Spaces:
Sleeping
Sleeping
File size: 28,111 Bytes
8c38d83 01e938d 4655d1b 8c38d83 01e938d 4655d1b 01e938d 8c38d83 01e938d 82d82cc 01e938d 8c38d83 01e938d 4655d1b 01e938d 82d82cc 8c38d83 01e938d 82d82cc 01e938d 82d82cc 01e938d 82d82cc 01e938d 82d82cc 01e938d 82d82cc 8c38d83 01e938d 8c38d83 01e938d 8c38d83 01e938d 8c38d83 82d82cc 01e938d 8c38d83 01e938d 8c38d83 01e938d 8c38d83 01e938d 8c38d83 01e938d 8c38d83 01e938d 82d82cc 01e938d 82d82cc 01e938d 82d82cc 01e938d 8c38d83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
import streamlit as st
import cv2
import numpy as np
import os
import tempfile
import librosa
import librosa.display
import matplotlib.pyplot as plt
import tempfile
import librosa
import librosa.display
import matplotlib.pyplot as plt
from PIL import Image
import torch
# Import deforestation modules
from prediction_engine import load_onnx_model
# Import deforestation modules
from prediction_engine import load_onnx_model
from utils.helpers import calculate_deforestation_metrics, create_overlay
# Import audio classification modules
from utils.audio_processing import preprocess_audio
from utils.audio_model import load_audio_model, predict_audio, class_names
# Import YOLO detection modules
from utils.onnx_inference import YOLOv11
# Ensure torch classes path is initialized to avoid warnings
torch.classes.__path__ = []
# Set page config
st.set_page_config(
page_title="Nature Nexus - Forest Surveillance",
page_icon="π³",
layout="wide",
initial_sidebar_state="expanded"
)
# Constants
DEFOREST_MODEL_INPUT_SIZE = 256
AUDIO_MODEL_PATH = "models/best_model.pth"
YOLO_MODEL_PATH = "models/best_model.onnx"
# Initialize session state for navigation
if 'current_service' not in st.session_state:
st.session_state.current_service = 'deforestation'
if 'audio_input_method' not in st.session_state:
st.session_state.audio_input_method = 'upload'
if 'detection_input_method' not in st.session_state:
st.session_state.detection_input_method = 'image'
# Sidebar for navigation
with st.sidebar:
st.title("Nature Nexus")
st.subheader("Forest Surveillance System")
selected_service = st.radio(
"Select Service:",
["Deforestation Detection", "Forest Audio Surveillance", "Object Detection"]
)
if selected_service == "Deforestation Detection":
st.session_state.current_service = 'deforestation'
elif selected_service == "Forest Audio Surveillance":
st.session_state.current_service = 'audio'
else:
st.session_state.current_service = 'detection'
st.markdown("---")
# Service-specific sidebar content
if st.session_state.current_service == 'deforestation':
st.info(
"""
**Deforestation Detection**
Upload satellite or aerial images to detect areas of deforestation.
"""
)
elif st.session_state.current_service == 'audio':
st.info(
"""
**Forest Audio Surveillance**
Detect unusual human-related sounds in forested regions.
"""
)
# Audio service specific controls
st.subheader("Audio Configuration")
audio_input_method = st.radio(
"Select Input Method:",
("Upload Audio", "Record Audio"),
index=0 if st.session_state.audio_input_method == 'upload' else 1
)
st.session_state.audio_input_method = 'upload' if audio_input_method == "Upload Audio" else 'record'
# Audio class information
st.markdown("**Detection Classes:**")
# Group classes by category
human_sounds = ['footsteps', 'coughing', 'laughing', 'breathing',
'drinking_sipping', 'snoring', 'sneezing']
tool_sounds = ['chainsaw', 'hand_saw']
vehicle_sounds = ['car_horn', 'engine', 'siren']
other_sounds = ['crackling_fire', 'fireworks']
st.markdown("π€ **Human Sounds:** " + ", ".join([s.capitalize() for s in human_sounds]))
st.markdown("π¨ **Tool Sounds:** " + ", ".join([s.capitalize() for s in tool_sounds]))
st.markdown("π **Vehicle Sounds:** " + ", ".join([s.capitalize() for s in vehicle_sounds]))
st.markdown("π₯ **Other Sounds:** " + ", ".join([s.capitalize() for s in other_sounds]))
else: # Object Detection
st.info(
"""
**Object Detection**
Detect trespassers, vehicles, fires, and other objects in forest surveillance footage.
