Spaces:
Sleeping
Sleeping
Upload infer_new.py
Browse files- infer_new.py +569 -0
infer_new.py
ADDED
|
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, os, traceback, sys, warnings, shutil, numpy as np
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import librosa
|
| 4 |
+
import asyncio
|
| 5 |
+
import rarfile
|
| 6 |
+
import edge_tts
|
| 7 |
+
import yt_dlp
|
| 8 |
+
import ffmpeg
|
| 9 |
+
import gdown
|
| 10 |
+
import subprocess
|
| 11 |
+
import wave
|
| 12 |
+
import soundfile as sf
|
| 13 |
+
from scipy.io import wavfile
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
from urllib.parse import urlparse
|
| 16 |
+
from mega import Mega
|
| 17 |
+
|
| 18 |
+
import base64
|
| 19 |
+
import tempfile
|
| 20 |
+
import os
|
| 21 |
+
|
| 22 |
+
from pydub import AudioSegment
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
now_dir = os.getcwd()
|
| 29 |
+
tmp = os.path.join(now_dir, "TEMP")
|
| 30 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
| 31 |
+
os.makedirs(tmp, exist_ok=True)
|
| 32 |
+
os.environ["TEMP"] = tmp
|
| 33 |
+
split_model="htdemucs"
|
| 34 |
+
from lib.infer_pack.models import (
|
| 35 |
+
SynthesizerTrnMs256NSFsid,
|
| 36 |
+
SynthesizerTrnMs256NSFsid_nono,
|
| 37 |
+
SynthesizerTrnMs768NSFsid,
|
| 38 |
+
SynthesizerTrnMs768NSFsid_nono,
|
| 39 |
+
)
|
| 40 |
+
from fairseq import checkpoint_utils
|
| 41 |
+
from vc_infer_pipeline import VC
|
| 42 |
+
from config import Config
|
| 43 |
+
config = Config()
|
| 44 |
+
|
| 45 |
+
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
| 46 |
+
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
|
| 47 |
+
|
| 48 |
+
hubert_model = None
|
| 49 |
+
|
| 50 |
+
f0method_mode = ["pm", "harvest", "crepe"]
|
| 51 |
+
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"
|
| 52 |
+
|
| 53 |
+
if os.path.isfile("rmvpe.pt"):
|
| 54 |
+
f0method_mode.insert(2, "rmvpe")
|
| 55 |
+
f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"
|
| 56 |
+
|
| 57 |
+
def load_hubert():
|
| 58 |
+
global hubert_model
|
| 59 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
| 60 |
+
["hubert_base.pt"],
|
| 61 |
+
suffix="",
|
| 62 |
+
)
|
| 63 |
+
hubert_model = models[0]
|
| 64 |
+
hubert_model = hubert_model.to(config.device)
|
| 65 |
+
if config.is_half:
|
| 66 |
+
hubert_model = hubert_model.half()
|
| 67 |
+
else:
|
| 68 |
+
hubert_model = hubert_model.float()
|
| 69 |
+
hubert_model.eval()
|
| 70 |
+
|
| 71 |
+
load_hubert()
|
| 72 |
+
|
| 73 |
+
weight_root = "weights"
|
| 74 |
+
index_root = "weights/index"
|
| 75 |
+
weights_model = []
|
| 76 |
+
weights_index = []
|
| 77 |
+
for _, _, model_files in os.walk(weight_root):
|
| 78 |
+
for file in model_files:
|
| 79 |
+
if file.endswith(".pth"):
|
| 80 |
+
weights_model.append(file)
|
| 81 |
+
for _, _, index_files in os.walk(index_root):
|
| 82 |
+
for file in index_files:
|
| 83 |
+
