diff --git "a/notebooks/00_EDA.ipynb" "b/notebooks/00_EDA.ipynb" new file mode 100644--- /dev/null +++ "b/notebooks/00_EDA.ipynb" @@ -0,0 +1,2654 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "workding dir: /Users/inflaton/code/engd/papers/maritime/global-incidents\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import os\n", + "import sys\n", + "from pathlib import Path\n", + "\n", + "# check if workding_dir is in local variables\n", + "if \"workding_dir\" not in locals():\n", + " workding_dir = str(Path.cwd().parent)\n", + "\n", + "os.chdir(workding_dir)\n", + "sys.path.append(workding_dir)\n", + "print(\"workding dir:\", workding_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 5782 entries, 0 to 5781\n", + "Data columns (total 46 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Unnamed: 0 5780 non-null float64\n", + " 1 Index 5780 non-null float64\n", + " 2 Unnamed: 0.1 5780 non-null float64\n", + " 3 Headline 5781 non-null object \n", + " 4 Details 5781 non-null object \n", + " 5 Severity 5780 non-null object \n", + " 6 Category 5780 non-null object \n", + " 7 Region 5780 non-null object \n", + " 8 Datetime 5780 non-null object \n", + " 9 Year 5781 non-null float64\n", + " 10 lat 3882 non-null float64\n", + " 11 lon 3882 non-null float64\n", + " 12 Headline_Description 5781 non-null object \n", + " 13 found_words 5781 non-null object \n", + " 14 maritime_label 5781 non-null object \n", + " 15 found_words2 5781 non-null object \n", + " 16 maritime_label2 5781 non-null object \n", + " 17 found_words3 5781 non-null object \n", + " 18 maritime_label3 5782 non-null bool \n", + " 19 all_found_words 5782 non-null object \n", + " 20 banned_words_but_still_maritime 5782 non-null object \n", + " 21 found_ports 5778 non-null object \n", + " 22 contains_port_info 5778 non-null float64\n", + " 23 Original Category 3073 non-null object \n", + " 24 Category 1 3073 non-null object \n", + " 25 Category 2 637 non-null object \n", + " 26 Category 3 106 non-null object \n", + " 27 Category 4 1 non-null object \n", + " 28 Category 5 0 non-null float64\n", + " 29 VD 3073 non-null float64\n", + " 30 VA 3073 non-null float64\n", + " 31 MPT 3073 non-null float64\n", + " 32 PC 3073 non-null float64\n", + " 33 PDC 3073 non-null float64\n", + " 34 PCA 3073 non-null float64\n", + " 35 CDL 3073 non-null float64\n", + " 36 IT 3073 non-null float64\n", + " 37 EP 3073 non-null float64\n", + " 38 NEW 3073 non-null float64\n", + " 39 CSD 3073 non-null float64\n", + " 40 RPE 3073 non-null float64\n", + " 41 MN 3073 non-null float64\n", + " 42 NM 3073 non-null float64\n", + " 43 if_labeled 5778 non-null object \n", + " 44 Month 5778 non-null float64\n", + " 45 Week 5778 non-null float64\n", + "dtypes: bool(1), float64(24), object(21)\n", + "memory usage: 2.0+ MB\n" + ] + } + ], + "source": [ + "# First, load the uploaded CSV file \n", + "import pandas as pd\n", + "data_path = 'data/all_port_labelled.csv'\n", + "data = pd.read_csv(data_path)\n", + "\n", + "# Display the first few rows of the dataframe and its summary statistics to get an initial understanding\n", + "data_head = data.head()\n", + "data_info = data.info()\n", + "data_description = data.describe(include='all')\n", + "\n", + "data_info\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0IndexUnnamed: 0.1HeadlineDetailsSeverityCategoryRegionDatetimeYear...ITEPNEWCSDRPEMNNMif_labeledMonthWeek
count5780.0000005780.0000005780.0000005781578157805780578057805781.000000...3073.0000003073.0000003073.0000003073.0000003073.0000003073.0000003073.00000057785778.0000005778.000000
uniqueNaNNaNNaN5683575148571115725NaN...NaNNaNNaNNaNNaNNaNNaN2NaNNaN
topNaNNaNNaNNo congestion at Port of ManilaUpdated media sources indicated on December 4 ...ModeratePort CongestionChina12/6/20 14:40NaN...NaNNaNNaNNaNNaNNaNNaNFalseNaNNaN
freqNaNNaNNaN6328407108203NaN...NaNNaNNaNNaNNaNNaNNaN3073NaNNaN
mean2889.50000015762.303287113709.500865NaNNaNNaNNaNNaNNaN2018.935997...0.0712660.0087860.1981780.0078100.0344940.0618290.295802NaN7.03738328.965386
std1668.6866099078.05267872963.703513NaNNaNNaNNaNNaNNaN26.568532...0.2573100.0933370.3986920.0880430.1825240.2408840.456477NaN3.55617015.615540
min0.0000008.00000034.000000NaNNaNNaNNaNNaNNaN0.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.000000NaN1.0000001.000000
25%1444.7500008397.00000050904.500000NaNNaNNaNNaNNaNNaN2019.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.000000NaN4.00000014.000000
50%2889.50000015128.500000101580.500000NaNNaNNaNNaNNaNNaN2019.000000...0.0000000.0000000.0000000.0000000.0000000.0000000.000000NaN8.00000033.000000
75%4334.25000021700.750000157966.750000NaNNaNNaNNaNNaNNaN2020.000000...0.0000000.0000000.0000000.0000000.0000000.0000001.000000NaN10.00000043.000000
max5779.00000035421.000000299524.000000NaNNaNNaNNaNNaNNaN2020.000000...1.0000001.0000001.0000001.0000001.0000001.0000001.000000NaN12.00000053.000000
\n", + "

11 rows × 46 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 Index Unnamed: 0.1 \\\n", + "count 5780.000000 5780.000000 5780.000000 \n", + "unique NaN NaN NaN \n", + "top NaN NaN NaN \n", + "freq NaN NaN NaN \n", + "mean 2889.500000 15762.303287 113709.500865 \n", + "std 1668.686609 9078.052678 72963.703513 \n", + "min 0.000000 8.000000 34.000000 \n", + "25% 1444.750000 8397.000000 50904.500000 \n", + "50% 2889.500000 15128.500000 101580.500000 \n", + "75% 4334.250000 21700.750000 157966.750000 \n", + "max 5779.000000 35421.000000 299524.000000 \n", + "\n", + " Headline \\\n", + "count 5781 \n", + "unique 5683 \n", + "top No congestion at Port of Manila \n", + "freq 6 \n", + "mean NaN \n", + "std NaN \n", + "min NaN \n", + "25% NaN \n", + "50% NaN \n", + "75% NaN \n", + "max NaN \n", + "\n", + " Details Severity \\\n", + "count 5781 5780 \n", + "unique 5751 4 \n", + "top Updated media sources indicated on December 4 ... Moderate \n", + "freq 3 2840 \n", + "mean NaN NaN \n", + "std NaN NaN \n", + "min NaN NaN \n", + "25% NaN NaN \n", + "50% NaN NaN \n", + "75% NaN NaN \n", + "max NaN NaN \n", + "\n", + " Category Region Datetime Year ... IT \\\n", + "count 5780 5780 5780 5781.000000 ... 3073.000000 \n", + "unique 857 111 5725 NaN ... NaN \n", + "top Port Congestion China 12/6/20 14:40 NaN ... NaN \n", + "freq 710 820 3 NaN ... NaN \n", + "mean NaN NaN NaN 2018.935997 ... 0.071266 \n", + "std NaN NaN NaN 26.568532 ... 0.257310 \n", + "min NaN NaN NaN 0.000000 ... 0.000000 \n", + "25% NaN NaN NaN 2019.000000 ... 0.000000 \n", + "50% NaN NaN NaN 2019.000000 ... 0.000000 \n", + "75% NaN NaN NaN 2020.000000 ... 0.000000 \n", + "max NaN NaN NaN 2020.000000 ... 1.000000 \n", + "\n", + " EP NEW CSD RPE MN \\\n", + "count 3073.000000 3073.000000 3073.000000 3073.000000 3073.000000 \n", + "unique NaN NaN NaN NaN NaN \n", + "top NaN NaN NaN NaN NaN \n", + "freq NaN NaN NaN NaN NaN \n", + "mean 0.008786 0.198178 0.007810 0.034494 0.061829 \n", + "std 0.093337 0.398692 0.088043 0.182524 0.240884 \n", + "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "25% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "50% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "75% 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "max 1.000000 1.000000 1.000000 1.000000 1.000000 \n", + "\n", + " NM if_labeled Month Week \n", + "count 3073.000000 5778 5778.000000 5778.000000 \n", + "unique NaN 2 NaN NaN \n", + "top NaN False NaN NaN \n", + "freq NaN 3073 NaN NaN \n", + "mean 0.295802 NaN 7.037383 28.965386 \n", + "std 0.456477 NaN 3.556170 15.615540 \n", + "min 0.000000 NaN 1.000000 1.000000 \n", + "25% 0.000000 NaN 4.000000 14.000000 \n", + "50% 0.000000 NaN 8.000000 33.000000 \n", + "75% 1.000000 NaN 10.000000 43.000000 \n", + "max 1.000000 NaN 12.000000 53.000000 \n", + "\n", + "[11 rows x 46 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_description" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Missing ValuesPercentage (%)