"""
)
# Detection service specific controls
st.subheader("Detection Configuration")
detection_input_method = st.radio(
"Select Input Method:",
("Image", "Video", "Camera"),
index=0 if st.session_state.detection_input_method == 'image' else
(1 if st.session_state.detection_input_method == 'video' else 2)
)
if detection_input_method == "Image":
st.session_state.detection_input_method = 'image'
elif detection_input_method == "Video":
st.session_state.detection_input_method = 'video'
else:
st.session_state.detection_input_method = 'camera'
# Detection threshold controls
st.subheader("Detection Settings")
confidence = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
iou_thres = st.slider("IoU Threshold", 0.0, 1.0, 0.5)
# Detection class information
st.markdown("**Detection Classes:**")
st.markdown("π΄ **Bike/Bicycle**")
st.markdown("π **Bus/Truck**")
st.markdown("π **Car**")
st.markdown("π₯ **Fire**")
st.markdown("π€ **Human**")
st.markdown("π¨ **Smoke**")
# Load deforestation model
@st.cache_resource
def load_cached_deforestation_model():
model_path = "models/deforestation_model.onnx"
return load_onnx_model(model_path, input_size=DEFOREST_MODEL_INPUT_SIZE)
# Load audio model
@st.cache_resource
def load_cached_audio_model():
return load_audio_model(AUDIO_MODEL_PATH)
@st.cache_resource
def load_cached_yolo_model():
return YOLOv11(YOLO_MODEL_PATH)
# Process image for deforestation detection
def process_image(model, image):
"""Process a single image and return results"""
# Save original image dimensions for display
orig_height, orig_width = image.shape[:2]
# Make prediction
mask = model.predict(image)
# Resize mask back to original dimensions for display
display_mask = cv2.resize(mask, (orig_width, orig_height))
# Create binary mask for visualization
binary_mask = (display_mask > 0.5).astype(np.uint8) * 255
# Create colored overlay
overlay = create_overlay(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), display_mask)
# Calculate metrics
metrics = calculate_deforestation_metrics(mask)
return binary_mask, overlay, metrics
# Visualize audio for audio classification
def visualize_audio(audio_path):
y, sr = librosa.load(audio_path, sr=16000)
duration = len(y) / sr
fig, ax = plt.subplots(2, 1, figsize=(10, 6))
# Waveform plot
librosa.display.waveshow(y, sr=sr, ax=ax[0])
ax[0].set_title('Audio Waveform')
ax[0].set_xlabel('Time (s)')
ax[0].set_ylabel('Amplitude')
# Spectrogram plot
S = librosa.feature.melspectrogram(y=y, sr=sr)
S_db = librosa.power_to_db(S, ref=np.max)
img = librosa.display.specshow(S_db, sr=sr, x_axis='time', y_axis='mel', ax=ax[1])
fig.colorbar(img, ax=ax[1], format='%+2.0f dB')
ax[1].set_title('Mel Spectrogram')
plt.tight_layout()
st.pyplot(fig)
return y, sr, duration
# Process audio for classification
def process_audio(audio_file):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(audio_file.read() if hasattr(audio_file, 'read') else audio_file)
audio_path = tmp_file.name
try:
# Load audio model
audio_model = load_cached_audio_model()
# Visualize audio
with st.spinner('Analyzing audio...'):
y, sr, duration = visualize_audio(audio_path)
st.caption(f"Audio duration: {duration:.2f} seconds")
# Make prediction
with st.spinner('Making prediction...'):
class_name, confidence = predict_audio(audio_path, audio_model)
# Display results
st.subheader("Detection Results")
col1, col2 = st.columns(2)
with col1:
st.metric("Detected Sound", class_name.replace('_', ' ').title())
with col2:
st.metric("Confidence", f"{confidence*100:.2f}%")
# Show alerts based on class
human_sounds = ['footsteps', 'coughing', 'laughing', 'breathing',
'drinking_sipping', 'snoring', 'sneezing']
tool_sounds = ['chainsaw', 'hand_saw']
if class_name in human_sounds:
st.warning("""
β οΈ **Human Activity Detected!**
Potential human presence in the monitored area.
