Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,475 Bytes
8b6a4c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import re
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import PlanningStep
from smolagents.gradio_ui import get_step_footnote_content
from smolagents.memory import ActionStep, FinalAnswerStep, MemoryStep
from smolagents.models import ChatMessageStreamDelta
from smolagents.utils import _is_package_available
def pull_messages_from_step(step_log: MemoryStep, skip_model_outputs: bool = False):
"""Extract ChatMessage objects from agent steps with proper nesting.
Args:
step_log: The step log to display as gr.ChatMessage objects.
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:
This is used for instance when streaming model outputs have already been displayed.
"""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
import gradio as gr
if isinstance(step_log, ActionStep):
# Output the step number
step_number = (
f"Step {step_log.step_number}"
if step_log.step_number is not None
else "Step"
)
if not skip_model_outputs:
yield gr.ChatMessage(
role="assistant",
content=f"**{step_number}**",
metadata={"status": "done"},
)
# First yield the thought/reasoning from the LLM
if (
not skip_model_outputs
and hasattr(step_log, "model_output")
and step_log.model_output is not None
):
model_output = step_log.model_output.strip()
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
model_output = re.sub(
r"```\s*<end_code>", "```", model_output
) # handles ```<end_code>
model_output = re.sub(
r"<end_code>\s*```", "```", model_output
) # handles <end_code>```
model_output = re.sub(
r"```\s*\n\s*<end_code>", "```", model_output
) # handles ```\n<end_code>
model_output = model_output.strip()
yield gr.ChatMessage(
role="assistant", content=model_output, metadata={"status": "done"}
)
# For tool calls, create a parent message
if hasattr(step_log, "tool_calls") and step_log.tool_calls is not None:
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
# Tool call becomes the parent message with timing info
# First we will handle arguments based on type
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
if used_code:
# Clean up the content by removing any end code tags
content = re.sub(
r"```.*?\n", "", content
) # Remove existing code blocks
content = re.sub(
r"\s*<end_code>\s*", "", content
) # Remove end_code tags
content = content.strip()
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"status": "done",
},
)
yield parent_message_tool
# Display execution logs if they exist
if hasattr(step_log, "observations") and (
step_log.observations is not None and step_log.observations.strip()
): # Only yield execution logs if there's actual content
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role="assistant",
content=f"```bash\n{log_content}\n",
metadata={"title": "📝 Execution Logs", "status": "done"},
)
# Display any errors
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "💥 Error", "status": "done"},
)
# Update parent message metadata to done status without yielding a new message
if getattr(step_log, "observations_images", []):
for image in step_log.observations_images:
path_image = AgentImage(image).to_string()
yield gr.ChatMessage(
role="assistant",
content={
"path": path_image,
"mime_type": f"image/{path_image.split('.')[-1]}",
},
metadata={"title": "🖼️ Output Image", "status": "done"},
)
# Handle standalone errors but not from tool calls
if hasattr(step_log, "error") and step_log.error is not None:
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={"title": "💥 Error", "status": "done"},
)
yield gr.ChatMessage(
role="assistant",
content=get_step_footnote_content(step_log, step_number),
metadata={"status": "done"},
)
yield gr.ChatMessage(
role="assistant", content="-----", metadata={"status": "done"}
)
elif isinstance(step_log, PlanningStep):
yield gr.ChatMessage(
role="assistant", content="**Planning step**", metadata={"status": "done"}
)
yield gr.ChatMessage(
role="assistant", content=step_log.plan, metadata={"status": "done"}
)
yield gr.ChatMessage(
role="assistant",
content=get_step_footnote_content(step_log, "Planning step"),
metadata={"status": "done"},
)
yield gr.ChatMessage(
role="assistant", content="-----", metadata={"status": "done"}
)
elif isinstance(step_log, FinalAnswerStep):
final_answer = step_log.final_answer
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
metadata={"status": "done"},
)
else:
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:** {str(final_answer)}",
metadata={"status": "done"},
)
else:
raise ValueError(f"Unsupported step type: {type(step_log)}")
def stream_to_gradio(
agent,
task: str,
task_images: list | None = None,
reset_agent_memory: bool = False,
additional_args: dict | None = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
total_input_tokens = 0
total_output_tokens = 0
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
intermediate_text = ""
for step_log in agent.run(
task,
images=task_images,
stream=True,
reset=reset_agent_memory,
additional_args=additional_args,
):
# Track tokens if model provides them
if getattr(agent.model, "last_input_token_count", None) is not None:
total_input_tokens += agent.model.last_input_token_count
total_output_tokens += agent.model.last_output_token_count
if isinstance(step_log, (ActionStep, PlanningStep)):
step_log.input_token_count = agent.model.last_input_token_count
step_log.output_token_count = agent.model.last_output_token_count
if isinstance(step_log, MemoryStep):
intermediate_text = ""
for message in pull_messages_from_step(
step_log,
# If we're streaming model outputs, no need to display them twice
skip_model_outputs=getattr(agent, "stream_outputs", False),
):
yield message
elif isinstance(step_log, ChatMessageStreamDelta):
intermediate_text += step_log.content or ""
yield intermediate_text
|