import torch import torch.nn as nn import torch.nn.functional as F import numpy as np class AttentionGate(nn.Module): def __init__(self, F_g, F_l, F_int): super(AttentionGate, self).__init__() self.W_g = nn.Sequential( nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int), ) self.W_x = nn.Sequential( nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int), ) self.psi = nn.Sequential( nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(1), nn.Sigmoid(), ) self.relu = nn.ReLU(inplace=True) def forward(self, g, x): g1 = self.W_g(g) x1 = self.W_x(x) psi = self.relu(g1 + x1) psi = self.psi(psi) return x * psi class DoubleConv(nn.Module): def __init__(self, in_channels, out_channels): super(DoubleConv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ) def forward(self, x): return self.conv(x) class AttentionUNet(nn.Module): def __init__(self, in_channels=3, out_channels=1, features=[64, 128, 256, 512]): super(AttentionUNet, self).__init__() self.ups = nn.ModuleList() self.downs = nn.ModuleList() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.attention_gates = nn.ModuleList() # Down part of U-Net for feature in features: self.downs.append(DoubleConv(in_channels, feature)) in_channels = feature # Up part of U-Net for feature in reversed(features): self.ups.append( nn.ConvTranspose2d( feature * 2, feature, kernel_size=2, stride=2, ) ) # Attention Gate self.attention_gates.append( AttentionGate(F_g=feature, F_l=feature, F_int=feature // 2) ) self.ups.append(DoubleConv(feature * 2, feature)) # Bottleneck self.bottleneck = DoubleConv(features[-1], features[-1] * 2) # Final Conv self.final_conv = nn.Conv2d(features[0], out_channels, kernel_size=1) def forward(self, x): skip_connections = [] # Encoder path for down in self.downs: x = down(x) skip_connections.append(x) x = self.pool(x) x = self.bottleneck(x) skip_connections = skip_connections[::-1] # Reverse to use from back # Decoder path for idx in range(0, len(self.ups), 2): x = self.ups[idx](x) skip_connection = skip_connections[idx // 2] # If sizes don't match if x.shape != skip_connection.shape: x = F.interpolate(x, size=skip_connection.shape[2:]) # Apply attention gate skip_connection = self.attention_gates[idx // 2](g=x, x=skip_connection) # Concatenate concat_skip = torch.cat((skip_connection, x), dim=1) x = self.ups[idx + 1](concat_skip) # Final conv return self.final_conv(x) def load_model(model_path): """ Load the trained model Args: model_path: Path to the model weights Returns: Loaded model """ # Define device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Initialize model model = AttentionUNet(in_channels=3, out_channels=1) # Load model weights model.load_state_dict(torch.load(model_path, map_location=device)) # Set model to evaluation mode model.eval() return model.to(device)