Category 55782100.000000
Category 4578199.982705
Category 3567698.166724
Category 2514588.983051
Category 1270946.852300
VD270946.852300
VA270946.852300
MPT270946.852300
PC270946.852300
PDC270946.852300
PCA270946.852300
CDL270946.852300
Original Category270946.852300
EP270946.852300
NEW270946.852300
CSD270946.852300
RPE270946.852300
MN270946.852300
NM270946.852300
IT270946.852300
lon190032.860602
lat190032.860602
if_labeled40.069180
Month40.069180
Week40.069180
contains_port_info40.069180
found_ports40.069180
Index20.034590
Unnamed: 0.120.034590
Severity20.034590
Category20.034590
Region20.034590
Datetime20.034590
Unnamed: 020.034590
maritime_label10.017295
found_words210.017295
Headline_Description10.017295
Year10.017295
maritime_label210.017295
found_words310.017295
Details10.017295
Headline10.017295
found_words10.017295
maritime_label300.000000
all_found_words00.000000
banned_words_but_still_maritime00.000000
\n", + "
" + ], + "text/plain": [ + " Missing Values Percentage (%)\n", + "Category 5 5782 100.000000\n", + "Category 4 5781 99.982705\n", + "Category 3 5676 98.166724\n", + "Category 2 5145 88.983051\n", + "Category 1 2709 46.852300\n", + "VD 2709 46.852300\n", + "VA 2709 46.852300\n", + "MPT 2709 46.852300\n", + "PC 2709 46.852300\n", + "PDC 2709 46.852300\n", + "PCA 2709 46.852300\n", + "CDL 2709 46.852300\n", + "Original Category 2709 46.852300\n", + "EP 2709 46.852300\n", + "NEW 2709 46.852300\n", + "CSD 2709 46.852300\n", + "RPE 2709 46.852300\n", + "MN 2709 46.852300\n", + "NM 2709 46.852300\n", + "IT 2709 46.852300\n", + "lon 1900 32.860602\n", + "lat 1900 32.860602\n", + "if_labeled 4 0.069180\n", + "Month 4 0.069180\n", + "Week 4 0.069180\n", + "contains_port_info 4 0.069180\n", + "found_ports 4 0.069180\n", + "Index 2 0.034590\n", + "Unnamed: 0.1 2 0.034590\n", + "Severity 2 0.034590\n", + "Category 2 0.034590\n", + "Region 2 0.034590\n", + "Datetime 2 0.034590\n", + "Unnamed: 0 2 0.034590\n", + "maritime_label 1 0.017295\n", + "found_words2 1 0.017295\n", + "Headline_Description 1 0.017295\n", + "Year 1 0.017295\n", + "maritime_label2 1 0.017295\n", + "found_words3 1 0.017295\n", + "Details 1 0.017295\n", + "Headline 1 0.017295\n", + "found_words 1 0.017295\n", + "maritime_label3 0 0.000000\n", + "all_found_words 0 0.000000\n", + "banned_words_but_still_maritime 0 0.000000" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Calculate missing values count and percentage for each column\n", + "missing_values_count = data.isnull().sum()\n", + "missing_values_percentage = (missing_values_count / len(data)) * 100\n", + "\n", + "# Combine count and percentage into a dataframe for easier reading\n", + "missing_values_df = pd.DataFrame({\n", + " 'Missing Values': missing_values_count,\n", + " 'Percentage (%)': missing_values_percentage\n", + "})\n", + "\n", + "missing_values_df.sort_values(by='Missing Values', ascending=False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['Unnamed: 0', 'Index', 'Unnamed: 0.1', 'Headline', 'Details',\n", + " 'Severity', 'Category', 'Region', 'Datetime', 'Year', 'lat', 'lon',\n", + " 'Headline_Description', 'found_words', 'maritime_label', 'found_words2',\n", + " 'maritime_label2', 'found_words3', 'maritime_label3', 'all_found_words',\n", + " 'banned_words_but_still_maritime', 'found_ports', 'contains_port_info',\n", + " 'if_labeled', 'Month', 'Week'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "columns_to_keep = ['lat', 'lon']\n", + "columns_to_drop = missing_values_percentage[(missing_values_percentage > 30) & (~missing_values_percentage.index.isin(columns_to_keep))].index\n", + "\n", + "# Now drop the columns except for the ones we want to keep\n", + "data_cleaned = data.drop(columns=columns_to_drop)\n", + "\n", + "# Display the columns remaining after dropping\n", + "print(data_cleaned.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop the specified columns\n", + "data_cleaned = data_cleaned.drop(\n", + " columns=[\n", + " \"Unnamed: 0\",\n", + " \"Index\",\n", + " \"Unnamed: 0.1\",\n", + " \"Headline_Description\",\n", + " \"found_words\",\n", + " \"found_words2\",\n", + " \"maritime_label2\",\n", + " \"found_words3\",\n", + " \"maritime_label3\",\n", + " \"all_found_words\",\n", + " \"banned_words_but_still_maritime\",\n", + " ]\n", + ")\n", + "\n", + "# Create a new 'id' column starting from 1\n", + "data_cleaned['id'] = range(1, len(data_cleaned) + 1)\n", + "\n", + "# Optionally, if you want 'id' to be the first column, you can rearrange the columns like this:\n", + "cols = ['id'] + [col for col in data_cleaned.columns if col != 'id']\n", + "data_cleaned = data_cleaned[cols]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "data_cleaned[\"maritime_label\"] = data_cleaned[\"maritime_label\"].apply(\n", + " lambda x: x if pd.isna(x) else x == \"TRUE\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "data_cleaned['Headline_Details'] = data_cleaned['Headline'] + \" \" + data_cleaned['Details']\n", + "\n", + "# Now, the DataFrame `data_cleaned` has a new column 'Headline_Details' combining the texts" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "data_cleaned.to_csv(\"data/cleaned_data-1.csv\", index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idHeadlineDetailsSeverityCategoryRegionDatetimeYearlatlonmaritime_labelfound_portscontains_port_infoif_labeledMonthWeekHeadline_Details
01Grasberg Mine- Grasberg mine workers extend st...Media sources indicate that workers at the Gra...ModerateMine Workers StrikeIndonesia28/5/17 17:082017.0-4.05608137.11302False['freeport']1.0False5.021.0Grasberg Mine- Grasberg mine workers extend st...
12Indonesia: Undersea internet cables damaged by...News sources are stating that recent typhoons ...MinorTravel WarningIndonesia4/9/17 14:302017.0NaNNaNFalse['hong kong']1.0False4.014.0Indonesia: Undersea internet cables damaged by...
23Shanghai port congestion impacts terminals in ...The persisting port congestion at Shanghai’s Y...MinorPort CongestionChina27/4/17 9:162017.029.52000121.33190True['ningbo', 'qingdao', 'shanghai']1.0False4.017.0Shanghai port congestion impacts terminals in ...
34UPDATE - Indonesia: Explosion at KP Terminal i...Updated local media sources from Jakarta indic...ExtremeBombing, Police OperationsIndonesia24/5/17 15:152017.0-6.22465106.86700True['jakarta']1.0False5.021.0UPDATE - Indonesia: Explosion at KP Terminal i...
45UPDATE - Indonesia: Police confirm two explosi...According to local police in Jakarta, two expl...ExtremeBombing, Police OperationsIndonesia24/5/17 16:202017.0NaNNaNTrue['jakarta']1.0True5.021.0UPDATE - Indonesia: Police confirm two explosi...
