Grp38Project / app.py
smtsead's picture
Create app.py
c27f930 verified
raw
history blame
15.5 kB
import streamlit as st
from transformers import (
pipeline,
AutoModelForSequenceClassification,
AutoTokenizer
)
from langdetect import detect
import torch
import re
# ===== MODEL LOADING =====
# Translation models configuration
TRANSLATION_MODELS = {
# Translations to English
'fr-en': 'Helsinki-NLP/opus-mt-fr-en', # French to English
'es-en': 'Helsinki-NLP/opus-mt-es-en', # Spanish to English
'de-en': 'Helsinki-NLP/opus-mt-de-en', # German to English
'zh-en': 'Helsinki-NLP/opus-mt-zh-en', # Chinese to English
'ja-en': 'Helsinki-NLP/opus-mt-ja-en', # Japanese to English
# Translations from English
'en-fr': 'Helsinki-NLP/opus-mt-en-fr', # English to French
'en-es': 'Helsinki-NLP/opus-mt-en-es', # English to Spanish
'en-de': 'Helsinki-NLP/opus-mt-en-de', # English to German
'en-zh': 'Helsinki-NLP/opus-mt-en-zh', # English to Chinese
'en-ja': 'Helsinki-NLP/opus-mt-en-ja' # English to Japanese
}
# Sentiment analysis model
SENTIMENT_MODEL_NAME = "smtsead/fine_tuned_bertweet_hotel"
SENTIMENT_TOKENIZER = 'finiteautomata/bertweet-base-sentiment-analysis'
# Aspect classification model
ASPECT_MODEL = "MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33"
# Initialize models (with caching to avoid reloading)
@st.cache_resource
def load_translation_model(src_lang, target_lang='en'):
"""Load translation model for specific language pair"""
model_key = f"{src_lang}-{target_lang}"
if model_key not in TRANSLATION_MODELS:
raise ValueError(f"Unsupported translation: {src_lang}{target_lang}")
return pipeline("translation", model=TRANSLATION_MODELS[model_key])
@st.cache_resource
def load_sentiment_model():
"""Load sentiment analysis model"""
model = AutoModelForSequenceClassification.from_pretrained(SENTIMENT_MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(SENTIMENT_TOKENIZER)
return model, tokenizer
@st.cache_resource
def load_aspect_classifier():
"""Load aspect classification model"""
return pipeline("zero-shot-classification", model=ASPECT_MODEL)
# ===== PIPELINE FUNCTIONS =====
def translate_text(text, target_lang='en'):
"""Translate text to target language"""
try:
# Detect source language
src_lang = detect(text)
# Handle special case (English to other languages)
if src_lang == 'en' and target_lang != 'en':
translator = load_translation_model('en', target_lang)
else:
translator = load_translation_model(src_lang, target_lang)
# Perform translation
result = translator(text)[0]['translation_text']
return {
'original': text,
'translation': result,
'source_lang': src_lang,
'target_lang': target_lang
}
except Exception as e:
return {'error': str(e)}
def analyze_sentiment(text, model, tokenizer):
"""Analyze sentiment of text (positive/negative)"""
inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt')
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_label = torch.argmax(probs).item()
confidence = torch.max(probs).item()
return {
'label': predicted_label,
'confidence': confidence,
'sentiment': 'POSITIVE' if predicted_label else 'NEGATIVE'
}
def detect_aspects(text, aspect_classifier):
"""Detect aspects mentioned in text"""
# Aspect mapping with keywords
aspect_map = {
"location": ["location", "near", "close", "access", "transport", "distance", "area"],
"view": ["view", "scenery", "vista", "panorama", "outlook"],
"parking": ["parking", "valet", "garage", "car park", "vehicle"],
"room comfort": ["comfortable", "bed", "pillows", "mattress", "linens", "cozy"],
"room cleanliness": ["clean", "dirty", "spotless", "stains", "hygiene", "sanitation"],
"room amenities": ["amenities", "minibar", "coffee", "tea", "fridge", "facilities"],
"bathroom": ["bathroom", "shower", "toilet", "sink", "towel", "faucet"],
"staff service": ["staff", "friendly", "helpful", "rude", "welcoming", "employee"],
"reception": ["reception", "check-in", "check-out", "front desk", "welcome"],
"housekeeping": ["housekeeping", "maid", "cleaning", "towels", "service"],
"concierge": ["concierge", "recommendation", "advice", "tips", "guidance"],
"room service": ["room service", "food delivery", "order", "meal"],
"dining": ["breakfast", "dinner", "restaurant", "meal", "food", "buffet"],
