Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,50 @@
|
|
1 |
-
from transformers import
|
2 |
-
import gradio as
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
print(history)
|
10 |
-
response =
|
11 |
history.append((message, response))
|
12 |
-
|
13 |
html = "<div class='chatbot'>"
|
14 |
for user_msg, resp_msg in history:
|
15 |
html += f"<div class='user_msg'>{user_msg}</div>"
|
@@ -17,18 +52,5 @@ def createHistory(message):
|
|
17 |
html += "</div>"
|
18 |
return response
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
tkn_ids = chat_tkn(input+ chat_tkn.eos_token, return_tensors='pt')
|
23 |
-
|
24 |
-
# bot responds
|
25 |
-
chat_ids = mdl.generate(**tkn_ids)
|
26 |
-
|
27 |
-
# print bot response
|
28 |
-
response= "Alicia: {}".format(chat_tkn.decode(chat_ids[0], skip_special_tokens=True))
|
29 |
-
|
30 |
-
return response
|
31 |
-
|
32 |
-
out=grad.Textbox(lines=20, label="dialog", placeholder="start conversation")
|
33 |
-
grad.Interface(createHistory, inputs="text",outputs=out).launch()
|
34 |
-
|
|
|
1 |
+
from transformers import GPTNeoForCausalLM, GPT2Tokenizer
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
|
5 |
+
tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
6 |
+
|
7 |
+
prompt = """This is a discussion between a person and Hassan Kane, an entrepreneur.
|
8 |
+
person: What are you working on?
|
9 |
+
Hassan: This new AI community building the future of Africa
|
10 |
+
person: Where are you?
|
11 |
+
Hassan: In Lagos for a week, then Paris or London.
|
12 |
+
person: How's it going?
|
13 |
+
Hassan: Not bad.. Just trying to hit EV (escape velocity) with my startup
|
14 |
+
person: """
|
15 |
+
|
16 |
+
def my_split(s, seps):
|
17 |
+
res = [s]
|
18 |
+
for sep in seps:
|
19 |
+
s, res = res, []
|
20 |
+
for seq in s:
|
21 |
+
res += seq.split(sep)
|
22 |
+
return res
|
23 |
+
|
24 |
+
# input = "Who are you?"
|
25 |
+
def chat_base(input):
|
26 |
+
p = prompt + input
|
27 |
+
input_ids = tokenizer(p, return_tensors="pt").input_ids
|
28 |
+
gen_tokens = model.generate(input_ids, do_sample=True, temperature=0.7, max_length=150,)
|
29 |
+
gen_text = tokenizer.batch_decode(gen_tokens)[0]
|
30 |
+
# print(gen_text)
|
31 |
+
result = gen_text[len(p):]
|
32 |
+
# print(">", result)
|
33 |
+
result = my_split(result, [']', '\n'])[1]
|
34 |
+
# print(">>", result)
|
35 |
+
if "Hassan: " in result:
|
36 |
+
result = result.split("Hassan: ")[-1]
|
37 |
+
# print(">>>", result)
|
38 |
+
return result
|
39 |
+
|
40 |
+
import gradio as gr
|
41 |
+
|
42 |
+
def chat(message):
|
43 |
+
history = gr.get_state() or []
|
44 |
print(history)
|
45 |
+
response = chat_base(message)
|
46 |
history.append((message, response))
|
47 |
+
gr.set_state(history)
|
48 |
html = "<div class='chatbot'>"
|
49 |
for user_msg, resp_msg in history:
|
50 |
html += f"<div class='user_msg'>{user_msg}</div>"
|
|
|
52 |
html += "</div>"
|
53 |
return response
|
54 |
|
55 |
+
iface = gr.Interface(chat_base, gr.inputs.Textbox(label="Ask Hassan a Question"), "text", allow_screenshot=False, allow_flagging=False)
|
56 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|