\n", + "
" + ], + "text/plain": [ + " id Headline \\\n", + "0 1 Grasberg Mine- Grasberg mine workers extend st... \n", + "1 2 Indonesia: Undersea internet cables damaged by... \n", + "2 3 Shanghai port congestion impacts terminals in ... \n", + "3 4 UPDATE - Indonesia: Explosion at KP Terminal i... \n", + "4 5 UPDATE - Indonesia: Police confirm two explosi... \n", + "\n", + " Details Severity \\\n", + "0 Media sources indicate that workers at the Gra... Moderate \n", + "1 News sources are stating that recent typhoons ... Minor \n", + "2 The persisting port congestion at Shanghai’s Y... Minor \n", + "3 Updated local media sources from Jakarta indic... Extreme \n", + "4 According to local police in Jakarta, two expl... Extreme \n", + "\n", + " Category Region Datetime Year lat \\\n", + "0 Mine Workers Strike Indonesia 28/5/17 17:08 2017.0 -4.05608 \n", + "1 Travel Warning Indonesia 4/9/17 14:30 2017.0 NaN \n", + "2 Port Congestion China 27/4/17 9:16 2017.0 29.52000 \n", + "3 Bombing, Police Operations Indonesia 24/5/17 15:15 2017.0 -6.22465 \n", + "4 Bombing, Police Operations Indonesia 24/5/17 16:20 2017.0 NaN \n", + "\n", + " lon maritime_label found_ports \\\n", + "0 137.11302 False ['freeport'] \n", + "1 NaN False ['hong kong'] \n", + "2 121.33190 True ['ningbo', 'qingdao', 'shanghai'] \n", + "3 106.86700 True ['jakarta'] \n", + "4 NaN True ['jakarta'] \n", + "\n", + " contains_port_info if_labeled Month Week \\\n", + "0 1.0 False 5.0 21.0 \n", + "1 1.0 False 4.0 14.0 \n", + "2 1.0 False 4.0 17.0 \n", + "3 1.0 False 5.0 21.0 \n", + "4 1.0 True 5.0 21.0 \n", + "\n", + " Headline_Details \n", + "0 Grasberg Mine- Grasberg mine workers extend st... \n", + "1 Indonesia: Undersea internet cables damaged by... \n", + "2 Shanghai port congestion impacts terminals in ... \n", + "3 UPDATE - Indonesia: Explosion at KP Terminal i... \n", + "4 UPDATE - Indonesia: Police confirm two explosi... " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"data/cleaned_data.csv\")\n", + "# Set 'id' column to index + 1\n", + "df[\"id\"] = data_cleaned.index + 1\n", + "\n", + "# Display the updated DataFrame\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "df.to_csv(\"data/cleaned_data-2.csv\", index=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shape of original DataFrame: (5782, 17)\n", + "Shape of cleaned DataFrame: (5782, 17)\n", + "\n", + "Columns in original DataFrame: ['id', 'Headline', 'Details', 'Severity', 'Category', 'Region', 'Datetime', 'Year', 'lat', 'lon', 'maritime_label', 'found_ports', 'contains_port_info', 'if_labeled', 'Month', 'Week', 'Headline_Details']\n", + "Columns in cleaned DataFrame: ['id', 'Headline', 'Details', 'Severity', 'Category', 'Region', 'Datetime', 'Year', 'lat', 'lon', 'maritime_label', 'found_ports', 'contains_port_info', 'if_labeled', 'Month', 'Week', 'Headline_Details']\n", + "\n", + "Differences in 'Headline' column:\n", + " self other\n", + "5079 NaN Regulatory Advisory\n", + "\n", + "Differences in 'Details' column:\n", + " self other\n", + "5079 NaN NM\n", + "\n", + "Differences in 'Severity' column:\n", + " self other\n", + "5079 FALSE NaN\n", + "5081 TRUE NaN\n", + "\n", + "Differences in 'Category' column:\n", + " self other\n", + "5079 7 NaN\n", + "5081 11 NaN\n", + "\n", + "Differences in 'Region' column:\n", + " self other\n", + "5079 28 NaN\n", + "5081 48 NaN\n", + "\n", + "Differences in 'Datetime' column:\n", + " self other\n", + "5079 Daily COVID-19 roundup: Serum Institute sets p... NaN\n", + "5081 Daily COVID-19 roundup: US’s COVAXX enters USD... NaN\n", + "\n", + "Differences in 'Year' column:\n", + " self other\n", + "5079 NaN 0.0\n", + "\n", + "Differences in 'lat' column:\n", + " self other\n", + "5079 NaN 0.0\n", + "\n", + "Differences in 'lon' column:\n", + " self other\n", + "5079 NaN 0.0\n", + "\n", + "Differences in 'maritime_label' column:\n", + " self other\n", + "5079 NaN False\n", + "\n", + "Differences in 'Headline_Details' column:\n", + " self other\n", + "5078 NaN Daily COVID-19 roundup: Serum Institute sets p...\n", + "5079 NaN Regulatory Advisory NM\n", + "5080 NaN Daily COVID-19 roundup: US’s COVAXX enters USD...\n" + ] + } + ], + "source": [ + "# 1. Compare shapes\n", + "print(\"Shape of original DataFrame:\", df.shape)\n", + "print(\"Shape of cleaned DataFrame:\", data_cleaned.shape)\n", + "\n", + "# 2. Compare columns\n", + "print(\"\\nColumns in original DataFrame:\", df.columns.tolist())\n", + "print(\"Columns in cleaned DataFrame:\", data_cleaned.columns.tolist())\n", + "\n", + "# # 3. Compare data\n", + "# # Find rows that are in df but not in data_cleaned\n", + "# diff_df_to_cleaned = pd.concat([df, data_cleaned]).drop_duplicates(keep=False)\n", + "\n", + "# # Find rows that are in data_cleaned but not in df\n", + "# diff_cleaned_to_df = pd.concat([data_cleaned, df]).drop_duplicates(keep=False)\n", + "\n", + "# print(\"\\nRows in original DataFrame but not in cleaned DataFrame:\")\n", + "# print(diff_df_to_cleaned)\n", + "\n", + "# print(\"\\nRows in cleaned DataFrame but not in original DataFrame:\")\n", + "# print(diff_cleaned_to_df)\n", + "\n", + "# 4. Compare specific columns (if needed)\n", + "# Example: Compare a specific column 'column_name'\n", + "for column in df.columns:\n", + " if column in data_cleaned.columns:\n", + " diff_column = df[column].compare(data_cleaned[column])\n", + " if not diff_column.empty:\n", + " print(\"\\nDifferences in '{}' column:\".format(column))\n", + " print(diff_column)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# data = pd.read_csv(\"data/cleaned_data.csv\")\n", + "data = data_cleaned" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Use the cleaned dataset for understanding key variables " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Understanding 'Region'\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Region\n", + "China 820\n", + "United States 721\n", + "Australia 378\n", + "United Kingdom 346\n", + "South Africa 257\n", + " ... \n", + "Guinea 1\n", + "Nicaragua 1\n", + "Norway 1\n", + "Djibouti 1\n", + "Lao People's Democratic Republic 1\n", + "Name: count, Length: 111, dtype: int64" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Region'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Indonesia', 'China', 'Argentina', 'Philippines', 'United States',\n", + " 'United Kingdom', 'Taiwan', 'South Africa', 'Italy', 'Spain',\n", + " 'Brazil', 'France', 'Ecuador', 'Chile',\n", + " 'Venezuela (Bolivarian Republic of)', 'Mexico', 'Australia',\n", + " 'India', 'Singapore', 'Bangladesh', 'Greece', 'Colombia',\n", + " 'Republic of Korea', 'Saudi Arabia', 'Morocco', 'Germany',\n", + " 'Sri Lanka', 'Malta', 'Japan', 'Bolivia (Plurinational State of)',\n", + " 'Belgium', 'Canada', 'Malaysia', 'Denmark', 'New Zealand',\n", + " 'Pakistan', 'Nepal', 'Peru', 'United Arab Emirates', 'Netherlands',\n", + " 'Tunisia', 'Lithuania', 'Djibouti', 'Egypt', 'Algeria', 'Russia',\n", + " 'Thailand', 'Hong Kong', 'Panama', 'Viet Nam', 'Turkey', 'Brunei',\n", + " 'Iran (Islamic Republic of)', 'Jamaica', 'Uganda', 'Macau', 'Oman',\n", + " 'Puerto Rico', 'Costa Rica', 'Poland',\n", + " 'United Republic of Tanzania', 'Bahamas, The', 'Nigeria',\n", + " 'Ireland', 'Cambodia', 'Jordan', 'Sweden', 'Guinea', 'Honduras',\n", + " 'Togo', 'Lebanon', 'Yemen', 'Nicaragua', 'Mozambique', 'Norway',\n", + " 