smokeyScraper commited on
Commit
fcd04df
·
unverified ·
1 Parent(s): 4280f7a

Update Readme.md

Browse files
Files changed (1) hide show
  1. Readme.md +0 -25
Readme.md CHANGED
@@ -91,43 +91,18 @@ The application will open in your default web browser at http://localhost:8501
91
  - **Input**: Satellite/aerial imagery (RGB)
92
  - **Output**: Binary segmentation mask (forest vs. deforested)
93
  - **Optimization**: ONNX runtime for faster inference
94
- - **Dataset**: The model was trained using multiple datasets:
95
- - **Amazon Rainforest Dataset for Semantic Segmentation** by Bragagnolo, Lucimara; da Silva, Roberto Valmir; Grzybowski, José Mario Vicensi
96
- - Contains 30 GeoTIFF training images (512x512 pixels) with PNG masks (forest in white, non-forest in black)
97
- - 15 GeoTIFF validation images with masks
98
- - 15 GeoTIFF test images
99
- - **Amazon and Atlantic Forest Image Datasets for Semantic Segmentation** by the same creators
100
- - Training dataset: 499 Amazon and 485 Atlantic Forest GeoTIFF images (512x512 pixels) with PNG masks
101
- - Validation dataset: 100 GeoTIFF images per biome with masks
102
- - Test dataset: 20 GeoTIFF images per biome
103
- - **Forest Aerial Images for Segmentation** from Kaggle (https://www.kaggle.com/datasets/quadeer15sh/augmented-forest-segmentation)
104
- - The 4-channel datasets were converted to 3-channel and merged
105
-
106
- [Space for deforestation model architecture visualization]
107
 
108
  ### Audio Classification Model
109
  - **Architecture**: Convolutional Neural Network (CNN)
110
  - **Input**: Audio spectrograms
111
  - **Output**: 14 sound classes with confidence scores
112
  - **Features**: Mel-spectrogram analysis
113
- - **Dataset**: **ESC-50: Dataset for Environmental Sound Classification**
114
- - Contains various environmental sounds categorized for machine learning applications
115
- - Used to train the model to recognize forest-relevant sounds including human activity, tools, vehicles, and natural sounds
116
-
117
- [Space for audio model architecture visualization]
118
 
119
  ### Object Detection Model
120
  - **Architecture**: YOLOv11
121
  - **Input**: Images/video frames
122
  - **Output**: Bounding boxes, class labels, confidence scores
123
  - **Classes**: Humans, vehicles, fire, smoke, etc.
124
- - **Dataset**: A merged collection of several datasets from Roboflow, optimized for detecting forest-relevant objects such as:
125
- - Human presence (trespassers, loggers)
126
- - Various vehicles (trucks, cars, motorcycles)
127
- - Fire and smoke detection
128
- - Logging equipment
129
-
130
- [Space for YOLO model architecture visualization]
131
 
132
  ## System Architecture
133
 
 
91
  - **Input**: Satellite/aerial imagery (RGB)
92
  - **Output**: Binary segmentation mask (forest vs. deforested)
93
  - **Optimization**: ONNX runtime for faster inference
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
  ### Audio Classification Model
96
  - **Architecture**: Convolutional Neural Network (CNN)
97
  - **Input**: Audio spectrograms
98
  - **Output**: 14 sound classes with confidence scores
99
  - **Features**: Mel-spectrogram analysis
 
 
 
 
 
100
 
101
  ### Object Detection Model
102
  - **Architecture**: YOLOv11
103
  - **Input**: Images/video frames
104
  - **Output**: Bounding boxes, class labels, confidence scores
105
  - **Classes**: Humans, vehicles, fire, smoke, etc.
 
 
 
 
 
 
 
106
 
107
  ## System Architecture
108