import streamlit as st import cv2 import numpy as np import os import tempfile import librosa import librosa.display import matplotlib.pyplot as plt import tempfile import librosa import librosa.display import matplotlib.pyplot as plt from PIL import Image import torch # Import deforestation modules from prediction_engine import load_onnx_model # Import deforestation modules from prediction_engine import load_onnx_model from utils.helpers import calculate_deforestation_metrics, create_overlay # Import audio classification modules from utils.audio_processing import preprocess_audio from utils.audio_model import load_audio_model, predict_audio, class_names # Import YOLO detection modules from utils.onnx_inference import YOLOv11 # Ensure torch classes path is initialized to avoid warnings torch.classes.__path__ = [] # Set page config st.set_page_config( page_title="Nature Nexus - Forest Surveillance", page_icon="🌳", layout="wide", initial_sidebar_state="expanded" ) # Constants DEFOREST_MODEL_INPUT_SIZE = 256 AUDIO_MODEL_PATH = "models/best_model.pth" YOLO_MODEL_PATH = "models/best_model.onnx" # Initialize session state for navigation if 'current_service' not in st.session_state: st.session_state.current_service = 'deforestation' if 'audio_input_method' not in st.session_state: st.session_state.audio_input_method = 'upload' if 'detection_input_method' not in st.session_state: st.session_state.detection_input_method = 'image' # Sidebar for navigation with st.sidebar: st.title("Nature Nexus") st.subheader("Forest Surveillance System") selected_service = st.radio( "Select Service:", ["Deforestation Detection", "Forest Audio Surveillance", "Object Detection"] ) if selected_service == "Deforestation Detection": st.session_state.current_service = 'deforestation' elif selected_service == "Forest Audio Surveillance": st.session_state.current_service = 'audio' else: st.session_state.current_service = 'detection' st.markdown("---") # Service-specific sidebar content if st.session_state.current_service == 'deforestation': st.info( """ **Deforestation Detection** Upload satellite or aerial images to detect areas of deforestation. """ ) elif st.session_state.current_service == 'audio': st.info( """ **Forest Audio Surveillance** Detect unusual human-related sounds in forested regions. """ ) # Audio service specific controls st.subheader("Audio Configuration") audio_input_method = st.radio( "Select Input Method:", ("Upload Audio", "Record Audio"), index=0 if st.session_state.audio_input_method == 'upload' else 1 ) st.session_state.audio_input_method = 'upload' if audio_input_method == "Upload Audio" else 'record' # Audio class information st.markdown("**Detection Classes:**") # Group classes by category human_sounds = ['footsteps', 'coughing', 'laughing', 'breathing', 'drinking_sipping', 'snoring', 'sneezing'] tool_sounds = ['chainsaw', 'hand_saw'] vehicle_sounds = ['car_horn', 'engine', 'siren'] other_sounds = ['crackling_fire', 'fireworks'] st.markdown("👤 **Human Sounds:** " + ", ".join([s.capitalize() for s in human_sounds])) st.markdown("🔨 **Tool Sounds:** " + ", ".join([s.capitalize() for s in tool_sounds])) st.markdown("🚗 **Vehicle Sounds:** " + ", ".join([s.capitalize() for s in vehicle_sounds])) st.markdown("💥 **Other Sounds:** " + ", ".join([s.capitalize() for s in other_sounds])) else: # Object Detection st.info( """ **Object Detection** Detect trespassers, vehicles, fires, and other objects in forest surveillance footage. """ ) # Detection service specific controls st.subheader("Detection Configuration") detection_input_method = st.radio( "Select Input Method:", ("Image", "Video", "Camera"), index=0 if st.session_state.detection_input_method == 'image' else (1 if st.session_state.detection_input_method == 'video' else 2) ) if detection_input_method == "Image": st.session_state.detection_input_method = 'image' elif detection_input_method == "Video": st.session_state.detection_input_method = 'video' else: st.session_state.detection_input_method = 'camera' # Detection threshold controls st.subheader("Detection Settings") confidence = st.slider("Confidence Threshold", 0.0, 1.0, 0.5) iou_thres = st.slider("IoU Threshold", 0.0, 1.0, 0.5) # Detection class information st.markdown("**Detection Classes:**") st.markdown("🚴 **Bike/Bicycle**") st.markdown("🚚 **Bus/Truck**") st.markdown("🚗 **Car**") st.markdown("🔥 **Fire**") st.markdown("👤 **Human**") st.markdown("💨 **Smoke**") # Load deforestation model @st.cache_resource def load_cached_deforestation_model(): model_path = "models/deforestation_model.onnx" return load_onnx_model(model_path, input_size=DEFOREST_MODEL_INPUT_SIZE) # Load