'Latvia', 'Qatar', 'Cuba', 'Kenya', 'Portugal', 'Uruguay', 'Iraq',\n", + " 'Afghanistan', 'Israel', \"Democratic People's Republic of Korea\",\n", + " 'Kuwait', 'Ghana', 'Albania', 'Libya', 'Offshore', 'El Salvador',\n", + " 'Gibraltar', 'Benin', 'Georgia', 'Dominican Republic',\n", + " 'Burkina Faso', 'Belarus', 'Paraguay', 'Seychelles', 'Uzbekistan',\n", + " 'Austria', 'Bahrain', nan, 'Guernsey', 'Somalia',\n", + " 'Trinidad and Tobago', 'Angola', 'Guatemala', 'Madagascar',\n", + " 'Cayman Islands', 'Equatorial Guinea',\n", + " \"Lao People's Democratic Republic\"], dtype=object)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Region'].unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Understanding \"Category\"" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Mine Workers Strike', 'Travel Warning', 'Port Congestion',\n", + " 'Bombing, Police Operations',\n", + " 'Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory',\n", + " 'Cargo/Warehouse Theft', 'Tropical Cyclone / Storm', 'Storm',\n", + " 'Earthquake', 'Workplace Accident', 'Tornado', 'Industrial Action',\n", + " 'Public Safety / Security', 'Maritime Accident',\n", + " 'Port Disruption,Roadway Closure / Disruption',\n", + " 'Roadway Closure / Disruption, Vehicle Accident, Port Disruption',\n", + " 'Roadway Closure / Disruption, Cargo Disruption', 'Power Outage',\n", + " 'Production Halt', 'Port Closure', 'Miscellaneous Events',\n", + " 'Maritime Advisory, Port Closure',\n", + " 'Typhoon, Tropical Cyclone / Storm, Port Closure, Port Disruption',\n", + " 'Train Delays / Disruption', 'Maritime Advisory',\n", + " 'Protest / Riot, Miscellaneous Strikes',\n", + " 'Ground Transportation Advisory, Maritime Advisory',\n", + " 'Ground Transportation Advisory, Maritime Advisory, Death / Injury, Individuals in Focus',\n", + " 'Public Transportation Disruption', 'Protest / Riot',\n", + " 'Miscellaneous Strikes',\n", + " 'Port Congestion, Maritime Accident, Non-industrial Fire',\n", + " 'Miscellaneous Strikes, Ground Transportation Advisory',\n", + " 'Weather Advisory', 'Chemical Spill',\n", + " 'Roadway Closure / Disruption, Non-industrial Fire',\n", + " 'Roadway Closure / Disruption, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Port Congestion, Maritime Accident',\n", + " 'Roadway Closure / Disruption, Vehicle Accident, Chemical Spill',\n", + " 'Flooding, Storm, Weather Advisory',\n", + " 'Severe Winds, Weather Advisory', 'Trade Regulation',\n", + " 'Organized Crime', 'Port Strike', 'Port Disruption',\n", + " 'Port Congestion,Port Disruption', 'Port Closure,Severe Winds',\n", + " 'Port Closure,Port Disruption',\n", + " 'Port Congestion,Port Disruption,Severe Winds',\n", + " 'Port Disruption,Severe Winds', 'Port Disruption,Cargo Disruption',\n", + " 'Maritime Accident, Typhoon', 'General Strike',\n", + " 'Civil Service Strike',\n", + " 'Port Congestion, Miscellaneous Events, Miscellaneous Strikes',\n", + " 'Non-industrial Fire', 'Port Congestion, Cargo Disruption',\n", + " 'Network Disruption, Port Disruption',\n", + " 'Ground Transportation Advisory,Civil Service Strike',\n", + " 'Protest / Riot, Roadway Closure / Disruption',\n", + " 'Roadway Closure / Disruption, Port Congestion, Miscellaneous Events, Severe Winds, Weather Advisory, Power Outage',\n", + " 'Severe Winds, Storm, Weather Advisory, Power Outage',\n", + " 'Maritime Accident,Port Disruption',\n", + " 'Cargo/Warehouse Theft, Organized Crime', 'Cargo Disruption',\n", + " 'Maritime Accident, Cargo Disruption',\n", + " 'Maritime Advisory, Cargo Disruption', 'Flooding',\n", + " 'Hazmat Response,Industrial Fire',\n", + " 'Customs Regulation, Regulatory Advisory, Trade Regulation',\n", + " 'Ground Transportation Advisory',\n", + " 'Port Congestion, Miscellaneous Events', 'Storm, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Flooding, Weather Advisory, Landslide',\n", + " 'Fuel Disruption', 'Regulatory Advisory',\n", + " 'Maritime Advisory, Public Safety / Security',\n", + " 'Piracy,Port Disruption', 'Maritime Accident, Port Disruption',\n", + " 'Maritime Accident,Cargo Disruption',\n", + " 'Maritime Advisory,Cargo Disruption,Port Disruption',\n", + " 'Port Closure, Port Disruption',\n", + " 'Protest / Riot, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Airline Incident / Crash',\n", + " 'Port Closure,Cargo Disruption,Port Disruption',\n", + " 'Weather Advisory, Port Disruption, Cargo Disruption',\n", + " 'Cargo Disruption, Industry Directives',\n", + " 'Roadway Closure / Disruption',\n", + " 'Regulatory Advisory, Maritime Advisory',\n", + " 'Maritime Advisory,Cargo Disruption', 'Vehicle Accident',\n", + " 'Security Advisory',\n", + " 'Public Holidays, Port Disruption, Customs Delay', 'Explosion',\n", + " 'Industrial Fire', 'Maritime Accident, Chemical Spill',\n", + " 'Train Delays / Disruption,Cargo Disruption,Port Disruption',\n", + " 'Port Disruption,Port Congestion',\n", + " 'Port Closure,Maritime Advisory', 'Port Closure,Weather Advisory',\n", + " 'Train Accident / Derailment', 'Public Health Advisory',\n", + " 'Death / Injury, Individuals in Focus',\n", + " 'Cargo Disruption,Roadway Closure / Disruption,Flooding',\n", + " 'Customs Delay, Cargo Disruption', 'Water / Sewage Disruption',\n", + " 'Ground Transportation Advisory, Storm, Weather Advisory',\n", + " 'Severe Winds, Storm', 'Customs Delay,Port Congestion',\n", + " 'Protest / Riot, Death / Injury, Individuals in Focus',\n", + " 'Ground Transportation Advisory, Death / Injury, Individuals in Focus',\n", + " 'Military Operations, Ground Transportation Advisory, Maritime Advisory, Kidnap / Detention, Individuals in Focus',\n", + " 'Protest / Riot, Ground Transportation Advisory, Death / Injury, Individuals in Focus',\n", + " 'Protest / Riot, Kidnap / Detention, Individuals in Focus',\n", + " 'Civil Unrest Advisory, Miscellaneous Events, Ground Transportation Advisory',\n", + " 'Protest / Riot, Ground Transportation Advisory',\n", + " 'Military Operations',\n", + " 'Roadway Closure / Disruption, Ground Transportation Advisory, Public Safety / Security',\n", + " 'Military Operations, Ground Transportation Advisory, Aviation Advisory, Maritime Advisory',\n", + " 'Military Operations, Protest / Riot, Death / Injury, Individuals in Focus',\n", + " 'Train Accident / Derailment,Cargo Disruption',\n", + " 'Roadway Closure / Disruption, Public Safety / Security',\n", + " 'Weather Advisory, Train Delays / Disruption',\n", + " 'Non-industrial Fire, Train Delays / Disruption',\n", + " 'Typhoon, Port Closure, Port Disruption, Maritime Advisory, Flight Delays / Cancellations, Aviation Advisory',\n", + " 'Customs Delay', 'Piracy',\n", + " 'Roadway Closure / Disruption, Ground Transportation Advisory, Cargo Disruption',\n", + " 'Trade Regulation, Public Safety / Security',\n", + " 'Customs Delay,Customs Regulation',\n", + " 'Industrial Action,General Strike',\n", + " 'Port Disruption, Cargo Disruption, Maritime Advisory',\n", + " 'Public Safety / Security, Public Health Advisory',\n", + " 'Customs Regulation,Regulatory Advisory', 'Hurricane',\n", + " 'Cargo/Warehouse Theft, Organized Crime, Public Safety / Security',\n", + " 'Roadway Closure / Disruption, Political Info / Event',\n", + " 'Chemical Spill, Port Disruption', 'Port Closure,Port Congestion',\n", + " 'Power Outage,Storm',\n", + " 'Roadway Closure / Disruption, Vehicle