#from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration from transformers import AutoModelForCausalLM, AutoTokenizer,BlenderbotForConditionalGeneration import torch import torch chat_tkn = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") mdl = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill") def converse(user_input, chat_history=[]): user_input_ids = chat_tkn.encode(user_input + chat_tkn.eos_token, return_tensors='pt') # create a combined tensor with chat history bot_input_ids = torch.cat([torch.LongTensor(chat_history), user_input_ids], dim=-1) # generate a response chat_history = mdl.generate(bot_input_ids, max_length=1000, pad_token_id=chat_tkn.eos_token_id).tolist() print (chat_history) # convert the tokens to text, and then split the responses into lines response = chat_tkn.batch_decode(chat_history[0],skip_special_tokens=True) #response.remove("") print("starting to print response") print(response) # write some HTML html = "