if file.endswith('.index') and "trained" not in file:
|
| 84 |
+
weights_index.append(os.path.join(index_root, file))
|
| 85 |
+
|
| 86 |
+
def check_models():
|
| 87 |
+
weights_model = []
|
| 88 |
+
weights_index = []
|
| 89 |
+
for _, _, model_files in os.walk(weight_root):
|
| 90 |
+
for file in model_files:
|
| 91 |
+
if file.endswith(".pth"):
|
| 92 |
+
weights_model.append(file)
|
| 93 |
+
for _, _, index_files in os.walk(index_root):
|
| 94 |
+
for file in index_files:
|
| 95 |
+
if file.endswith('.index') and "trained" not in file:
|
| 96 |
+
weights_index.append(os.path.join(index_root, file))
|
| 97 |
+
return (
|
| 98 |
+
gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
|
| 99 |
+
gr.Dropdown.update(choices=sorted(weights_index))
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
def clean():
|
| 103 |
+
return (
|
| 104 |
+
gr.Dropdown.update(value=""),
|
| 105 |
+
gr.Slider.update(visible=False)
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def api_convert_voice(spk_id,voice_transform,input_audio_path):
|
| 111 |
+
|
| 112 |
+
#split audio
|
| 113 |
+
cut_vocal_and_inst(input_audio_path,spk_id)
|
| 114 |
+
print("audio splitting performed")
|
| 115 |
+
vocal_path = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
|
| 116 |
+
inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
|
| 117 |
+
|
| 118 |
+
output_path = convert_voice(spk_id, vocal_path, voice_transform)
|
| 119 |
+
output_path1= combine_vocal_and_inst(output_path,inst)
|
| 120 |
+
print(output_path1)
|
| 121 |
+
return output_path1
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def convert_voice(spk_id, input_audio_path, voice_transform):
|
| 130 |
+
get_vc(spk_id,0.5)
|
| 131 |
+
output_audio_path = vc_single(
|
| 132 |
+
sid=0,
|
| 133 |
+
input_audio_path=input_audio_path,
|
| 134 |
+
f0_up_key=voice_transform, # Assuming voice_transform corresponds to f0_up_key
|
| 135 |
+
f0_file=None ,
|
| 136 |
+
f0_method="rmvpe",
|
| 137 |
+
file_index=spk_id, # Assuming file_index_path corresponds to file_index
|
| 138 |
+
index_rate=0.75,
|
| 139 |
+
filter_radius=3,
|
| 140 |
+
resample_sr=0,
|
| 141 |
+
rms_mix_rate=0.25,
|
| 142 |
+
protect=0.33 # Adjusted from protect_rate to protect to match the function signature
|
| 143 |
+
)
|
| 144 |
+
print(output_audio_path)
|
| 145 |
+
return output_audio_path
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def vc_single(
|
| 149 |
+
sid,
|
| 150 |
+
input_audio_path,
|
| 151 |
+
f0_up_key,
|
| 152 |
+
f0_file,
|
| 153 |
+
f0_method,
|
| 154 |
+
file_index,
|
| 155 |
+
index_rate,
|
| 156 |
+
filter_radius,
|
| 157 |
+
resample_sr,
|
| 158 |
+
rms_mix_rate,
|
| 159 |
+
protect
|
| 160 |
+
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
| 161 |
+
global tgt_sr, net_g, vc, hubert_model, version, cpt
|
| 162 |
+
|
| 163 |
+
try:
|
| 164 |
+
logs = []
|
| 165 |
+
print(f"Converting...")