Accident, Non-industrial Fire',\n", + " 'Public Holidays', 'Shooting, Public Safety / Security',\n", + " 'Roadway Closure / Disruption, Flooding, Storm',\n", + " 'Earthquake, Weather Advisory', 'Weather Advisory, Storm',\n", + " 'Port Disruption, Network Disruption',\n", + " 'Port Closure, Tropical Cyclone / Storm',\n", + " 'Cargo Disruption, Port Disruption',\n", + " 'Cargo Disruption, Port Disruption, Port Congestion',\n", + " 'Port Disruption,Port Closure', 'Port Congestion,Port Strike',\n", + " 'Port Closure,Cargo Disruption',\n", + " 'Port Congestion, Port Disruption, Weather Advisory, Severe Winds',\n", + " 'Port Disruption,Storm',\n", + " 'Tropical Cyclone / Storm, Severe Winds, Port Disruption, Cargo Disruption',\n", + " 'Port Disruption,Network Disruption',\n", + " 'Roadway Closure / Disruption,Protest / Riot',\n", + " 'Ground Transportation Advisory, Roadway Closure / Disruption',\n", + " 'Port Congestion,Roadway Closure / Disruption,Port Disruption',\n", + " 'Cargo/Warehouse Theft, Piracy, Robbery',\n", + " 'Vehicle Accident, Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Waterway closure / Disruption,Maritime Advisory',\n", + " 'Maritime Advisory, Political Info / Event',\n", + " 'Roadway Closure / Disruption,General Strike',\n", + " 'Train Delays / Disruption, Cargo Disruption',\n", + " 'Port Disruption, Severe Winds',\n", + " 'Port Disruption,Port Closure,Severe Winds',\n", + " 'Waterway Closure / Disruption,Port Disruption',\n", + " 'Cargo Transportation Strike',\n", + " 'Waterway Closure / Disruption, Maritime Advisory',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Miscellaneous Strikes, Train Delays / Disruption',\n", + " 'Port Congestion, Miscellaneous Events, Public Safety / Security, Non-industrial Fire',\n", + " 'Organized Crime,Cargo theft',\n", + " 'Roadway Closure / Disruption,Severe Winds',\n", + " 'Port Closure,Cargo Disruption,Severe Winds',\n", + " 'Port Disruption,Maritime Advisory,Severe Winds',\n", + " 'Port Closure,Severe Winds,Typhoon',\n", + " 'Barge Accident,Waterway closure / Disruption',\n", + " 'Port Disruption,Maritime Advisory',\n", + " 'Port Congestion, Port Disruption, Roadway Closure / Disruption',\n", + " 'Train Delays / Disruption, Roadway Closure / Disruption',\n", + " 'Cargo Disruption, Maritime Advisory, Port Disruption',\n", + " 'Ground Transportation Advisory, Port Disruption, Cargo Disruption',\n", + " 'Typhoon', 'Barge Accident',\n", + " 'Roadway Closure / Disruption, Vehicle Accident, Public Safety / Security',\n", + " 'Port Congestion, Maritime Accident, Miscellaneous Events',\n", + " 'Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Public Safety / Security, Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Public Safety / Security, Train Delays / Disruption',\n", + " 'Ground Transportation Advisory, Train Delays / Disruption',\n", + " 'Port Congestion, Miscellaneous Events, Ground Transportation Advisory',\n", + " 'Roadway Closure / Disruption, Flooding, Weather Advisory, Train Delays / Disruption',\n", + " 'Flooding, Severe Winds, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Non-industrial Fire, Public Health Advisory',\n", + " 'Roadway Closure / Disruption, Shooting, Public Safety / Security',\n", + " 'Flight Delays / Cancellations, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Public Safety / Security, Non-industrial Fire',\n", + " 'Roadway Closure / Disruption, Public Safety / Security, Non-industrial Fire, Train Delays / Disruption',\n", + " 'Storm, Public Health Advisory',\n", + " 'Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory, Train Delays / Disruption',\n", + " 'Roadway Closure / Disruption, Flooding, Severe Winds, Weather Advisory, Storm, Train Delays / Disruption',\n", + " 'Flight Delays / Cancellations, Port Congestion, Miscellaneous Events, Weather Advisory, Storm, Power Outage',\n", + " 'Ground Transportation Advisory, Public Safety / Security',\n", + " 'Ground Transportation Advisory, Flooding, Weather Advisory',\n", + " 'Severe Winds, Storm, Power Outage', 'Storm, Power Outage',\n", + " 'Ground Transportation Advisory, Storm',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Fuel Disruption, Train Delays / Disruption',\n", + " 'Flight Delays / Cancellations, Public Safety / Security, Severe Winds, Storm',\n", + " 'Roadway Closure / Disruption, Flooding, Severe Winds, Storm',\n", + " 'Protest / Riot, Political Info / Event, Ground Transportation Advisory',\n", + " 'Port Congestion, Maritime Accident, Public Health Advisory',\n", + " 'Roadway Closure / Disruption, Storm, Train Delays / Disruption, Public Health Advisory',\n", + " 'Roadway Closure / Disruption, Ground Transportation Advisory',\n", + " 'Ground Transportation Advisory, Hurricane, Weather Advisory',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Public Safety / Security',\n", + " 'Ground Transportation Advisory, Public Safety / Security, Hurricane, Weather Advisory',\n", + " 'Ground Transportation Advisory, Public Safety / Security, Hurricane',\n", + " 'Roadway Closure / Disruption, Flooding, Weather Advisory, Power Outage',\n", + " 'Severe Winds, Weather Advisory, Public Health Advisory',\n", + " 'Roadway Closure / Disruption, Flooding, Storm, Weather Advisory, Power Outage',\n", + " 'Public Safety / Security, Flooding, Weather Advisory, Storm',\n", + " 'Chemical Spill, Public Health Advisory', 'Plant Closure',\n", + " 'Cargo Transportation Strike,Port Disruption',\n", + " 'Port Congestion,Port Closure',\n", + " 'Port Disruption, Maritime Advisory',\n", + " 'Port Congestion, Port Disruption, Weather Advisory',\n", + " 'Port Disruption, Roadway Closure / Disruption',\n", + " 'Port Disruption, Port Congestion, Typhoon, Cargo Disruption',\n", + " 'Port Disruption, Port Congestion',\n", + " 'Port Disruption, Roadway Closure / Disruption, Non-industrial Fire',\n", + " 'Port Closure,Port Disruption,Severe Winds',\n", + " 'Port Disruption,Protest / Riot,Roadway Closure / Disruption',\n", + " 'Maritime Advisory, Regulatory Advisory',\n", + " 'Port Congestion, Port Disruption, Cargo Disruption',\n", + " 'Port Disruption,Weather Advisory',\n", + " 'Port Disruption,Industrial Action',\n", + " 'Industrial Fire, Chemical Spill',\n", + " 'Maritime Accident,Waterway Closure / Disruption',\n", + " 'Weather Advisory, Port Congestion', 'Port Disruption, Ransomware',\n", + " 'Maritime Advisory, Port Congestion, Severe Winds',\n", + " 'Port Closure, Port Disruption, Cargo Disruption',\n", + " 'Port Disruption, Cargo Disruption, Severe Winds',\n", + " 'Cargo Transportation Strike,Cargo Disruption,Customs Delay,Port Strike',\n", + " 'Port Closure, Tropical Cyclone / Storm, Typhoon',\n", + " 'Bridge Collapse, Train Delays / Disruption, Roadway Closure / Disruption, Port Closure, Port Disruption',\n", + " 'Port Closure, Cargo Disruption',\n", + " 'Miscellaneous Strikes, Public Transportation Disruption',\n", + " 'Cargo Transportation Strike,Port Strike,Port Congestion',\n", + " 'Trade Regulation, Customs Delay, Border Closure / Delay',\n", + " 'Port Disruption,Power Outage',\n", + " 'Port Disruption, Tropical Cyclone / Storm',\n", + " 'Port Closure, Port Congestion',\n", + " 'Trade Regulation, Cargo Disruption', 'Robbery',\n", + " 'Bomb Detonation / Explosion, Public Safety / Security',\n", + " 'Roadway Closure / Disruption, Shooting',\n", + " 'Bomb Detonation / Explosion, Roadway Closure / Disruption',\n", + " 'Roadway Closure / Disruption, Flooding, Weather Advisory',\n", + " 'Weather Advisory, Power Outage',\n", + " 'Roadway Closure / Disruption, Weather Advisory, Storm',\n", + " 'Roadway Closure / Disruption, Public Safety / Security, Train Accident / Derailment',\n", + " 'Flooding, Storm, Power Outage',\n", + " 'Chemical Spill, Non-industrial Fire',\n", + " 'Roadway Closure / Disruption, Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Public Safety / Security, Robbery',\n", + " 'Protest / Riot, Ground Transportation Advisory, Maritime Advisory, Death / Injury, Individuals in Focus',\n", + " 'Cargo Disruption, Maritime Advisory, Tropical Cyclone / Storm',\n", + " 'Port Congestion,Port Disruption,Customs Regulation',\n", + " 'Ground Transportation Advisory,Weather Advisory',\n", + " 'Workplace Accident,Maritime Accident',\n", + " 'Workplace Accident, Maritime Accident',\n", + " 'Maritime Advisory,Port Strike',\n", + " 'Cargo Disruption, Public Safety / Security',\n", + " 'Miscellaneous Events, Maritime Advisory',\n", + " 'Roadway Closure / Disruption,Cargo Disruption',\n", + " 'Port Closure,Protest / Riot',\n", + " 'Cargo/Warehouse Theft, Public Safety / Security',\n", + " 'Power Outage, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Public Safety / Security, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Protest / Riot, Public Safety / Security, Roadway Closure / Disruption',\n", + " 'Public Safety / Security, Hazmat Response, Public Health Advisory, Roadway Closure / Disruption',\n", + " 'Flight Delays / Cancellations, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Port Disruption, Miscellaneous Strikes',\n", + " 'Chemical Spill, Public Safety / Security', 'Power Outage, Storm',\n", + " 'Power Outage, Severe Winds', 'Severe Winds',\n", + " 'Public Safety / Security, Port Disruption',\n", + " 'Power Outage, Weather Advisory, Wildfire',\n", + " 'Port Congestion, Miscellaneous Events, Miscellaneous Strikes, Ground Transportation Advisory',\n", + " 'Bomb Detonation / Explosion, Hazmat Response',\n", + " 'Protest / Riot, Political Info / Event',\n", + " 'Non-industrial Fire, Roadway Closure / Disruption',\n", + " 'Customs Regulation', 'Industrial zone shutdown',\n", + " 'Port Congestion,Cargo Disruption',\n", + " 'Port Congestion, Port Closure',\n", + " 'Protest / Riot, Train Delays / Disruption, Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Port Congestion, Miscellaneous Events, Public Health Advisory',\n", + " 'Public Safety / Security, Non-industrial Fire',\n", + " 'Chemical Spill, Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Train Accident / Derailment, Roadway Closure / Disruption',\n", + " 'Public Safety / Security, Roadway Closure / Disruption, Shooting',\n", + " 'Ground Transportation Advisory, Weather Advisory',\n", + " 'Public Safety / Security, Roadway Closure / Disruption',\n", + " 'Port Congestion, Miscellaneous Events, Weather Advisory, Non-industrial Fire',\n", + " 'Cargo Disruption,Maritime Advisory',\n", + " 'Maritime Accident,Barge Accident',\n", + " 'Cargo Disruption,Port Disruption',\n", + " 'Cargo Transportation Strike,Port Strike',\n", + " 'Public Safety / Security, Maritime Accident',\n", + " 'Waterway Closure / Disruption',\n", + " 'Chemical Spill,Industrial Fire,Production Halt',\n", + " 'Chemical Spill, Roadway Closure / Disruption, Port Disruption, Public Safety / Security',\n", + " 'Trade Restrictions', 'Flooding, Roadway Closure / Disruption',\n", + " 'Individuals in Focus', 'Port Disruption,Regulatory Advisory',\n", + " 'Structure Collapse', 'Port Congestion,Maritime Advisory',\n", + " 'Cargo Disruption,Maritime Accident',\n", + " 'Fuel Disruption,Industrial Action',\n", + " 'Industrial Action, Port Congestion, Port Disruption',\n", + " 'Maritime Advisory,Weather Advisory',\n", + " 'Regulatory Advisory, Miscellaneous Events, Customs Regulation',\n", + " 'Security Advisory, Ground Transportation Advisory, Death / Injury, Individuals in Focus',\n", + " 'Customs Regulation,Trade Regulation', 'Data breach',\n", + " 'Vehicle Accident, Roadway Closure / Disruption',\n", + " 'Port Disruption,Protest / Riot',\n", + " 'Port Congestion, Port Closure, Miscellaneous Events, Severe Winds, Weather Advisory',\n", + " 'Port Disruption, Weather Advisory',\n", + " 'Public Safety / Security, Customs Regulation',\n", + " 'Industrial Fire,Port Disruption',\n", + " 'Maritime Accident, Non-industrial Fire',\n", + " 'Flight Delays / Cancellations',\n", + " 'Flooding, Airport Accident / Closure',\n", + " 'Train Delays / Disruption, Miscellaneous Strikes',\n", + " 'General Strike, Miscellaneous Strikes',\n", + " 'Train Delays / Disruption, Weather Advisory',\n", + " 'Train Delays / Disruption,Cargo Disruption',\n", + " 'Port Disruption, Customs Delay',\n", + " 'Public Safety / Security, Weather Advisory',\n", + " 'Military Operations, Ground Transportation Advisory',\n", + " 'Bomb Detonation / Explosion, Port Congestion, Maritime Accident, Miscellaneous Events, Non-industrial Fire',\n", + " 'Protest / Riot, Miscellaneous Strikes, Ground Transportation Advisory',\n", + " 'Hazmat Response',\n", + " 'Roadway Closure / Disruption,Maritime Accident',\n", + " 'Port Strike,Port Disruption',\n", + " 'Kidnap / Detention, Individuals in Focus',\n", + " 'Protest / Riot, Ground Transportation Advisory, Miscellaneous Strikes',\n", + " 'Tropical Cyclone / Storm, Weather Advisory',\n", + " 'Kidnap / Detention, Piracy',\n", + " 'Miscellaneous Events, Individuals in Focus',\n", + " 'Public Safety / Security, Flooding, Roadway Closure / Disruption',\n", + " 'Non-industrial Fire, Port Disruption',\n", + " 'Non-industrial Fire, Maritime Accident',\n", + " 'Roadway Closure / Disruption,Port Disruption',\n", + " 'Explosion, Chemical Spill',\n", + " 'Military Operations, Security Advisory, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Military Operations, Security Advisory, Ground Transportation Advisory, Maritime Advisory, Death / Injury, Individuals in Focus',\n", + " 'Force Majeure',\n", + " 'Public Safety / Security, Flooding, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Public Health Advisory, Military Operations',\n", + " 'Bomb Detonation / Explosion, Non-industrial Fire',\n", + " 'Port Disruption, Non-industrial Fire',\n", + " 'Organized Crime,Cargo Disruption',\n", + " 'Train Accident / Derailment, Train Delays / Disruption, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Organized Crime, Maritime Advisory, Cargo/Warehouse Theft',\n", + " 'Death / Injury',\n", + " 'Individuals in Focus, Maritime Advisory, Protest / Riot',\n", + " 'Organized Crime, Kidnap / Detention, Ground Transportation Advisory, Individuals in Focus, Cargo/Warehouse Theft',\n", + " 'Terror Attack',\n", + " 'Organized Crime, Security Advisory, Individuals in Focus, Kidnap / Detention, Maritime Advisory, Cargo/Warehouse Theft',\n", + " 'Organized Crime, Security Advisory, Ground Transportation Advisory',\n", + " 'Chemical Spill, Non-industrial Fire, Train Accident / Derailment',\n", + " 'Network Disruption', 'Truck Driving Ban',\n", + " 'Customs Regulation, Public Health Advisory', 'Telecom Outage',\n", + " 'Cargo Disruption, Port Strike, Maritime Advisory',\n", + " 'Energy Sector Strike',\n", + " 'Cargo Disruption, Roadway Closure / Disruption, Maritime