audio model @st.cache_resource def load_cached_audio_model(): return load_audio_model(AUDIO_MODEL_PATH) @st.cache_resource def load_cached_yolo_model(): return YOLOv11(YOLO_MODEL_PATH) # Process image for deforestation detection def process_image(model, image): """Process a single image and return results""" # Save original image dimensions for display orig_height, orig_width = image.shape[:2] # Make prediction mask = model.predict(image) # Resize mask back to original dimensions for display display_mask = cv2.resize(mask, (orig_width, orig_height)) # Create binary mask for visualization binary_mask = (display_mask > 0.5).astype(np.uint8) * 255 # Create colored overlay overlay = create_overlay(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), display_mask) # Calculate metrics metrics = calculate_deforestation_metrics(mask) return binary_mask, overlay, metrics # Visualize audio for audio classification def visualize_audio(audio_path): y, sr = librosa.load(audio_path, sr=16000) duration = len(y) / sr fig, ax = plt.subplots(2, 1, figsize=(10, 6)) # Waveform plot librosa.display.waveshow(y, sr=sr, ax=ax[0]) ax[0].set_title('Audio Waveform') ax[0].set_xlabel('Time (s)') ax[0].set_ylabel('Amplitude') # Spectrogram plot S = librosa.feature.melspectrogram(y=y, sr=sr) S_db = librosa.power_to_db(S, ref=np.max) img = librosa.display.specshow(S_db, sr=sr, x_axis='time', y_axis='mel', ax=ax[1]) fig.colorbar(img, ax=ax[1], format='%+2.0f dB') ax[1].set_title('Mel Spectrogram') plt.tight_layout() st.pyplot(fig) return y, sr, duration # Process audio for classification def process_audio(audio_file): with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_file.write(audio_file.read() if hasattr(audio_file, 'read') else audio_file) audio_path = tmp_file.name try: # Load audio model audio_model = load_cached_audio_model() # Visualize audio with st.spinner('Analyzing audio...'): y, sr, duration = visualize_audio(audio_path) st.caption(f"Audio duration: {duration:.2f} seconds") # Make prediction with st.spinner('Making prediction...'): class_name, confidence = predict_audio(audio_path, audio_model) # Display results st.subheader("Detection Results") col1, col2 = st.columns(2) with col1: st.metric("Detected Sound", class_name.replace('_', ' ').title()) with col2: st.metric("Confidence", f"{confidence*100:.2f}%") # Show alerts based on class human_sounds = ['footsteps', 'coughing', 'laughing', 'breathing', 'drinking_sipping', 'snoring', 'sneezing'] tool_sounds = ['chainsaw', 'hand_saw'] if class_name in human_sounds: st.warning(""" ⚠️ **Human Activity Detected!** Potential human presence in the monitored area. """) elif class_name in tool_sounds: st.error(""" 🚨 **ALERT: Human Tool Detected!** Potential illegal logging or activity detected. Consider immediate verification. """) elif class_name in ['car_horn', 'engine', 'siren']: st.warning(""" ⚠️ **Vehicle Detected!** Vehicle sounds detected in the monitored area. """) elif class_name == 'fireworks': st.error(""" 🚨 **ALERT: Fireworks Detected!** Potential fire hazard and disturbance to wildlife. Immediate verification required. """) elif class_name == 'crackling_fire': st.error(""" 🚨 **ALERT: Fire Detected!** Potential wildfire detected. Immediate verification required. """) else: st.success("✅ Environmental sound detected - no immediate threat") except Exception as e: st.error(f"Error processing audio: {str(e)}") st.exception(e) finally: # Clean up temp file try: os.unlink(audio_path) except: pass # Deforestation detection UI def show_deforestation_detection(): # App title and description st.title("🌳 Deforestation Detection") st.markdown( """ This service detects areas of deforestation in satellite or aerial images of forests. Upload an image to get started! """ ) # Model info st.info( f"⚙️ Model optimized for {DEFOREST_MODEL_INPUT_SIZE}x{DEFOREST_MODEL_INPUT_SIZE} pixel images using ONNX runtime" ) # Load model try: model = load_cached_deforestation_model() except Exception as e: st.error(f"Error loading model: {e}") st.info( "Make sure you have converted your PyTorch model to ONNX format using the utils/onnx_converter.py script." ) st.code( "python -m utils.onnx_converter models/best_model_100.pth models/deforestation_model.onnx" ) return # File uploader for images uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Load image file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) # Display original image st.subheader("Original Image") st.image( cv2.cvtColor(image, cv2.COLOR_BGR2RGB), caption="Uploaded Image", use_container_width=True, ) # Add a spinner while processing