computer-agent / app.py
M-Rique's picture
Use request.session_hash for session ids
9d68600
import json
import os
import shutil
import tempfile
import time
import uuid
from io import BytesIO
from threading import Timer
from typing import Any
import gradio as gr
from dotenv import load_dotenv
from e2b_desktop import Sandbox
from gradio_modal import Modal
from huggingface_hub import login, upload_folder
from PIL import Image
from smolagents import CodeAgent, InferenceClientModel
from smolagents.gradio_ui import GradioUI
from e2bqwen import E2BVisionAgent, get_agent_summary_erase_images
from gradio_script import stream_to_gradio
from scripts_and_styling import (
CUSTOM_JS,
FOOTER_HTML,
SANDBOX_CSS_TEMPLATE,
SANDBOX_HTML_TEMPLATE,
apply_theme,
)
load_dotenv(override=True)
TASK_EXAMPLES = [
"Use Google Maps to find the Hugging Face HQ in Paris",
"Go to Wikipedia and find what happened on April 4th",
"Find out the travel time by train from Bern to Basel on Google Maps",
"Go to Hugging Face Spaces and then find the Space flux.1 schnell. Use the space to generate an image with the prompt 'a field of gpus'",
]
E2B_API_KEY = os.getenv("E2B_API_KEY")
SANDBOXES: dict[str, Sandbox] = {}
SANDBOX_METADATA: dict[str, dict[str, Any]] = {}
SANDBOX_TIMEOUT = 300
WIDTH = 1280
HEIGHT = 960
TMP_DIR = "./tmp/"
if not os.path.exists(TMP_DIR):
os.makedirs(TMP_DIR)
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
login(token=hf_token)
custom_css = SANDBOX_CSS_TEMPLATE.replace("<<WIDTH>>", str(WIDTH + 15)).replace(
"<<HEIGHT>>", str(HEIGHT + 10)
)
sandbox_html_template = SANDBOX_HTML_TEMPLATE.replace(
"<<WIDTH>>", str(WIDTH + 15)
).replace("<<HEIGHT>>", str(HEIGHT + 10))
def upload_to_hf_and_remove(folder_paths: list[str]):
repo_id = "smolagents/computer-agent-logs-2"
with tempfile.TemporaryDirectory(dir=TMP_DIR) as temp_dir:
print(
f"Uploading {len(folder_paths)} folders to {repo_id} (might end up with 0 folders uploaded if tasks are all examples)..."
)
# Copy all folders into the temporary directory
for folder_path in folder_paths:
folder_name = os.path.basename(os.path.normpath(folder_path))
target_path = os.path.join(temp_dir, folder_name)
print("Scanning folder", os.path.join(folder_path, "metadata.jsonl"))
if os.path.exists(os.path.join(folder_path, "metadata.jsonl")):
with open(os.path.join(folder_path, "metadata.jsonl"), "r") as f:
json_content = [json.loads(line) for line in f]
# Skip upload if the task is in the examples
if json_content[0]["task"] not in TASK_EXAMPLES:
print(f"Copying {folder_path} to temporary directory...")
shutil.copytree(folder_path, target_path)
# Remove the original folder after copying
shutil.rmtree(folder_path)
print(f"Original folder {folder_path} removed.")
# Upload the entire temporary directory
print(f"Uploading all folders to {repo_id}...")
upload_folder(
folder_path=temp_dir,
repo_id=repo_id,
repo_type="dataset",
ignore_patterns=[".git/*", ".gitignore"],
)
print("Upload complete.")