|
| 166 |
+
|
| 167 |
+
audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
|
| 168 |
+
print(f"found audio ")
|
| 169 |
+
f0_up_key = int(f0_up_key)
|
| 170 |
+
times = [0, 0, 0]
|
| 171 |
+
if hubert_model == None:
|
| 172 |
+
load_hubert()
|
| 173 |
+
print("loaded hubert")
|
| 174 |
+
if_f0 = 1
|
| 175 |
+
audio_opt = vc.pipeline(
|
| 176 |
+
hubert_model,
|
| 177 |
+
net_g,
|
| 178 |
+
0,
|
| 179 |
+
audio,
|
| 180 |
+
input_audio_path,
|
| 181 |
+
times,
|
| 182 |
+
f0_up_key,
|
| 183 |
+
f0_method,
|
| 184 |
+
file_index,
|
| 185 |
+
# file_big_npy,
|
| 186 |
+
index_rate,
|
| 187 |
+
if_f0,
|
| 188 |
+
filter_radius,
|
| 189 |
+
tgt_sr,
|
| 190 |
+
resample_sr,
|
| 191 |
+
rms_mix_rate,
|
| 192 |
+
version,
|
| 193 |
+
protect,
|
| 194 |
+
f0_file=f0_file
|
| 195 |
+
)
|
| 196 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
| 197 |
+
tgt_sr = resample_sr
|
| 198 |
+
index_info = (
|
| 199 |
+
"Using index:%s." % file_index
|
| 200 |
+
if os.path.exists(file_index)
|
| 201 |
+
else "Index not used."
|
| 202 |
+
)
|
| 203 |
+
print("writing to FS")
|
| 204 |
+
output_file_path = os.path.join("output", f"converted_audio_{sid}.wav") # Adjust path as needed
|
| 205 |
+
|
| 206 |
+
os.makedirs(os.path.dirname(output_file_path), exist_ok=True) # Create the output directory if it doesn't exist
|
| 207 |
+
print("create dir")
|
| 208 |
+
# Save the audio file using the target sampling rate
|
| 209 |
+
sf.write(output_file_path, audio_opt, tgt_sr)
|
| 210 |
+
|
| 211 |
+
print("wrote to FS")
|
| 212 |
+
|
| 213 |
+
# Return the path to the saved file along with any other information
|
| 214 |
+
|
| 215 |
+
return output_file_path
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
except:
|
| 219 |
+
info = traceback.format_exc()
|
| 220 |
+
|
| 221 |
+
return info, (None, None)
|
| 222 |
+
|
| 223 |
+
def get_vc(sid, to_return_protect0):
|
| 224 |
+
global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
|
| 225 |
+
if sid == "" or sid == []:
|
| 226 |
+
global hubert_model
|
| 227 |
+
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
| 228 |
+
print("clean_empty_cache")
|
| 229 |
+
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
| 230 |
+
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
| 231 |
+
if torch.cuda.is_available():
|
| 232 |
+
torch.cuda.empty_cache()
|
| 233 |
+
###楼下不这么折腾清理不干净
|
| 234 |
+
if_f0 = cpt.get("f0", 1)
|
| 235 |
+
version = cpt.get("version", "v1")
|
| 236 |
+
if version == "v1":
|
| 237 |
+
if if_f0 == 1:
|
| 238 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
| 239 |
+
*cpt["config"], is_half=config.is_half
|
| 240 |
+
)
|
| 241 |
+
else:
|
| 242 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
| 243 |
+
elif version == "v2":
|
| 244 |
+
if if_f0 == 1:
|
| 245 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
| 246 |
+
*cpt["config"], is_half=config.is_half
|
| 247 |
+
)
|
| 248 |
+
else:
|
| 249 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
| 250 |
+
del net_g, cpt
|
| 251 |
+
if torch.cuda.is_available():
|
| 252 |
+
torch.cuda.empty_cache()
|
| 253 |
+
cpt = None
|
| 254 |
+
return (
|
| 255 |
+
gr.Slider.update(maximum=2333, visible=False),
|
| 256 |
+
gr.Slider.update(visible=True),
|
| 257 |
+
gr.Dropdown.update(choices=sorted(weights_index), value=""),
|
| 258 |
+
gr.Markdown.update(value="# <center> No model selected")
|
| 259 |
+
)
|
| 260 |
+
print(f"Loading {sid} model...")