"bar": ["bar", "drinks", "cocktail", "wine", "lounge"],
"pool": ["pool", "swimming", "jacuzzi", "sun lounger", "deck"],
"spa": ["spa", "massage", "treatment", "relax", "wellness"],
"fitness": ["gym", "fitness", "exercise", "workout", "training"],
"Wi-Fi": ["wifi", "internet", "connection", "online", "network"],
"AC": ["air conditioning", "AC", "temperature", "heating", "cooling"],
"elevator": ["elevator", "lift", "escalator", "vertical transport"],
"pricing": ["price", "expensive", "cheap", "value", "rate", "cost"],
"extra charges": ["charge", "fee", "bill", "surcharge", "additional"]
}
# First stage: keyword filtering
relevant_aspects = []
text_lower = text.lower()
for aspect, keywords in aspect_map.items():
if any(re.search(rf'\b{kw}\b', text_lower) for kw in keywords):
relevant_aspects.append(aspect)
# Second stage: zero-shot classification
if relevant_aspects:
result = aspect_classifier(
text,
candidate_labels=relevant_aspects,
multi_label=True,
hypothesis_template="This review mentions something about the {} of the hotel."
)
# Return aspects with score > 0.65
return [(aspect, round(score, 2)) for aspect, score in
zip(result['labels'], result['scores']) if score > 0.65]
return []
def generate_response(label, aspects, text):
"""Generate professional response based on sentiment and aspects"""
if label == 1:
# Positive response template
response = "Dear Valued Guest,\n\nThank you for sharing your positive experience with us!\n"
# Positive aspect responses
aspect_responses = {
"location": "We're delighted you enjoyed our prime location and convenient access to local attractions.",
"view": "It's wonderful to hear you appreciated the beautiful views from our property.",
"room comfort": "Our team is thrilled you found your room comfortable and inviting.",
"room cleanliness": "Your commendation of our cleanliness standards means a lot to our housekeeping staff.",
"staff service": "Your kind words about our team, especially {staff_name}, have been shared with them.",
"reception": "We're pleased our front desk team made your arrival/departure seamless.",
"spa": "Our spa practitioners will be delighted you enjoyed their treatments.",
"pool": "We're glad you had a refreshing time at our pool facilities.",
"dining": "Thank you for appreciating our culinary offerings - we've shared your feedback with our chefs.",
"concierge": "We're happy our concierge could enhance your stay with local insights.",
"fitness": "It's great to hear you made use of our well-equipped fitness center.",
"room service": "We're pleased our in-room dining met your expectations for quality and timeliness."
}
# Add specific aspect responses
added_aspects = set()
for aspect, _ in aspects:
if aspect in aspect_responses:
if aspect == "staff service" and "lourdes" in text.lower():
response += "\n" + aspect_responses[aspect].format(staff_name="Lourdes")
else:
response += "\n" + aspect_responses[aspect]
added_aspects.add(aspect)
if len(added_aspects) >= 3:
break
response += "\n\nWe can't wait to welcome you back for another exceptional stay!\n\nWarm regards,"
else:
# Negative response template
response = "Dear Guest,\n\nThank you for your feedback - we're truly sorry your experience didn't meet our usual standards.\n"
# Improvement actions for negative aspects
improvement_actions = {
"AC": "completed a full inspection and maintenance of all AC units",
"housekeeping": "retrained our housekeeping team and adjusted schedules",
"bathroom": "conducted deep cleaning and maintenance on all bathrooms",
"parking": "implemented new key management protocols with our valet service",
"dining": "reviewed our menu pricing and quality with the culinary team",
"reception": "provided additional customer service training to our front desk",
"elevator": "performed full servicing and testing of all elevators",
"room amenities": "begun upgrading in-room amenities based on guest feedback",
"noise": "initiated soundproofing improvements in affected areas",
"pricing": "started a comprehensive review of our pricing structure"
}
# Add specific improvement actions
added_aspects = set()
for aspect, _ in aspects:
if aspect in improvement_actions and aspect not in added_aspects:
response += f"\nRegarding the {aspect}, we've {improvement_actions[aspect]}."