""")
elif class_name in tool_sounds:
st.error("""
π¨ **ALERT: Human Tool Detected!**
Potential illegal logging or activity detected. Consider immediate verification.
""")
elif class_name in ['car_horn', 'engine', 'siren']:
st.warning("""
β οΈ **Vehicle Detected!**
Vehicle sounds detected in the monitored area.
""")
elif class_name == 'fireworks':
st.error("""
π¨ **ALERT: Fireworks Detected!**
Potential fire hazard and disturbance to wildlife. Immediate verification required.
""")
elif class_name == 'crackling_fire':
st.error("""
π¨ **ALERT: Fire Detected!**
Potential wildfire detected. Immediate verification required.
""")
else:
st.success("β
Environmental sound detected - no immediate threat")
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
st.exception(e)
finally:
# Clean up temp file
try:
os.unlink(audio_path)
except:
pass
# Deforestation detection UI
def show_deforestation_detection():
# App title and description
st.title("π³ Deforestation Detection")
st.markdown(
"""
This service detects areas of deforestation in satellite or aerial images of forests.
Upload an image to get started!
"""
)
# Model info
st.info(
f"βοΈ Model optimized for {DEFOREST_MODEL_INPUT_SIZE}x{DEFOREST_MODEL_INPUT_SIZE} pixel images using ONNX runtime"
)
# Load model
try:
model = load_cached_deforestation_model()
except Exception as e:
st.error(f"Error loading model: {e}")
st.info(
"Make sure you have converted your PyTorch model to ONNX format using the utils/onnx_converter.py script."
)
st.code(
"python -m utils.onnx_converter models/best_model_100.pth models/deforestation_model.onnx"
)
return
# File uploader for images
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Load image
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
# Display original image
st.subheader("Original Image")
st.image(
cv2.cvtColor(image, cv2.COLOR_BGR2RGB),
caption="Uploaded Image",
use_container_width=True,
)
# Add a spinner while processing
with st.spinner("Processing..."):
try:
# Process image
binary_mask, overlay, metrics = process_image(model, image)
# Display results in columns
col1, col2 = st.columns(2)
with col1:
st.subheader("Segmentation Result")
st.image(
binary_mask,
caption="Forest Areas (White)",
use_container_width=True,
)
with col2:
st.subheader("Overlay Visualization")
st.image(
overlay,
caption="Green: Forest, Brown: Deforested",
use_container_width=True,
)
# Display metrics
st.subheader("Deforestation Analysis")
# Create metrics cards
metrics_col1, metrics_col2, metrics_col3 = st.columns(3)
with metrics_col1:
st.metric(
label="Forest Coverage",
value=f"{metrics['forest_percentage']:.1f}%",
)
with metrics_col2:
st.metric(
label="Deforested Area",
value=f"{metrics['deforested_percentage']:.1f}%",
)
with metrics_col3:
st.metric(
label="Deforestation Level",
value=metrics["deforestation_level"],
)
except Exception as e:
st.error(f"Error during processing: {e}")
# Audio classification UI
def show_audio_classification():
# App title and description
st.title("π§ Forest Audio Surveillance")
st.markdown("""
Detect unusual human-related sounds in forested regions to prevent illegal activities.
