoder_fn, campplus_model, to_mel, mel_fn_args = None, None, None, None, None, None
215
+ overlap_wave_len = None
216
+ max_context_window = None
217
+ sr = None
218
+ hop_length = None
219
+ overlap_frame_len = 16
220
+ @torch.no_grad()
221
+ @torch.inference_mode()
222
+ def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate):
223
+ inference_module = model
224
+ mel_fn = to_mel
225
+ # Load audio
226
+ source_audio = librosa.load(source, sr=sr)[0]
227
+ ref_audio = librosa.load(target, sr=sr)[0]
228
+
229
+ # Process audio
230
+ source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
231
+ ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
232
+
233
+ # Resample
234
+ ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
235
+ converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
236
+ # if source audio less than 30 seconds, whisper can handle in one forward
237
+ if converted_waves_16k.size(-1) <= 16000 * 30:
238
+ S_alt = semantic_fn(converted_waves_16k)
239
+ else:
240
+ overlapping_time = 5 # 5 seconds
241
+ S_alt_list = []
242
+ buffer = None
243
+ traversed_time = 0
244
+ while traversed_time < converted_waves_16k.size(-1):
245
+ if buffer is None: # first chunk
246
+ chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
247
+ else:
248
+ chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
249
+ S_alt = semantic_fn(chunk)
250
+ if traversed_time == 0:
251
+ S_alt_list.append(S_alt)
252
+ else:
253
+ S_alt_list.append(S_alt[:, 50 * overlapping_time:])
254
+ buffer = chunk[:, -16000 * overlapping_time:]
255
+ traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
256
+ S_alt = torch.cat(S_alt_list, dim=1)
257
+
258
+ ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
259
+ S_ori = semantic_fn(ori_waves_16k)
260
+
261
+ mel = mel_fn(source_audio.to(device).float())
262
+ mel2 = mel_fn(ref_audio.to(device).float())
263
+
264
+ target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
265
+ target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
266
+
267
+ feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
268
+ num_mel_bins=80,
269
+ dither=0,
270
+ sample_frequency=16000)
271
+ feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
272
+ style2 = campplus_model(feat2.unsqueeze(0))
273
+
274
+ F0_ori = None
275
+ F0_alt = None
276
+ shifted_f0_alt = None
277
+
278
+ # Length regulation
279
+ cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
280
+ prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)
281
+
282
+ max_source_window = max_context_window - mel2.size(2)
283
+ # split source condition (cond) into chunks
284
+ processed_frames = 0
285
+ generated_wave_chunks = []
286
+ # generate chunk by chunk and stream the output
287
+ while processed_frames < cond.size(1):
288
+ chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
289
+ is_last_chunk = processed_frames + max_source_window >= cond.size(1)
290
+ cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
291
+ with torch.autocast(device_type=device.type, dtype=torch.float16 if fp16 else torch.float32):
292
+ # Voice Conversion
293
+ vc_target = inference_module.cfm.inference(cat_condition,
294
+ torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
295
+ mel2, style2, None, diffusion_steps,
296
+ inference_cfg_rate=inference_cfg_rate)
297
+ vc_target = vc_target[:, :, mel2.size(-1):]
298
+ vc_wave = vocoder_fn(vc_target.float())[0]
299
+ if vc_wave.ndim == 1:
300
+ vc_wave = vc_wave.unsqueeze(0)
301
+ if processed_frames == 0:
302
+ if is_last_chunk:
303
+ output_wave = vc_wave[0].cpu().numpy()
304
+ generated_wave_chunks.append(output_wave)
305
+ output_wave = (output_wave * 32768.0).astype(np.int16)
306
+ mp3_bytes = AudioSegment(
307
+ output_wave.tobytes(), frame_rate=sr,
308
+ sample_width=output_wave.dtype.itemsize, channels=1
309
+ ).export(format="mp3", bitrate=bitrate).read()
310
+ yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
311
+ break
312
+ output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
313
+ generated_wave_chunks.append(output_wave)
314
+ previous_chunk = vc_wave[0, -overlap_wave_len:]
315
+ processed_frames += vc_target.size(2) - overlap_frame_len
316
+ output_wave = (output_wave * 32768.0).astype(np.int16)
317
+ mp3_bytes = AudioSegment(
318
