smjain commited on
Commit
5e2ff12
·
1 Parent(s): f7c319e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -25
app.py CHANGED
@@ -1,15 +1,50 @@
1
- from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
2
- import gradio as grad
3
-
4
- chat_tkn = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
5
- mdl = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
6
-
7
- def createHistory(message):
8
- history = grad.get_state() or []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  print(history)
10
- response = chat(message)
11
  history.append((message, response))
12
- grad.set_state(history)
13
  html = "<div class='chatbot'>"
14
  for user_msg, resp_msg in history:
15
  html += f"<div class='user_msg'>{user_msg}</div>"
@@ -17,18 +52,5 @@ def createHistory(message):
17
  html += "</div>"
18
  return response
19
 
20
- def chat(input):
21
-
22
- tkn_ids = chat_tkn(input+ chat_tkn.eos_token, return_tensors='pt')
23
-
24
- # bot responds
25
- chat_ids = mdl.generate(**tkn_ids)
26
-
27
- # print bot response
28
- response= "Alicia: {}".format(chat_tkn.decode(chat_ids[0], skip_special_tokens=True))
29
-
30
- return response
31
-
32
- out=grad.Textbox(lines=20, label="dialog", placeholder="start conversation")
33
- grad.Interface(createHistory, inputs="text",outputs=out).launch()
34
-
 
1
+ from transformers import GPTNeoForCausalLM, GPT2Tokenizer
2
+ import gradio as gr
3
+
4
+ model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
5
+ tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
6
+
7
+ prompt = """This is a discussion between a person and Hassan Kane, an entrepreneur.
8
+ person: What are you working on?
9
+ Hassan: This new AI community building the future of Africa
10
+ person: Where are you?
11
+ Hassan: In Lagos for a week, then Paris or London.
12
+ person: How's it going?
13
+ Hassan: Not bad.. Just trying to hit EV (escape velocity) with my startup
14
+ person: """
15
+
16
+ def my_split(s, seps):
17
+ res = [s]
18
+ for sep in seps:
19
+ s, res = res, []
20
+ for seq in s:
21
+ res += seq.split(sep)
22
+ return res
23
+
24
+ # input = "Who are you?"
25
+ def chat_base(input):
26
+ p = prompt + input
27
+ input_ids = tokenizer(p, return_tensors="pt").input_ids
28
+ gen_tokens = model.generate(input_ids, do_sample=True, temperature=0.7, max_length=150,)
29
+ gen_text = tokenizer.batch_decode(gen_tokens)[0]
30
+ # print(gen_text)
31
+ result = gen_text[len(p):]
32
+ # print(">", result)
33
+ result = my_split(result, [']', '\n'])[1]
34
+ # print(">>", result)
35
+ if "Hassan: " in result:
36
+ result = result.split("Hassan: ")[-1]
37
+ # print(">>>", result)
38
+ return result
39
+
40
+ import gradio as gr
41
+
42
+ def chat(message):
43
+ history = gr.get_state() or []
44
  print(history)
45
+ response = chat_base(message)
46
  history.append((message, response))
47
+ gr.set_state(history)
48
  html = "<div class='chatbot'>"
49
  for user_msg, resp_msg in history:
50
  html += f"<div class='user_msg'>{user_msg}</div>"
 
52
  html += "</div>"
53
  return response
54
 
55
+ iface = gr.Interface(chat_base, gr.inputs.Textbox(label="Ask Hassan a Question"), "text", allow_screenshot=False, allow_flagging=False)
56
+ iface.launch()