with st.spinner("Processing..."): try: # Process image binary_mask, overlay, metrics = process_image(model, image) # Display results in columns col1, col2 = st.columns(2) with col1: st.subheader("Segmentation Result") st.image( binary_mask, caption="Forest Areas (White)", use_container_width=True, ) with col2: st.subheader("Overlay Visualization") st.image( overlay, caption="Green: Forest, Brown: Deforested", use_container_width=True, ) # Display metrics st.subheader("Deforestation Analysis") # Create metrics cards metrics_col1, metrics_col2, metrics_col3 = st.columns(3) with metrics_col1: st.metric( label="Forest Coverage", value=f"{metrics['forest_percentage']:.1f}%", ) with metrics_col2: st.metric( label="Deforested Area", value=f"{metrics['deforested_percentage']:.1f}%", ) with metrics_col3: st.metric( label="Deforestation Level", value=metrics["deforestation_level"], ) except Exception as e: st.error(f"Error during processing: {e}") # Audio classification UI def show_audio_classification(): # App title and description st.title("🎧 Forest Audio Surveillance") st.markdown(""" Detect unusual human-related sounds in forested regions to prevent illegal activities. Supported sounds: {} """.format(", ".join(class_names))) if st.session_state.audio_input_method == 'upload': st.header("Upload Audio File") sample_col, upload_col = st.columns(2) with sample_col: st.info("Upload a WAV, MP3 or OGG file with forest sounds") st.markdown(""" **Tips for best results:** - Use audio with minimal background noise - Ensure the sound of interest is clear - 2-3 second clips work best """) with upload_col: audio_file = st.file_uploader( "Choose an audio file", type=["wav", "mp3", "ogg"], help="Supported formats: WAV, MP3, OGG" ) if audio_file: st.success("File uploaded successfully!") with st.expander("Audio Preview", expanded=True): st.audio(audio_file) process_audio(audio_file) else: # Record mode st.header("Record Live Audio") st.info(""" Click the microphone button below to record a sound for analysis. **Note:** Please ensure your browser has permission to access your microphone. When prompted, click "Allow" to enable recording. """) recorded_audio = st.audio_input( label="Record a sound", key="audio_recorder", help="Click to record forest sounds for analysis", label_visibility="visible" ) if recorded_audio: st.success("Audio recorded successfully!") with st.expander("Recorded Audio", expanded=True): st.audio(recorded_audio) process_audio(recorded_audio) else: st.write("Waiting for recording...") # Object Detection UI def show_object_detection(): # App title and description st.title("🔍 Forest Object Detection") st.markdown( """ Detect trespassers, vehicles, fires, and other objects in forest surveillance footage. Choose an input method to begin detection. """ ) # Model info st.info("⚙️ Object detection model optimized with ONNX runtime for faster inference") # Load model try: model = load_cached_yolo_model() # Update model confidence and IoU thresholds from sidebar confidence = st.session_state.get('confidence', 0.5) iou_thres = st.session_state.get('iou_thres', 0.5) model.conf_thres = confidence model.iou_thres = iou_thres except Exception as e: st.error(f"Error loading model: {e}") st.info( "Make sure you have the YOLO ONNX model file available at models/best_model.onnx" ) return # Input method based selection if st.session_state.detection_input_method == 'image': # Image upload img_file = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"]) if img_file is not None: # Load image file_bytes = np.asarray(bytearray(img_file.read()), dtype=np.uint8) image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) if image is not None: # Display original image st.subheader("Original Image") st.image( cv2.cvtColor(image, cv2.COLOR_BGR2RGB), caption="Uploaded Image", use_container_width=True, ) # Process with detection model with st.spinner("Processing image..."): try: detections = model.detect(image) result_image = model.draw_detections(image.copy(), detections) # Display results st.subheader("Detection Results") st.image( cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB), caption="Detected Objects", use_container_width=True, ) # Display detection statistics st.subheader("Detection Statistics") # Count detections by class class_counts = {} for det in detections: class_name = det['class'] if class_name in class_counts: class_counts[class_name] += 1 else: class_counts[class_name] = 1 # Display counts with emojis cols = st.columns(3) col_idx = 0 for class_name, count in class_counts.items(): emoji = "👤" if class_name == "human" else ( "🔥" if class_name == "fire" else ( "💨" if class_name == "smoke" else ( "🚗" if class_name == "car" else ( "🚴" if class_name == "bike-bicycle" else "🚚")))) with cols[col_idx % 3]: st.metric(f"{emoji} {class_name.capitalize()}", count) col_idx += 1 # Check for priority threats if "fire" in class_counts or "smoke" in class_counts: st.error("🚨 **ALERT: Fire Detected!