|
| 261 |
+
selected_model = sid[:-4]
|
| 262 |
+
cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu")
|
| 263 |
+
tgt_sr = cpt["config"][-1]
|
| 264 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
| 265 |
+
if_f0 = cpt.get("f0", 1)
|
| 266 |
+
if if_f0 == 0:
|
| 267 |
+
to_return_protect0 = {
|
| 268 |
+
"visible": False,
|
| 269 |
+
"value": 0.5,
|
| 270 |
+
"__type__": "update",
|
| 271 |
+
}
|
| 272 |
+
else:
|
| 273 |
+
to_return_protect0 = {
|
| 274 |
+
"visible": True,
|
| 275 |
+
"value": to_return_protect0,
|
| 276 |
+
"__type__": "update",
|
| 277 |
+
}
|
| 278 |
+
version = cpt.get("version", "v1")
|
| 279 |
+
if version == "v1":
|
| 280 |
+
if if_f0 == 1:
|
| 281 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
| 282 |
+
else:
|
| 283 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
| 284 |
+
elif version == "v2":
|
| 285 |
+
if if_f0 == 1:
|
| 286 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
| 287 |
+
else:
|
| 288 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
| 289 |
+
del net_g.enc_q
|
| 290 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
| 291 |
+
net_g.eval().to(config.device)
|
| 292 |
+
if config.is_half:
|
| 293 |
+
net_g = net_g.half()
|
| 294 |
+
else:
|
| 295 |
+
net_g = net_g.float()
|
| 296 |
+
vc = VC(tgt_sr, config)
|
| 297 |
+
n_spk = cpt["config"][-3]
|
| 298 |
+
weights_index = []
|
| 299 |
+
for _, _, index_files in os.walk(index_root):
|
| 300 |
+
for file in index_files:
|
| 301 |
+
if file.endswith('.index') and "trained" not in file:
|
| 302 |
+
weights_index.append(os.path.join(index_root, file))
|
| 303 |
+
if weights_index == []:
|
| 304 |
+
selected_index = gr.Dropdown.update(value="")
|
| 305 |
+
else:
|
| 306 |
+
selected_index = gr.Dropdown.update(value=weights_index[0])
|
| 307 |
+
for index, model_index in enumerate(weights_index):
|
| 308 |
+
if selected_model in model_index:
|
| 309 |
+
selected_index = gr.Dropdown.update(value=weights_index[index])
|
| 310 |
+
break
|
| 311 |
+
return (
|
| 312 |
+
gr.Slider.update(maximum=n_spk, visible=True),
|
| 313 |
+
to_return_protect0,
|
| 314 |
+
selected_index,
|
| 315 |
+
gr.Markdown.update(
|
| 316 |
+
f'## <center> {selected_model}\n'+
|
| 317 |
+
f'### <center> RVC {version} Model'
|
| 318 |
+
)
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
def find_audio_files(folder_path, extensions):
|
| 322 |
+
audio_files = []
|
| 323 |
+
for root, dirs, files in os.walk(folder_path):
|
| 324 |
+
for file in files:
|
| 325 |
+
if any(file.endswith(ext) for ext in extensions):
|
| 326 |
+
audio_files.append(file)
|
| 327 |
+
return audio_files
|
| 328 |
+
|
| 329 |
+
def vc_multi(
|
| 330 |
+
spk_item,
|
| 331 |
+
vc_input,
|
| 332 |
+
vc_output,
|
| 333 |
+
vc_transform0,
|
| 334 |
+
f0method0,
|
| 335 |
+
file_index,
|
| 336 |
+
index_rate,
|
| 337 |
+
filter_radius,
|
| 338 |
+
resample_sr,
|
| 339 |
+
rms_mix_rate,
|
| 340 |
+
protect,
|
| 341 |
+
):
|
| 342 |
+
global tgt_sr, net_g, vc, hubert_model, version, cpt
|
| 343 |
+
logs = []
|
| 344 |
+
logs.append("Converting...")