Supported sounds: {}
""".format(", ".join(class_names)))
if st.session_state.audio_input_method == 'upload':
st.header("Upload Audio File")
sample_col, upload_col = st.columns(2)
with sample_col:
st.info("Upload a WAV, MP3 or OGG file with forest sounds")
st.markdown("""
**Tips for best results:**
- Use audio with minimal background noise
- Ensure the sound of interest is clear
- 2-3 second clips work best
""")
with upload_col:
audio_file = st.file_uploader(
"Choose an audio file",
type=["wav", "mp3", "ogg"],
help="Supported formats: WAV, MP3, OGG"
)
if audio_file:
st.success("File uploaded successfully!")
with st.expander("Audio Preview", expanded=True):
st.audio(audio_file)
process_audio(audio_file)
else: # Record mode
st.header("Record Live Audio")
st.info("""
Click the microphone button below to record a sound for analysis.
**Note:** Please ensure your browser has permission to access your microphone.
When prompted, click "Allow" to enable recording.
""")
recorded_audio = st.audio_input(
label="Record a sound",
key="audio_recorder",
help="Click to record forest sounds for analysis",
label_visibility="visible"
)
if recorded_audio:
st.success("Audio recorded successfully!")
with st.expander("Recorded Audio", expanded=True):
st.audio(recorded_audio)
process_audio(recorded_audio)
else:
st.write("Waiting for recording...")
# Object Detection UI
def show_object_detection():
# App title and description
st.title("π Forest Object Detection")
st.markdown(
"""
Detect trespassers, vehicles, fires, and other objects in forest surveillance footage.
Choose an input method to begin detection.
"""
)
# Model info
st.info("βοΈ Object detection model optimized with ONNX runtime for faster inference")
# Load model
try:
model = load_cached_yolo_model()
# Update model confidence and IoU thresholds from sidebar
confidence = st.session_state.get('confidence', 0.5)
iou_thres = st.session_state.get('iou_thres', 0.5)
model.conf_thres = confidence
model.iou_thres = iou_thres
except Exception as e:
st.error(f"Error loading model: {e}")
st.info(
"Make sure you have the YOLO ONNX model file available at models/best_model.onnx"
)
return
# Input method based selection
if st.session_state.detection_input_method == 'image':
# Image upload
img_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
if img_file is not None:
# Load image
file_bytes = np.asarray(bytearray(img_file.read()), dtype=np.uint8)
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
if image is not None:
# Display original image
st.subheader("Original Image")
st.image(
cv2.cvtColor(image, cv2.COLOR_BGR2RGB),
caption="Uploaded Image",
use_container_width=True,
)
# Process with detection model
with st.spinner("Processing image..."):
try:
detections = model.detect(image)
result_image = model.draw_detections(image.copy(), detections)
# Display results
st.subheader("Detection Results")
st.image(
cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB),
caption="Detected Objects",
use_container_width=True,
)
# Display detection statistics
st.subheader("Detection Statistics")
# Count detections by class
class_counts = {}
for det in detections:
class_name = det['class']
if class_name in class_counts:
class_counts[class_name] += 1
else:
class_counts[class_name] = 1
# Display counts with emojis
cols = st.columns(3)
col_idx = 0
for class_name, count in class_counts.items():
emoji = "π€" if class_name == "human" else (
"π₯" if class_name == "fire" else (
"π¨" if class_name == "smoke" else (
"π" if class_name == "car" else (
"π΄" if class_name == "bike-bicycle" else "π"))))
with cols[col_idx % 3]:
st.metric(f"{emoji} {class_name.capitalize()}", count)
col_idx += 1
# Check for priority threats
if "fire" in class_counts or "smoke" in class_counts:
st.error("π¨ **ALERT: Fire Detected!** Potential forest fire detected. Immediate action required.")
if "human" in class_counts or "car" in class_counts or "bike-bicycle" in class_counts or "bus-truck" in class_counts:
st.warning("β οΈ **Trespassers Detected!** Unauthorized entry detected in monitored area.")
except Exception as e:
st.error(f"Error during detection: {e}")
st.exception(e)
elif st.session_state.detection_input_method == 'video':
# Video upload
video_file = st.file_uploader("Upload Video", type=["mp4", "avi", "mov"])
if video_file is not None:
# Save uploaded video to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tfile:
tfile.write(video_file.read())
temp_video_path = tfile.name
# Display video upload success
st.success("Video uploaded successfully!")