Advisory',\n", + " 'Port Disruption,Cargo Disruption,Organized Crime',\n", + " 'Chemical Spill, Non-industrial Fire, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Regulatory Advisory,Industry Directives',\n", + " 'Cargo Transportation Strike,Protest / Riot',\n", + " 'Public Health Advisory, Roadway Closure / Disruption',\n", + " 'Public Safety / Security, Non-industrial Fire, Roadway Closure / Disruption',\n", + " 'Earthquake, Public Safety / Security',\n", + " 'Flooding, Landslide, Severe Winds, Storm',\n", + " 'Flight Delays / Cancellations, Public Safety / Security',\n", + " 'Protest / Riot, Public Safety / Security',\n", + " 'Organized Crime, Cargo/Warehouse Theft',\n", + " 'Organized Crime, Cargo/Warehouse Theft, Public Safety / Security',\n", + " 'Maritime Advisory, Port Disruption',\n", + " 'Cargo Disruption,Weather Advisory',\n", + " 'Industrial Fire,Roadway Closure / Disruption',\n", + " 'Power Outage,Port Disruption',\n", + " 'Military Operations, Protest / Riot, Death / Injury, Miscellaneous Events, Individuals in Focus',\n", + " 'Train Delays / Disruption,Protest / Riot',\n", + " 'Roadway Closure / Disruption,Weather Advisory',\n", + " 'Port Disruption, Severe Winds, Ground Transportation Advisory',\n", + " 'Public Safety / Security, Non-industrial Fire, Maritime Accident',\n", + " 'Waterway Closure / Disruption, Cargo Disruption',\n", + " 'Bomb Detonation / Explosion',\n", + " 'Port Disruption,Train Delays / Disruption,Severe Winds',\n", + " 'Production Halt,Earthquake',\n", + " 'Maritime Accident, Chemical Spill, Hazmat Response',\n", + " 'Industry Directives',\n", + " 'Flooding, Severe Winds, Storm, Weather Advisory',\n", + " 'Protest / Riot,Roadway Closure / Disruption',\n", + " 'Train Delays / Disruption,Industrial Action',\n", + " 'Flooding, Public Health Advisory, Ground Transportation Advisory',\n", + " 'Flooding, Landslide, Roadway Closure / Disruption',\n", + " 'Protest / Riot, Public Safety / Security, Shooting, Miscellaneous Strikes',\n", + " 'Industrial Action,Port Disruption',\n", + " 'Port Strike,Cargo Disruption', 'Network Disruption,Customs Delay',\n", + " 'Civil Unrest Advisory',\n", + " 'Train Accident / Derailment, Chemical Spill',\n", + " 'Regulatory Advisory,Maritime Advisory', 'Kidnap / Detention',\n", + " 'Chemical Spill, Hazmat Response, Maritime Accident',\n", + " 'Vehicle Accident, Public Safety / Security',\n", + " 'Cargo Disruption,Vehicle Accident,Port Disruption',\n", + " 'Protest / Riot,Port Disruption',\n", + " 'Roadway Closure / Disruption,Protest / Riot,Cargo Transportation Strike',\n", + " 'Port Strike, Cargo Disruption',\n", + " 'Storm, Ground Transportation Advisory',\n", + " 'Robbery, Cargo/Warehouse Theft',\n", + " 'Regulatory Advisory,Cargo Disruption,Customs Regulation',\n", + " 'Airline Incident / Crash, Flight Delays / Cancellations',\n", + " 'Flight Delays / Cancellations, Non-industrial Fire, Train Delays / Disruption',\n", + " 'Protest / Riot, Port Disruption, Roadway Closure / Disruption',\n", + " 'Flight Delays / Cancellations, Train Delays / Disruption',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Ground Transportation Advisory',\n", + " 'Train Delays / Disruption, Vehicle Accident',\n", + " 'Non-industrial Fire, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Public Safety / Security, Wildfire', 'Wildfire',\n", + " 'Public Safety / Security, Non-industrial Fire, Public Health Advisory',\n", + " 'Public Health Advisory, Port Disruption, Roadway Closure / Disruption, Miscellaneous Strikes, Weather Advisory, Wildfire',\n", + " 'Flight Delays / Cancellations, Public Safety / Security, Wildfire',\n", + " 'Flooding, Power Outage, Storm, Weather Advisory',\n", + " 'Tropical Cyclone / Storm, Power Outage, Severe Winds',\n", + " 'Flooding, Public Health Advisory, Hurricane, Severe Winds, Weather Advisory',\n", + " 'Flooding, Hurricane, Power Outage, Severe Winds, Ground Transportation Advisory',\n", + " 'Tropical Cyclone / Storm, Port Disruption',\n", + " 'Tropical Cyclone / Storm, Port Disruption, Storm',\n", + " 'Power Outage, Weather Advisory',\n", + " 'Chemical Spill, Bomb Detonation / Explosion',\n", + " 'Flooding, Power Outage, Ground Transportation Advisory',\n", + " 'Flight Delays / Cancellations, Protest / Riot, Non-industrial Fire, Public Safety / Security, Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Miscellaneous Strikes, Ground Transportation Advisory',\n", + " 'Political Info / Event',\n", + " 'Protest / Riot, Public Safety / Security, Roadway Closure / Disruption, Ground Transportation Advisory',\n", + " 'Protest / Riot, Non-industrial Fire, Public Safety / Security, Train Delays / Disruption, Roadway Closure / Disruption, Shooting',\n", + " 'Protest / Riot, Non-industrial Fire, Public Safety / Security',\n", + " 'Flight Delays / Cancellations, Protest / Riot, Public Safety / Security, Train Delays / Disruption, Roadway Closure / Disruption, Ground Transportation Advisory',\n", + " 'Protest / Riot, Public Safety / Security, Train Delays / Disruption, Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Flight Delays / Cancellations, Public Safety / Security, Flooding, Port Disruption, Power Outage, Train Delays / Disruption, Roadway Closure / Disruption, Severe Winds, Storm',\n", + " 'Public Safety / Security, Storm, Weather Advisory',\n", + " 'Public Safety / Security, Flooding, Landslide, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Earthquake, Public Safety / Security, Public Health Advisory',\n", + " 'Port Disruption, Severe Winds, Weather Advisory',\n", + " 'Train Delays / Disruption, Miscellaneous Strikes, Ground Transportation Advisory',\n", + " 'Protest / Riot, Roadway Closure / Disruption, Miscellaneous Strikes, Public Safety / Security',\n", + " 'Protest / Riot, Security Advisory, Political Info / Event, Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Public Safety / Security, Ground Transportation Advisory',\n", + " 'Power Outage, Ground Transportation Advisory',\n", + " 'Earthquake, Train Delays / Disruption, Roadway Closure / Disruption',\n", + " 'Hazmat Response, Train Delays / Disruption',\n", + " 'Flight Delays / Cancellations, Train Accident / Derailment, Train Delays / Disruption',\n", + " 'Flooding, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Airport Accident / Closure, Public Safety / Security, Hurricane, Severe Winds, Ground Transportation Advisory, Weather Advisory',\n", + " 'Flooding, Hurricane, Power Outage, Severe Winds, Weather Advisory',\n", + " 'Public Safety / Security, Flooding, Power Outage, Storm, Weather Advisory',\n", + " 'Public Safety / Security, Maritime Advisory, Robbery',\n", + " 'Port Closure,Roadway Closure / Disruption',\n", + " 'Cargo Disruption,Regulatory Advisory',\n", + " 'Customs Delay,Port Disruption',\n", + " 'Train Delays / Disruption,Port Disruption',\n", + " 'Flooding,Weather Advisory', 'Port Strike,Port Congestion',\n", + " 'Weather Advisory,Roadway Closure / Disruption',\n", + " 'Port Disruption, Port Strike',\n", + " 'Port Strike,Roadway Closure / Disruption,Port Congestion',\n", + " 'Public Safety / Security, Ground Transportation Advisory, Wildfire',\n", + " 'General Strike,Roadway Closure / Disruption',\n", + " 'Border Closure / Delay,Roadway Closure / Disruption',\n", + " 'Roadway Closure / Disruption, Protest / Riot',\n", + " 'Port Congestion,Weather