smjain commited on
Commit
f8beb9a
·
1 Parent(s): 72e7cba

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -40
app.py CHANGED
@@ -1,43 +1,44 @@
1
- from transformers import GPTNeoForCausalLM, GPT2Tokenizer
2
- import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
5
- tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
6
-
7
- prompt = """This is a discussion between a person and Hassan Kane, an entrepreneur.
8
- person: What are you working on?
9
- Hassan: This new AI community building the future of Africa
10
- person: Where are you?
11
- Hassan: In Lagos for a week, then Paris or London.
12
- person: How's it going?
13
- Hassan: Not bad.. Just trying to hit EV (escape velocity) with my startup
14
- person: """
15
-
16
- def my_split(s, seps):
17
- res = [s]
18
- for sep in seps:
19
- s, res = res, []
20
- for seq in s:
21
- res += seq.split(sep)
22
- return res
23
-
24
- # input = "Who are you?"
25
- def chat_base(input):
26
- p = prompt + input
27
- input_ids = tokenizer(p, return_tensors="pt").input_ids
28
- gen_tokens = model.generate(input_ids, do_sample=True, temperature=0.7, max_length=150,)
29
- gen_text = tokenizer.batch_decode(gen_tokens)[0]
30
- # print(gen_text)
31
- result = gen_text[len(p):]
32
- # print(">", result)
33
- result = my_split(result, [']', '\n'])[1]
34
- # print(">>", result)
35
- if "Hassan: " in result:
36
- result = result.split("Hassan: ")[-1]
37
- # print(">>>", result)
38
- return result
39
-
40
  import gradio as gr
41
 
42
- iface = gr.Interface(chat_base, gr.inputs.Textbox(label="Ask Hassan a Question"), "text", allow_screenshot=False, allow_flagging=False)
43
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ import torch
3
+
4
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
5
+ model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
6
+
7
+ def predict(input, history=[]):
8
+ # tokenize the new input sentence
9
+ new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt')
10
+
11
+ # append the new user input tokens to the chat history
12
+ bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
13
+
14
+ # generate a response
15
+ history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
16
+
17
+ # convert the tokens to text, and then split the responses into lines
18
+ response = tokenizer.decode(history[0]).split("<|endoftext|>")
19
+ response.remove("")
20
+
21
+ # write some HTML
22
+ html = "<div class='chatbot'>"
23
+ for m, msg in enumerate(response):
24
+ cls = "user" if m%2 == 0 else "bot"
25
+ html += "<div class='msg {}'> {}</div>".format(cls, msg)
26
+ html += "</div>"
27
+
28
+ return html, history
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  import gradio as gr
31
 
32
+ css = """
33
+ .chatbox {display:flex;flex-direction:column}
34
+ .msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%}
35
+ .msg.user {background-color:cornflowerblue;color:white}
36
+ .msg.bot {background-color:lightgray;align-self:self-end}
37
+ .footer {display:none !important}
38
+ """
39
+
40
+ gr.Interface(fn=predict,
41
+ theme="default",
42
+ inputs=[gr.inputs.Textbox(placeholder="How are you?"), "state"],
43
+ outputs=["html", "state"],
44
+ css=css).launch()