# Process video button
if st.button("Process Video"):
with st.spinner("Processing video... This may take a while."):
try:
# Open video file
cap = cv2.VideoCapture(temp_video_path)
# Create video writer for output
output_path = "output_video.mp4"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
# Create placeholder for video frames
video_placeholder = st.empty()
status_text = st.empty()
# Process frames
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Process every 5th frame for speed
if frame_count % 5 == 0:
detections = model.detect(frame)
result_frame = model.draw_detections(frame.copy(), detections)
# Update preview
if frame_count % 15 == 0: # Update display less frequently
video_placeholder.image(
cv2.cvtColor(result_frame, cv2.COLOR_BGR2RGB),
caption="Processing Video",
use_container_width=True
)
progress = min(100, int((frame_count / total_frames) * 100))
status_text.text(f"Processing: {progress}% complete")
else:
result_frame = frame # Skip detection on some frames
# Write frame to output video
out.write(result_frame)
frame_count += 1
# Release resources
cap.release()
out.release()
# Display completion message
st.success("Video processing complete!")
# Provide download button for processed video
with open(output_path, "rb") as file:
st.download_button(
label="Download Processed Video",
data=file,
file_name="forest_surveillance_results.mp4",
mime="video/mp4"
)
except Exception as e:
st.error(f"Error processing video: {e}")
st.exception(e)
finally:
# Clean up temp file
try:
os.unlink(temp_video_path)
except:
pass
else: # Camera mode
# Live camera feed
st.subheader("Live Camera Detection")
st.info("Use your webcam to detect objects in real-time")
cam = st.camera_input("Camera Feed")
if cam:
# Process camera input
with st.spinner("Processing image..."):
try:
# Convert image
image = cv2.imdecode(np.frombuffer(cam.getvalue(), np.uint8), cv2.IMREAD_COLOR)
# Run detection
detections = model.detect(image)
result_image = model.draw_detections(image.copy(), detections)
# Display results
st.image(
cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB),
caption="Detection Results",
use_container_width=True
)
# Show detection summary
if detections:
# Count detections by class
class_counts = {}
for det in detections:
class_name = det['class']
if class_name in class_counts:
class_counts[class_name] += 1
else:
class_counts[class_name] = 1
# Display as metrics
st.subheader("Detection Summary")
cols = st.columns(3)
for i, (class_name, count) in enumerate(class_counts.items()):
with cols[i % 3]:
st.metric(class_name.capitalize(), count)
# Check for priority threats
if "fire" in class_counts or "smoke" in class_counts:
st.error("π¨ **ALERT: Fire Detected!** Potential forest fire detected.")
if "human" in class_counts:
st.warning("β οΈ **Trespasser Detected!** Human presence detected.")
else:
st.info("No objects detected in frame")
except Exception as e:
st.error(f"Error processing camera feed: {e}")
# Main function
def main():
# Check which service is selected and render appropriate UI
if st.session_state.current_service == 'deforestation':
show_deforestation_detection()
elif st.session_state.current_service == 'audio':
show_audio_classification()
else: # 'detection'
show_object_detection()
# Footer
st.markdown("---")
st.markdown("""
<div style="text-align: center; padding: 10px;">
<p>Nature Nexus - Forest Surveillance System | π³ Protect Natural Ecosystems</p>
<p><small>Built with Streamlit and PyTorch</small></p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main() |