return f"Successfully uploaded {len(folder_paths)} folders to {repo_id}"
def cleanup_sandboxes():
"""Remove sandboxes that haven't been accessed for longer than SANDBOX_TIMEOUT"""
current_time = time.time()
sandboxes_to_remove = []
for session_id, metadata in SANDBOX_METADATA.items():
if current_time - metadata["last_accessed"] > SANDBOX_TIMEOUT:
sandboxes_to_remove.append(session_id)
for session_id in sandboxes_to_remove:
if session_id in SANDBOXES:
try:
# Upload data before removing if needed
data_dir = os.path.join(TMP_DIR, session_id)
if os.path.exists(data_dir):
upload_to_hf_and_remove(data_dir)
# Close the sandbox
SANDBOXES[session_id].kill()
del SANDBOXES[session_id]
del SANDBOX_METADATA[session_id]
print(f"Cleaned up sandbox for session {session_id}")
except Exception as e:
print(f"Error cleaning up sandbox {session_id}: {str(e)}")
def get_or_create_sandbox(session_hash: str):
current_time = time.time()
if (
session_hash in SANDBOXES
and session_hash in SANDBOX_METADATA
and current_time - SANDBOX_METADATA[session_hash]["created_at"]
< SANDBOX_TIMEOUT
):
print(f"Reusing Sandbox for session {session_hash}")
SANDBOX_METADATA[session_hash]["last_accessed"] = current_time
return SANDBOXES[session_hash]
else:
print("No sandbox found, creating a new one")
if session_hash in SANDBOXES:
try:
print(f"Closing expired sandbox for session {session_hash}")
SANDBOXES[session_hash].kill()
except Exception as e:
print(f"Error closing expired sandbox: {str(e)}")
print(f"Creating new sandbox for session {session_hash}")
desktop = Sandbox(
api_key=E2B_API_KEY,
resolution=(WIDTH, HEIGHT),
dpi=96,
timeout=SANDBOX_TIMEOUT,
template="k0wmnzir0zuzye6dndlw",
)
desktop.stream.start(require_auth=True)
setup_cmd = """sudo mkdir -p /usr/lib/firefox-esr/distribution && echo '{"policies":{"OverrideFirstRunPage":"","OverridePostUpdatePage":"","DisableProfileImport":true,"DontCheckDefaultBrowser":true}}' | sudo tee /usr/lib/firefox-esr/distribution/policies.json > /dev/null"""
desktop.commands.run(setup_cmd)
print(f"Sandbox ID for session {session_hash} is {desktop.sandbox_id}.")
SANDBOXES[session_hash] = desktop
SANDBOX_METADATA[session_hash] = {
"created_at": current_time,
"last_accessed": current_time,
}
return desktop
def update_html(interactive_mode: bool, session_hash: str):
desktop = get_or_create_sandbox(session_hash)
auth_key = desktop.stream.get_auth_key()
base_url = desktop.stream.get_url(auth_key=auth_key)
stream_url = base_url if interactive_mode else f"{base_url}&view_only=true"
status_class = "status-interactive" if interactive_mode else "status-view-only"
status_text = "Interactive" if interactive_mode else "Agent running..."
creation_time = (
SANDBOX_METADATA[session_hash]["created_at"]
if session_hash in SANDBOX_METADATA
else time.time()
)
sandbox_html_content = sandbox_html_template.format(
stream_url=stream_url,
status_class=status_class,
status_text=status_text,
)
sandbox_html_content += f'<div id="sandbox-creation-time" style="display:none;" data-time="{creation_time}" data-timeout="{SANDBOX_TIMEOUT}"></div>'
return sandbox_html_content
def generate_interaction_id(session_hash: str):
return f"{session_hash}_{int(time.time())}"
def save_final_status(folder, status: str, summary, error_message=None) -> None:
with open(os.path.join(folder, "metadata.jsonl"), "a") as output_file:
output_file.write(
"\n"
+ json.dumps(
{"status": status, "summary": summary, "error_message": error_message},
)
)
def extract_browser_uuid(js_uuid):
print(f"[BROWSER] Got browser UUID from JS: {js_uuid}")
return js_uuid
def initialize_session(interactive_mode, request: gr.Request):
assert request.session_hash is not None
print("GETTING REQUEST HASH:", request.session_hash)
new_uuid = str(uuid.uuid4())
return update_html(interactive_mode, request.session_hash), new_uuid
def create_agent(data_dir, desktop):
model = InferenceClientModel(
model_id="https://n5wr7lfx6wp94tvl.us-east-1.aws.endpoints.huggingface.cloud",
token=hf_token,
)
# model = OpenAIServerModel(
# "gpt-4o",api_key=os.getenv("OPENAI_API_KEY")
# )
return E2BVisionAgent(
model=model,
data_dir=data_dir,
desktop=desktop,
max_steps=20,
verbosity_level=2,
# planning_interval=10,
use_v1_prompt=True,
)
INTERACTION_IDS_PER_SESSION_HASH: dict[str, dict[str, bool]] = {}
class EnrichedGradioUI(GradioUI):
def log_user_message(self, text_input):
import gradio as gr
return (
text_input,
gr.Button(interactive=False),
)
def interact_with_agent(
self,
task_input,
stored_messages,
session_state,
consent_storage,
request: gr.Request,
):
interaction_id = generate_interaction_id(request.session_hash)
desktop = get_or_create_sandbox(request.session_hash)
if request.session_hash not in INTERACTION_IDS_PER_SESSION_HASH:
INTERACTION_IDS_PER_SESSION_HASH[request.session_hash] = {}
INTERACTION_IDS_PER_SESSION_HASH[request.session_hash][interaction_id] = True
data_dir = os.path.join(TMP_DIR, interaction_id)
print("CREATING DATA DIR", data_dir, "FROM", TMP_DIR, interaction_id)
if not os.path.exists(data_dir):
os.makedirs(data_dir)
# Always re-create an agent from scratch, else Qwen-VL gets confused with past history
session_state["agent"] = create_agent(data_dir=data_dir, desktop=desktop)
if not task_input or len(task_input) == 0:
raise gr.Error("Task cannot be empty")
try:
stored_messages.append(
gr.ChatMessage(
role="user", content=task_input, metadata={"status": "done"}
)
)
yield stored_messages
with open(os.path.join(data_dir, "metadata.jsonl"), "w") as output_file:
output_file.write(
json.dumps(
{"task": task_input},
)
)
screenshot_bytes = session_state["agent"].desktop.screenshot(format="bytes")
initial_screenshot = Image.open(BytesIO(screenshot_bytes))
for msg in stream_to_gradio(
session_state["agent"],
task=task_input,
reset_agent_memory=False,
task_images=[initial_screenshot],
):
if (
hasattr(session_state["agent"], "last_marked_screenshot")
and isinstance(msg, gr.ChatMessage)
and msg.content == "-----"
): # Append the last screenshot before the end of step
stored_messages.append(
gr.ChatMessage(
role="assistant",
content={
"path": session_state[
"agent"
].last_marked_screenshot.to_string(),
"mime_type": "image/png",
},
metadata={"status": "done"},
)
)
if isinstance(msg, gr.ChatMessage):
stored_messages.append(msg)
elif isinstance(msg, str): # Then it's only a completion delta
try:
if stored_messages[-1].metadata["status"] == "pending":
stored_messages[-1].content = msg
else:
stored_messages.append(
gr.ChatMessage(
role="assistant",
content=msg,
metadata={"status": "pending"},
)
)
except Exception as e:
raise e
yield stored_messages
status = "completed"
yield stored_messages
except Exception as e:
error_message = f"Error in interaction: {str(e)}"
print(error_message)
stored_messages.append(
gr.ChatMessage(
role="assistant", content="Run failed:\n" + error_message
)
)
status = "failed"
yield stored_messages
finally:
summary = get_agent_summary_erase_images(session_state["agent"])
save_final_status(
data_dir, status, summary=summary, error_message=error_message
)
print("SAVING FINAL STATUS", data_dir, status, summary, error_message)
theme = gr.themes.Default(
font=["Oxanium", "sans-serif"], primary_hue="amber", secondary_hue="blue"
)
# Create a Gradio app with Blocks
with gr.Blocks(theme=theme, css=custom_css, js=CUSTOM_JS) as demo:
# Storing session hash in a state variable
print("Starting the app!")
with gr.Row():
sandbox_html = gr.HTML(
value=sandbox_html_template.format(
stream_url="",
status_class="status-interactive",
status_text="Interactive",
),
label="Output",
)
with gr.Sidebar(position="left"):
with Modal(visible=True) as modal:
gr.Markdown("""### Welcome to smolagent's Computer agent demo 🖥️
In this app, you'll be able to interact with an agent powered by [smolagents](https://github.com/huggingface/smolagents) and [Qwen-VL](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct).
👉 Type a task in the left sidebar, click the button, and watch the agent solving your task. ✨
_Please note that we store the task logs by default so **do not write any personal information**; you can uncheck the logs storing on the task bar._
""")
task_input = gr.Textbox(
placeholder="Find me pictures of cute puppies",
label="Enter your task below:",
elem_classes="primary-color-label",
)
run_btn = gr.Button("Let's go!", variant="primary")
gr.Examples(
examples=TASK_EXAMPLES,
inputs=task_input,
label="Example Tasks",
examples_per_page=4,
)
session_state = gr.State({})
stored_messages = gr.State([])
minimalist_toggle = gr.Checkbox(label="Innie/Outie", value=False)
consent_storage = gr.Checkbox(
label="Store task and agent trace?", value=True
)
gr.Markdown(
"""
- **Data**: To opt-out of storing your trace, uncheck the box above.
- **Be patient**: The agent's first step can take a few seconds.
- **Captcha**: Sometimes the VMs get flagged for weird behaviour and are blocked with a captcha. Best is then to interrupt the agent and solve the captcha manually.
- **Restart**: If your agent seems stuck, the simplest way to restart is to refresh the page.
""".strip()
)
# Hidden HTML element to inject CSS dynamically
theme_styles = gr.HTML(apply_theme(False), visible=False)
minimalist_toggle.change(
fn=apply_theme, inputs=[minimalist_toggle], outputs=[theme_styles]
)
footer = gr.HTML(value=FOOTER_HTML, label="Footer")
chatbot_display = gr.Chatbot(
elem_id="chatbot",
label="Agent's execution logs",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizable=True,
)
agent_ui = EnrichedGradioUI(
CodeAgent(tools=[], model=None, name="ok", description="ok")
)
stop_btn = gr.Button("Stop the agent!", variant="huggingface")
def read_log_content(log_file, tail=4):
"""Read the contents of a log file for a specific session"""
if not log_file:
return "Waiting for session..."
if not os.path.exists(log_file):
return "Waiting for machine from the future to boot..."
try:
with open(log_file, "r") as f:
lines = f.readlines()
return "".join(lines[-tail:] if len(lines) > tail else lines)
except Exception as e:
return f"Guru meditation: {str(e)}"
# Function to set view-only mode
def clear_and_set_view_only(task_input, request: gr.Request):
return update_html(False, request.session_hash)
def set_interactive(request: gr.Request):
return update_html(True, request.session_hash)
def reactivate_stop_btn():
return gr.Button("Stop the agent!", variant="huggingface")
is_interactive = gr.Checkbox(value=True, visible=False)
# Chain the events
run_event = (
run_btn.click(
fn=clear_and_set_view_only,
inputs=[task_input],
outputs=[sandbox_html],
)
.then(
agent_ui.interact_with_agent,
inputs=[
task_input,
stored_messages,
session_state,
consent_storage,
],
outputs=[chatbot_display],
)
.then(fn=set_interactive, inputs=[], outputs=[sandbox_html])
.then(fn=reactivate_stop_btn, outputs=[stop_btn])
)
def interrupt_agent(session_state):
if not session_state["agent"].interrupt_switch:
session_state["agent"].interrupt()
print("Stopping agent...")
return gr.Button("Stopping agent... (could take time)", variant="secondary")
else:
return gr.Button("Stop the agent!", variant="huggingface")
stop_btn.click(fn=interrupt_agent, inputs=[session_state], outputs=[stop_btn])
def upload_interaction_logs(session: gr.Request):
data_dirs = []
for interaction_id in list(
INTERACTION_IDS_PER_SESSION_HASH[session.session_hash].keys()
):
data_dir = os.path.join(TMP_DIR, interaction_id)
if os.path.exists(data_dir):
data_dirs.append(data_dir)
del INTERACTION_IDS_PER_SESSION_HASH[session.session_hash][
interaction_id
]
upload_to_hf_and_remove(data_dirs)
demo.load(
fn=lambda: True, # dummy to trigger the load
outputs=[is_interactive],
).then(
fn=initialize_session,
inputs=[is_interactive],
outputs=[sandbox_html],
)
demo.unload(fn=upload_interaction_logs)
# Launch the app
if __name__ == "__main__":
Timer(60, cleanup_sandboxes).start() # Run every minute
demo.launch()