+ output_wave.tobytes(), frame_rate=sr,
319
+ sample_width=output_wave.dtype.itemsize, channels=1
320
+ ).export(format="mp3", bitrate=bitrate).read()
321
+ yield mp3_bytes, None
322
+ elif is_last_chunk:
323
+ output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
324
+ generated_wave_chunks.append(output_wave)
325
+ processed_frames += vc_target.size(2) - overlap_frame_len
326
+ output_wave = (output_wave * 32768.0).astype(np.int16)
327
+ mp3_bytes = AudioSegment(
328
+ output_wave.tobytes(), frame_rate=sr,
329
+ sample_width=output_wave.dtype.itemsize, channels=1
330
+ ).export(format="mp3", bitrate=bitrate).read()
331
+ yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
332
+ break
333
+ else:
334
+ output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
335
+ generated_wave_chunks.append(output_wave)
336
+ previous_chunk = vc_wave[0, -overlap_wave_len:]
337
+ processed_frames += vc_target.size(2) - overlap_frame_len
338
+ output_wave = (output_wave * 32768.0).astype(np.int16)
339
+ mp3_bytes = AudioSegment(
340
+ output_wave.tobytes(), frame_rate=sr,
341
+ sample_width=output_wave.dtype.itemsize, channels=1
342
+ ).export(format="mp3", bitrate=bitrate).read()
343
+ yield mp3_bytes, None
344
+
345
+
346
+ def main(args):
347
+ global model, semantic_fn, vocoder_fn, campplus_model, to_mel, mel_fn_args
348
+ global overlap_wave_len, max_context_window, sr, hop_length
349
+ model, semantic_fn, vocoder_fn, campplus_model, to_mel, mel_fn_args = load_models(args)
350
+ # streaming and chunk processing related params
351
+ max_context_window = sr // hop_length * 30
352
+ overlap_wave_len = overlap_frame_len * hop_length
353
+ description = ("Zero-shot voice conversion with in-context learning. For local deployment please check [GitHub repository](https://github.com/Plachtaa/seed-vc) "
354
+ "for details and updates.<br>Note that any reference audio will be forcefully clipped to 25s if beyond this length.<br> "
355
+ "If total duration of source and reference audio exceeds 30s, source audio will be processed in chunks.<br> "
356
+ "无需训练的 zero-shot 语音/歌声转换模型,若需本地部署查看[GitHub页面](https://github.com/Plachtaa/seed-vc)<br>"
357
+ "请注意,参考音频若超过 25 秒,则会被自动裁剪至此长度。<br>若源音频和参考音频的总时长超过 30 秒,源音频将被分段处理。")
358
+ inputs = [
359
+ gr.Audio(type="filepath", label="Source Audio / 源音频"),
360
+ gr.Audio(type="filepath", label="Reference Audio / 参考音频"),
361
+ gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps / 扩散步数", info="10 by default, 50~100 for best quality / 默认为 10,50~100 为最佳质量"),
362
+ gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust / 长度调整", info="<1.0 for speed-up speech, >1.0 for slow-down speech / <1.0 加速语速,>1.0 减慢语速"),
363
+ gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", info="has subtle influence / 有微小影响"),
364
+ ]
365
+
366
+ examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
367
+ ["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
368
+ ]
369
+
370
+ outputs = [gr.Audio(label="Stream Output Audio / 流式输出", streaming=True, format='mp3'),
371
+ gr.Audio(label="Full Output Audio / 完整输出", streaming=False, format='wav')]
372
+
373
+
374
+ gr.Interface(fn=voice_conversion,
375
+ description=description,
376
+ inputs=inputs,
377
+ outputs=outputs,
378
+ title="Seed Voice Conversion",
379
+ examples=examples,
380
+ cache_examples=False,
381
+ ).launch(share=True)
382
+
383
+ if __name__ == "__main__":
384
+ parser = argparse.ArgumentParser()
385
+ parser.add_argument("--checkpoint", type=str, help="Path to the checkpoint file", default=None)
386
+ parser.add_argument("--config", type=str, help="Path to the config file", default=None)
387
+ parser.add_argument("--share", type=str2bool, nargs="?", const=True, default=False, help="Whether to share the app")
388
+ parser.add_argument("--fp16", type=str2bool, nargs="?", const=True, help="Whether to use fp16", default=True)
389
+ parser.add_argument("--gpu", type=int, help="Which GPU id to use", default=0)
390
+ args = parser.parse_args()
391
+ cuda_target = f"cuda:{args.gpu}" if args.gpu else "cuda"
392
+
393
+ if torch.cuda.is_available():
394
+ device = torch.device(cuda_target)
395
+ elif torch.backends.mps.is_available():
396
+ device = torch.device("mps")
397
+ else:
398
+ device = torch.device("cpu")
399
+ main(args)