Advisory',\n", + " 'Maritime Advisory,Port Congestion',\n", + " 'Protest / Riot,Industrial Action,Port Strike,Port Disruption',\n", + " 'Port Strike,Customs Delay,General Strike',\n", + " 'Customs Delay,Civil Service Strike,Port Congestion',\n", + " 'Industrial Action, Miscellaneous Strikes',\n", + " 'Industrial Action,Plant Closure', 'Typhoon,Landslide,Flooding',\n", + " 'Roadway Closure / Disruption,Protest / Riot,Maritime Advisory,Port Disruption',\n", + " 'Hurricane, Public Safety / Security',\n", + " 'Port Disruption,Port Closure,Port Congestion',\n", + " 'Aviation Advisory,Ground Transportation Advisory',\n", + " 'Customs Regulation,Port Congestion',\n", + " 'Industrial Fire, Hazmat Response',\n", + " 'Port Strike, Miscellaneous Strikes',\n", + " 'Port Congestion,Waterway Closure / Disruption,Maritime Advisory',\n", + " 'Miscellaneous Strikes, Customs Delay, Civil Service Strike',\n", + " 'Miscellaneous Strikes, Industrial Action',\n", + " 'Train Accident / Derailment,Train Delays / Disruption',\n", + " 'Industrial Action,Protest / Riot,Cargo Transportation Strike',\n", + " 'Robbery, Public Safety / Security, Roadway Closure / Disruption',\n", + " 'Non-industrial Fire, Public Safety / Security',\n", + " 'Public Safety / Security, Flooding',\n", + " 'Chemical Spill, Bomb Detonation / Explosion, Non-industrial Fire',\n", + " 'Public Safety / Security, Security Advisory, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Shooting', 'Roadway Closure / Disruption, Miscellaneous Strikes',\n", + " 'Blizzard, Weather Advisory',\n", + " 'Chemical Spill, Roadway Closure / Disruption',\n", + " 'Severe Winds, Storm, Weather Advisory',\n", + " 'Power Outage, Roadway Closure / Disruption, Vehicle Accident',\n", + " 'Maritime Accident, Roadway Closure / Disruption',\n", + " 'Roadway Closure / Disruption, Storm, Weather Advisory',\n", + " 'Protest / Riot, Ground Transportation Advisory, Aviation Advisory, Maritime Advisory, Miscellaneous Events, Individuals in Focus',\n", + " 'Flooding, Roadway Closure / Disruption, Storm, Weather Advisory',\n", + " 'Production Halt, Cargo Disruption, Port Congestion, Public Holidays',\n", + " 'Public Health Advisory, Ground Transportation Advisory, Security Advisory',\n", + " 'Outbreak of disease', 'Maritime Advisory, Outbreak of disease',\n", + " 'Individuals in Focus, Political Info / Event, Miscellaneous Events',\n", + " 'Miscellaneous Events, Political Info / Event, Ground Transportation Advisory',\n", + " 'Public Safety / Security, Security Advisory',\n", + " 'Roadway Closure / Disruption, Cargo Transportation Strike',\n", + " 'Maritime Advisory, Political Info / Event, Miscellaneous Events',\n", + " 'Regulatory Advisory, Ground Transportation Advisory, Miscellaneous Strikes, Maritime Advisory',\n", + " 'Weather Advisory, Ground Transportation Advisory, Flooding',\n", + " 'Tropical Cyclone / Storm, Severe Winds, Weather Advisory',\n", + " 'Maritime Advisory, Waterway Closure / Disruption',\n", + " 'Miscellaneous Events, Political Info / Event, Maritime Advisory',\n", + " 'Maritime Advisory, Political Info / Event, Public Safety / Security, Military Operations',\n", + " 'Military Operations, Political Info / Event, Ground Transportation Advisory',\n", + " 'Insolvency', 'Protest / Riot, Port Disruption',\n", + " 'Public Health Advisory, Ground Transportation Advisory, Public Safety / Security, Security Advisory',\n", + " 'Ground Transportation Advisory, Vehicle Accident, Port Disruption',\n", + " 'Political Info / Event, Protest / Riot',\n", + " 'Public Safety / Security, Maritime Advisory, Death / Injury, Individuals in Focus, Robbery',\n", + " 'Maritime Advisory, Political Info / Event, Miscellaneous Events, Public Safety / Security',\n", + " 'Maritime Advisory, Political Info / Event, Miscellaneous Events, Individuals in Focus, Public Safety / Security',\n", + " 'Public Safety / Security, Maritime Advisory',\n", + " 'Regulatory Advisory, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", + " 'Hazmat Response, Ground Transportation Advisory, Network Disruption',\n", + " 'Port Congestion, Port Disruption',\n", + " 'Regulatory Advisory, Public Health Advisory, Security Advisory',\n", + " 'Hazmat Response, Public Safety / Security',\n", + " 'Airport Accident / Closure, Aviation Advisory, Explosion',\n", + " 'Maritime Accident, Outbreak of disease',\n", + " 'Cargo Disruption, Outbreak of disease',\n", + " 'Cargo Disruption, Train Delays / Disruption',\n", + " 'Cargo Disruption, Port Strike, Port Disruption',\n", + " 'Chemical Spill, Train Delays / Disruption',\n", + " 'Kidnap / Detention, Protest / Riot, Individuals in Focus',\n", + " 'Regulatory Advisory, Political Info / Event',\n", + " 'Military Operations, Political Info / Event, Protest / Riot',\n", + " 'Weather Advisory, Ground Transportation Advisory, Network Disruption',\n", + " 'Public Safety / Security, Network Disruption, Maritime Advisory',\n", + " 'Maritime Accident, Port Closure',\n", + " 'Port Congestion, Cargo Disruption, Port Disruption',\n", + " 'Regulatory Advisory, Political Info / Event, Protest / Riot',\n", + " 'Cargo Disruption, Outbreak of disease, Maritime Advisory',\n", + " 'Port Disruption, Maritime Advisory, Severe Winds', 'Ransomware',\n", + " 'Port Congestion, Outbreak of disease',\n", + " 'Public Health Advisory, Security Advisory',\n", + " 'Maritime Advisory, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", + " 'Port Congestion, Regulatory Advisory',\n", + " 'Regulatory Advisory, Political Info / Event, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", + " 'Outbreak of disease, Ground Transportation Advisory, Port Disruption',\n", + " 'Vehicle Accident, Non-industrial Fire, Roadway Closure / Disruption',\n", + " 'Outbreak of disease, Maritime Advisory',\n", + " 'Hazmat Response, Roadway Closure / Disruption',\n", + " 'Public Safety / Security, Hazmat Response',\n", + " 'Outbreak of disease, Port Disruption',\n", + " 'Cargo Disruption, Cargo Transportation Strike, Port Disruption',\n", + " 'Public Safety / Security, Cargo Disruption',\n", + " 'Production Halt, Cargo Disruption',\n", + " 'Public Health Advisory, Severe Winds',\n", + " 'Roadway Closure / Disruption, Port Congestion',\n", + " 'Port Congestion, Customs Delay, Customs Regulation',\n", + " 'Port Disruption, Port Closure',\n", + " 'Regulatory Advisory, Political Info / Event, Ground Transportation Advisory, Public Health Advisory, Network Disruption, Weather Advisory',\n", + " 'Regulatory Advisory, Ground Transportation Advisory',\n", + " 'Public Safety / Security, Shooting, Roadway Closure / Disruption',\n", + " 'Flooding, Ground Transportation Advisory, Power Outage',\n", + " 'Roadway Closure / Disruption, Port Disruption',\n", + " 'Cargo Disruption, Flight Delays / Cancellations',\n", + " 'Industrial Fire, Port Disruption',\n", + " 'Roadway Closure / Disruption, Landslide, Flooding',\n", + " 'Cargo Disruption, Flooding',\n", + " 'Flooding, Roadway Closure / Disruption, Landslide',\n", + " 'Miscellaneous Events, Political Info / Event',\n", + " 'Kidnap / Detention, Political Info / Event, Protest / Riot, Individuals in Focus',\n", + " 'Train Delays / Disruption, Protest / Riot',\n", + " 'Port Closure, Maritime Advisory',\n", + " 'Hazmat Response, Port Disruption',\n", + " 'Port Disruption, Roadway Closure / Disruption, