Spaces:
Build error
Build error
| import pandas as pd | |
| import numpy as np | |
| import plotly.express as px | |
| from plotly.graph_objs import Figure | |
| from src.leaderboard.filter_models import FLAGGED_MODELS | |
| from src.display.utils import human_baseline_row as HUMAN_BASELINE, AutoEvalColumn, Tasks, Task, BENCHMARK_COLS | |
| from src.leaderboard.read_evals import EvalResult | |
| def create_scores_df(raw_data: list[EvalResult]) -> pd.DataFrame: | |
| """ | |
| Generates a DataFrame containing the maximum scores until each date. | |
| :param results_df: A DataFrame containing result information including metric scores and dates. | |
| :return: A new DataFrame containing the maximum scores until each date for every metric. | |
| """ | |
| # Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it | |
| results_df = pd.DataFrame(raw_data) | |
| #results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True) | |
| results_df.sort_values(by="date", inplace=True) | |
| # Step 2: Initialize the scores dictionary | |
| scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]} | |
| # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary | |
| for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]: | |
| current_max = 0 | |
| last_date = "" | |
| column = task.col_name | |
| for _, row in results_df.iterrows(): | |
| current_model = row["full_model"] | |
| if current_model in FLAGGED_MODELS: | |
| continue | |
| current_date = row["date"] | |
| if task.benchmark == "Average": | |
| current_score = np.mean(list(row["results"].values())) | |
| else: | |
| current_score = row["results"][task.benchmark] | |
| if current_score > current_max: | |
| if current_date == last_date and len(scores[column]) > 0: | |
| scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score} | |
| else: | |
| scores[column].append({"model": current_model, "date": current_date, "score": current_score}) | |
| current_max = current_score | |
| last_date = current_date | |
| # Step 4: Return all dictionaries as DataFrames | |
| return {k: pd.DataFrame(v) for k, v in scores.items()} | |
| def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame: | |
| """ | |
| Transforms the scores DataFrame into a new format suitable for plotting. | |
| :param scores_df: A DataFrame containing metric scores and dates. | |
| :return: A new DataFrame reshaped for plotting purposes. | |
| """ | |
| # Initialize the list to store DataFrames | |
| dfs = [] | |
| # Iterate over the cols and create a new DataFrame for each column | |
| for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]: | |
| d = scores_df[col].reset_index(drop=True) | |
| d["task"] = col | |
| dfs.append(d) | |
| # Concatenate all the created DataFrames | |
| concat_df = pd.concat(dfs, ignore_index=True) | |
| # Sort values by 'date' | |
| concat_df.sort_values(by="date", inplace=True) | |
| concat_df.reset_index(drop=True, inplace=True) | |
| return concat_df | |
| def create_metric_plot_obj( | |
| df: pd.DataFrame, metrics: list[str], title: str | |
| ) -> Figure: | |
| """ | |
| Create a Plotly figure object with lines representing different metrics | |
| and horizontal dotted lines representing human baselines. | |
| :param df: The DataFrame containing the metric values, names, and dates. | |
| :param metrics: A list of strings representing the names of the metrics | |
| to be included in the plot. | |
| :param title: A string representing the title of the plot. | |
| :return: A Plotly figure object with lines representing metrics and | |
| horizontal dotted lines representing human baselines. | |
| """ | |
| # Filter the DataFrame based on the specified metrics | |
| df = df[df["task"].isin(metrics)] | |
| # Filter the human baselines based on the specified metrics | |
| filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics} | |
| # Create a line figure using plotly express with specified markers and custom data | |
| fig = px.line( | |
| df, | |
| x="date", | |
| y="score", | |
| color="task", | |
| markers=True, | |
| custom_data=["task", "score", "model"], | |
| title=title, | |
| ) | |
| # Update hovertemplate for better hover interaction experience | |
| fig.update_traces( | |
| hovertemplate="<br>".join( | |
| [ | |
| "Model Name: %{customdata[2]}", | |
| "Metric Name: %{customdata[0]}", | |
| "Date: %{x}", | |
| "Metric Value: %{y}", | |
| ] | |
| ) | |
| ) | |
| # Update the range of the y-axis | |
| fig.update_layout(yaxis_range=[0, 100]) | |
| # Create a dictionary to hold the color mapping for each metric | |
| metric_color_mapping = {} | |
| # Map each metric name to its color in the figure | |
| for trace in fig.data: | |
| metric_color_mapping[trace.name] = trace.line.color | |
| # Iterate over filtered human baselines and add horizontal lines to the figure | |
| for metric, value in filtered_human_baselines.items(): | |
| color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found | |
| location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position | |
| # Add horizontal line with matched color and positioned annotation | |
| fig.add_hline( | |
| y=value, | |
| line_dash="dot", | |
| annotation_text=f"{metric} human baseline", | |
| annotation_position=location, | |
| annotation_font_size=10, | |
| annotation_font_color=color, | |
| line_color=color, | |
| ) | |
| return fig | |
| # Example Usage: | |
| # human_baselines dictionary is defined. | |
| # chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title") | |