|
| 345 |
+
yield "\n".join(logs)
|
| 346 |
+
print()
|
| 347 |
+
try:
|
| 348 |
+
if os.path.exists(vc_input):
|
| 349 |
+
folder_path = vc_input
|
| 350 |
+
extensions = [".mp3", ".wav", ".flac", ".ogg"]
|
| 351 |
+
audio_files = find_audio_files(folder_path, extensions)
|
| 352 |
+
for index, file in enumerate(audio_files, start=1):
|
| 353 |
+
audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True)
|
| 354 |
+
input_audio_path = folder_path, file
|
| 355 |
+
f0_up_key = int(vc_transform0)
|
| 356 |
+
times = [0, 0, 0]
|
| 357 |
+
if hubert_model == None:
|
| 358 |
+
load_hubert()
|
| 359 |
+
if_f0 = cpt.get("f0", 1)
|
| 360 |
+
audio_opt = vc.pipeline(
|
| 361 |
+
hubert_model,
|
| 362 |
+
net_g,
|
| 363 |
+
spk_item,
|
| 364 |
+
audio,
|
| 365 |
+
input_audio_path,
|
| 366 |
+
times,
|
| 367 |
+
f0_up_key,
|
| 368 |
+
f0method0,
|
| 369 |
+
file_index,
|
| 370 |
+
index_rate,
|
| 371 |
+
if_f0,
|
| 372 |
+
filter_radius,
|
| 373 |
+
tgt_sr,
|
| 374 |
+
resample_sr,
|
| 375 |
+
rms_mix_rate,
|
| 376 |
+
version,
|
| 377 |
+
protect,
|
| 378 |
+
f0_file=None
|
| 379 |
+
)
|
| 380 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
| 381 |
+
tgt_sr = resample_sr
|
| 382 |
+
output_path = f"{os.path.join(vc_output, file)}"
|
| 383 |
+
os.makedirs(os.path.join(vc_output), exist_ok=True)
|
| 384 |
+
sf.write(
|
| 385 |
+
output_path,
|
| 386 |
+
audio_opt,
|
| 387 |
+
tgt_sr,
|
| 388 |
+
)
|
| 389 |
+
info = f"{index} / {len(audio_files)} | {file}"
|
| 390 |
+
print(info)
|
| 391 |
+
logs.append(info)
|
| 392 |
+
yield "\n".join(logs)
|
| 393 |
+
else:
|
| 394 |
+
logs.append("Folder not found or path doesn't exist.")
|
| 395 |
+
yield "\n".join(logs)
|
| 396 |
+
except:
|
| 397 |
+
info = traceback.format_exc()
|
| 398 |
+
print(info)
|
| 399 |
+
logs.append(info)
|
| 400 |
+
yield "\n".join(logs)
|
| 401 |
+
|
| 402 |
+
def download_audio(url, audio_provider):
|
| 403 |
+
logs = []
|
| 404 |
+
os.makedirs("dl_audio", exist_ok=True)
|
| 405 |
+
if url == "":
|
| 406 |
+
logs.append("URL required!")
|
| 407 |
+
yield None, "\n".join(logs)
|
| 408 |
+
return None, "\n".join(logs)
|
| 409 |
+
if audio_provider == "Youtube":
|
| 410 |
+
logs.append("Downloading the audio...")
|
| 411 |
+
yield None, "\n".join(logs)
|
| 412 |
+
ydl_opts = {
|
| 413 |
+
'noplaylist': True,
|
| 414 |
+
'format': 'bestaudio/best',
|
| 415 |
+
'postprocessors': [{
|
| 416 |
+
'key': 'FFmpegExtractAudio',
|
| 417 |
+
'preferredcodec': 'wav',
|
| 418 |
+
}],
|
| 419 |
+
"outtmpl": 'result/dl_audio/audio',
|
| 420 |
+
}
|
| 421 |
+
audio_path = "result/dl_audio/audio.wav"
|
| 422 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 423 |
+
ydl.download([url])
|
| 424 |
+
logs.append("Download Complete.")
|
| 425 |
+
yield audio_path, "\n".join(logs)
|
| 426 |
+
|
| 427 |
+
def cut_vocal_and_inst_yt(split_model,spk_id):
|
| 428 |
+
logs = []
|
| 429 |
+
logs.append("Starting the audio splitting process...")
|
| 430 |
+
yield "\n".join(logs), None, None, None
|
| 431 |
+
command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output"
|
| 432 |
+
result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
|
| 433 |
+
for line in result.stdout:
|
| 434 |
+
logs.append(line)
|
| 435 |
+
yield "\n".join(logs), None, None, None
|
| 436 |
+
print(result.stdout)
|
| 437 |
+
vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
|
| 438 |
+
inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
|
| 439 |
+
logs.append("Audio splitting complete.")
|
| 440 |
+
yield "\n".join(logs), vocal, inst, vocal
|
| 441 |
+
|
| 442 |
+
def cut_vocal_and_inst(audio_path,spk_id):
|
| 443 |
+
|
| 444 |
+
vocal_path = "output/result/audio.wav"
|
| 445 |
+
os.makedirs("output/result", exist_ok=True)
|
| 446 |
+
#wavfile.write(vocal_path, audio_data[0], audio_data[1])
|
| 447 |
+
#logs.append("Starting the audio splitting process...")
|
| 448 |
+
#yield "\n".join(logs), None, None
|
| 449 |
+
print("before executing splitter")
|
| 450 |
+
command = f"demucs --two-stems=vocals -n {split_model} {audio_path} -o output"
|
| 451 |
+
#result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
|
| 452 |
+
result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
| 453 |
+
if result.returncode != 0:
|
| 454 |
+
print("Demucs process failed:", result.stderr)
|
| 455 |
+
else:
|
| 456 |
+
print("Demucs process completed successfully.")
|
| 457 |
+
print("after executing splitter")
|
| 458 |
+
#for line in result.stdout:
|
| 459 |
+
# logs.append(line)
|
| 460 |
+
# yield "\n".join(logs), None, None
|
| 461 |
+
|
| 462 |
+
print(result.stdout)
|
| 463 |
+
vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
|
| 464 |
+
inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
|
| 465 |
+
#logs.append("Audio splitting complete.")
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def combine_vocal_and_inst(vocal_path, inst_path):
|
| 469 |
+
|
| 470 |
+
vocal_volume=1
|
| 471 |
+
inst_volume=1
|
| 472 |
+
os.makedirs("output/result", exist_ok=True)
|
| 473 |
+
# Assuming vocal_path and inst_path are now directly passed as arguments
|
| 474 |
+
output_path = "output/result/combine.mp3"
|
| 475 |
+
#command = f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame "{output_path}"'
|
| 476 |
+
#command=f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex "amix=inputs=2:duration=longest" -b:a 320k -c:a libmp3lame "{output_path}"'
|
| 477 |
+
# Load the audio files
|
| 478 |
+
vocal = AudioSegment.from_file(vocal_path)
|
| 479 |
+
instrumental = AudioSegment.from_file(inst_path)
|
| 480 |
+
|
| 481 |
+
# Overlay the vocal track on top of the instrumental track
|
| 482 |
+
combined = vocal.overlay(instrumental)
|
| 483 |
+
|
| 484 |
+
# Export the result
|
| 485 |
+
combined.export(output_path, format="mp3")
|
| 486 |
+
|
| 487 |
+
#result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
| 488 |
+
return output_path
|
| 489 |
+
|
| 490 |
+
#def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume):
|
| 491 |
+
# os.makedirs("output/result", exist_ok=True)
|
| 492 |
+
## output_path = "output/result/combine.mp3"
|
| 493 |
+
# inst_path = f"output/{split_model}/audio/no_vocals.wav"
|
| 494 |
+
#wavfile.write(vocal_path, audio_data[0], audio_data[1])
|
| 495 |
+
#command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
|
| 496 |
+
#result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
| 497 |
+
#print(result.stdout.decode())
|
| 498 |
+
#return output_path
|
| 499 |
+
|
| 500 |
+
def download_and_extract_models(urls):
|
| 501 |
+
logs = []
|
| 502 |
+
os.makedirs("zips", exist_ok=True)
|
| 503 |
+
os.makedirs(os.path.join("zips", "extract"), exist_ok=True)
|
| 504 |
+
os.makedirs(os.path.join(weight_root), exist_ok=True)
|
| 505 |
+
os.makedirs(os.path.join(index_root), exist_ok=True)
|
| 506 |
+
for link in urls.splitlines():
|
| 507 |
+
url = link.strip()
|
| 508 |
+
if not url:
|
| 509 |
+
raise gr.Error("URL Required!")
|
| 510 |
+
return "No URLs provided."
|
| 511 |
+
model_zip = urlparse(url).path.split('/')[-2] + '.zip'
|
| 512 |
+
model_zip_path = os.path.join('zips', model_zip)
|
| 513 |
+
logs.append(f"Downloading...")
|
| 514 |
+
yield "\n".join(logs)
|
| 515 |
+
if "drive.google.com" in url:
|
| 516 |
+
gdown.download(url, os.path.join("zips", "extract"), quiet=False)
|
| 517 |
+
elif "mega.nz" in url:
|
| 518 |
+
m = Mega()
|
| 519 |
+
m.download_url(url, 'zips')
|
| 520 |
+
else:
|
| 521 |
+
os.system(f"wget {url} -O {model_zip_path}")
|
| 522 |
+
logs.append(f"Extracting...")
|
| 523 |
+
yield "\n".join(logs)
|
| 524 |
+
for filename in os.listdir("zips"):
|
| 525 |
+
archived_file = os.path.join("zips", filename)
|
| 526 |
+
if filename.endswith(".zip"):
|
| 527 |
+
shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip')
|
| 528 |
+
elif filename.endswith(".rar"):
|
| 529 |
+
with rarfile.RarFile(archived_file, 'r') as rar:
|
| 530 |
+
rar.extractall(os.path.join("zips", "extract"))
|
| 531 |
+
for _, dirs, files in os.walk(os.path.join("zips", "extract")):
|
| 532 |
+
logs.append(f"Searching Model and Index...")
|
| 533 |
+
yield "\n".join(logs)
|
| 534 |
+
model = False
|
| 535 |
+
index = False
|
| 536 |
+
if files:
|
| 537 |
+
for file in files:
|
| 538 |
+
if file.endswith(".pth"):
|
| 539 |
+
basename = file[:-4]
|
| 540 |
+
shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file))
|
| 541 |
+
model = True
|
| 542 |
+
if file.endswith('.index') and "trained" not in file:
|
| 543 |
+
shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file))
|
| 544 |
+
index = True
|
| 545 |
+
else:
|
| 546 |
+
logs.append("No model in main folder.")
|
| 547 |
+
yield "\n".join(logs)
|
| 548 |
+
logs.append("Searching in subfolders...")
|
| 549 |
+
yield "\n".join(logs)
|
| 550 |
+
for sub_dir in dirs:
|
| 551 |
+
for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)):
|
| 552 |
+
for file in sub_files:
|
| 553 |
+
if file.endswith(".pth"):
|
| 554 |
+
basename = file[:-4]
|
| 555 |
+
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file))
|
| 556 |
+
model = True
|
| 557 |
+
if file.endswith('.index') and "trained" not in file:
|
| 558 |
+
shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file))
|
| 559 |
+
index = True
|
| 560 |
+
shutil.rmtree(os.path.join("zips", "extract", sub_dir))
|
| 561 |
+
if index is False:
|
| 562 |
+
logs.append("Model only file, no Index file detected.")
|
| 563 |
+
yield "\n".join(logs)
|
| 564 |
+
logs.append("Download Completed!")
|
| 565 |
+
yield "\n".join(logs)
|
| 566 |
+
logs.append("Successfully download all models! Refresh your model list to load the model")
|
| 567 |
+
yield "\n".join(logs)
|
| 568 |
+
if __name__ == '__main__':
|
| 569 |
+
app.run(debug=False, port=5000,host='0.0.0.0')
|