** Potential forest fire detected. Immediate action required.") if "human" in class_counts or "car" in class_counts or "bike-bicycle" in class_counts or "bus-truck" in class_counts: st.warning("⚠️ **Trespassers Detected!** Unauthorized entry detected in monitored area.") except Exception as e: st.error(f"Error during detection: {e}") st.exception(e) elif st.session_state.detection_input_method == 'video': # Video upload video_file = st.file_uploader("Upload Video", type=["mp4", "avi", "mov"]) if video_file is not None: # Save uploaded video to temp file with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tfile: tfile.write(video_file.read()) temp_video_path = tfile.name # Display video upload success st.success("Video uploaded successfully!") # Process video button if st.button("Process Video"): with st.spinner("Processing video... This may take a while."): try: # Open video file cap = cv2.VideoCapture(temp_video_path) # Create video writer for output output_path = "output_video.mp4" fourcc = cv2.VideoWriter_fourcc(*'mp4v') fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) # Create placeholder for video frames video_placeholder = st.empty() status_text = st.empty() # Process frames frame_count = 0 total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) while cap.isOpened(): ret, frame = cap.read() if not ret: break # Process every 5th frame for speed if frame_count % 5 == 0: detections = model.detect(frame) result_frame = model.draw_detections(frame.copy(), detections) # Update preview if frame_count % 15 == 0: # Update display less frequently video_placeholder.image( cv2.cvtColor(result_frame, cv2.COLOR_BGR2RGB), caption="Processing Video", use_container_width=True ) progress = min(100, int((frame_count / total_frames) * 100)) status_text.text(f"Processing: {progress}% complete") else: result_frame = frame # Skip detection on some frames # Write frame to output video out.write(result_frame) frame_count += 1 # Release resources cap.release() out.release() # Display completion message st.success("Video processing complete!") # Provide download button for processed video with open(output_path, "rb") as file: st.download_button( label="Download Processed Video", data=file, file_name="forest_surveillance_results.mp4", mime="video/mp4" ) except Exception as e: st.error(f"Error processing video: {e}") st.exception(e) finally: # Clean up temp file try: os.unlink(temp_video_path) except: pass else: # Camera mode # Live camera feed st.subheader("Live Camera Detection") st.info("Use your webcam to detect objects in real-time") cam = st.camera_input("Camera Feed") if cam: # Process camera input with st.spinner("Processing image..."): try: # Convert image image = cv2.imdecode(np.frombuffer(cam.getvalue(), np.uint8), cv2.IMREAD_COLOR) # Run detection detections = model.detect(image) result_image = model.draw_detections(image.copy(), detections) # Display results st.image( cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB), caption="Detection Results", use_container_width=True ) # Show detection summary if detections: # Count detections by class class_counts = {} for det in detections: class_name = det['class'] if class_name in class_counts: class_counts[class_name] += 1 else: class_counts[class_name] = 1 # Display as metrics st.subheader("Detection Summary") cols = st.columns(3) for i, (class_name, count) in enumerate(class_counts.items()): with cols[i % 3]: st.metric(class_name.capitalize(), count) # Check for priority threats if "fire" in class_counts or "smoke" in class_counts: st.error("🚨 **ALERT: Fire Detected!** Potential forest fire detected.") if "human" in class_counts: st.warning("⚠️ **Trespasser Detected!** Human presence detected.") else: st.info("No objects detected in frame") except Exception as e: st.error(f"Error processing camera feed: {e}") # Main function def main(): # Check which service is selected and render appropriate UI if st.session_state.current_service == 'deforestation': show_deforestation_detection() elif st.session_state.current_service == 'audio': show_audio_classification() else: # 'detection' show_object_detection() # Footer st.markdown("---") st.markdown("""
Nature Nexus - Forest Surveillance System | 🌳 Protect Natural Ecosystems
Built with Streamlit and PyTorch