added_aspects.add(aspect)
if len(added_aspects) >= 2:
break
response += "\n\nWe sincerely appreciate your patience and hope you'll give us another opportunity to provide the quality experience you deserve.\n\nSincerely,"
return response + "\nThe Management Team\n"
# ===== STREAMLIT APP =====
def main():
st.set_page_config(page_title="Review Response Generator", page_icon="📝")
st.title("📝 Hotel Review Response Generator")
st.markdown("""
This tool helps hotel managers generate professional responses to guest reviews in multiple languages.
**How it works:**
1. Enter a guest review in any language
2. The system will analyze sentiment and key aspects
3. A professional response will be generated
4. The response will be translated back to the original language
""")
# Initialize session state
if 'review_text' not in st.session_state:
st.session_state.review_text = ""
if 'translated_text' not in st.session_state:
st.session_state.translated_text = ""
if 'sentiment_result' not in st.session_state:
st.session_state.sentiment_result = None
if 'aspects' not in st.session_state:
st.session_state.aspects = []
if 'response' not in st.session_state:
st.session_state.response = ""
if 'translated_response' not in st.session_state:
st.session_state.translated_response = ""
# Input review
review_text = st.text_area("Enter the guest review:", height=150)
if st.button("Generate Response"):
if not review_text.strip():
st.error("Please enter a review first.")
return
with st.spinner("Processing review..."):
# Step 1: Translate to English if needed
translation_result = translate_text(review_text)
if 'error' in translation_result:
st.error(f"Translation error: {translation_result['error']}")
return
st.session_state.review_text = review_text
st.session_state.translated_text = translation_result['translation']
source_lang = translation_result['source_lang']
# Step 2: Sentiment analysis
sentiment_model, sentiment_tokenizer = load_sentiment_model()
sentiment_result = analyze_sentiment(
st.session_state.translated_text,
sentiment_model,
sentiment_tokenizer
)
st.session_state.sentiment_result = sentiment_result
# Step 3: Aspect detection
aspect_classifier = load_aspect_classifier()
st.session_state.aspects = detect_aspects(
st.session_state.translated_text,
aspect_classifier
)
# Step 4: Generate response
st.session_state.response = generate_response(
sentiment_result['label'],
st.session_state.aspects,
st.session_state.translated_text
)
# Step 5: Translate response back to original language if needed
if source_lang != 'en':
translation_back = translate_text(
st.session_state.response,
target_lang=source_lang
)
if 'error' not in translation_back:
st.session_state.translated_response = translation_back['translation']
else:
st.warning(f"Couldn't translate response back: {translation_back['error']}")
st.session_state.translated_response = st.session_state.response
else:
st.session_state.translated_response = st.session_state.response
# Display results
if st.session_state.review_text:
st.divider()
st.subheader("Analysis Results")
# Original review
with st.expander("Original Review", expanded=True):
st.write(st.session_state.review_text)
# Translation (if applicable)
if hasattr(st.session_state, 'translated_text') and st.session_state.translated_text:
with st.expander("Translated to English"):
st.write(st.session_state.translated_text)
# Sentiment analysis
if st.session_state.sentiment_result:
sentiment = st.session_state.sentiment_result
sentiment_color = "green" if sentiment['label'] == 1 else "red"
st.markdown(f"**Sentiment:** :{sentiment_color}[{sentiment['sentiment']}] (confidence: {sentiment['confidence']:.2f})")
# Detected aspects
if st.session_state.aspects:
st.markdown("**Key Aspects Detected:**")
for aspect, confidence in st.session_state.aspects:
st.write(f"- {aspect.title()} (confidence: {confidence})")
# Generated response
if st.session_state.response:
st.divider()
st.subheader("Generated Response")
col1, col2 = st.columns(2)
with col1:
st.markdown("**English Version**")
st.text_area("English response", st.session_state.response, height=300, label_visibility="collapsed")
with col2:
st.markdown("**Translated Back**")
st.text_area("Translated response", st.session_state.translated_response, height=300, label_visibility="collapsed")
if __name__ == "__main__":
main()