# import part import streamlit as st from transformers import pipeline import torch # function part # img2text def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text_model(url)[0]["generated_text"] # Make the caption simple and fun for kids fun_caption = f"Look what we found! 🎨 {text}" return fun_caption # text2story def text2story(text): story_generator = pipeline("text-generation", model="distilgpt2") # Generate a story with a maximum of 90 words story = story_generator(text, max_length=90, num_return_sequences=1)[0]["generated_text"] # Ensure the story does not exceed 90 words story = " ".join(story.split()[:90]) # Truncate to 90 words # Make the story simple and fun for kids fun_story = f"Once upon a time... 🌟 {story}" return fun_story # text2audio def text2audio(story_text): tts_pipeline = pipeline("text-to-speech", model="espnet/kan-bayashi_ljspeech_vits") audio_data = tts_pipeline(story_text) return audio_data # main part st.set_page_config(page_title="Story Maker", page_icon="🦜") st.header("Story Maker: Turn Your Picture into a Story!") uploaded_file = st.file_uploader("Select an Image...") if uploaded_file is not None: bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Your Picture", use_container_width=True) # Stage 1: Image to Text st.text('✨ Discovering what’s in your picture...') scenario = img2text(uploaded_file.name) st.write(f"Here’s what we found: {scenario}") # Stage 2: Text to Story st.text('🎭 Creating a fun story for you...') story = text2story(scenario) st.write(story) # Stage 3: Story to Audio data st.text('🔊 Turning your story into audio...') audio_data = text2audio(story) # Play button if st.button("Play Audio"): st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate=audio_data['sampling_rate'])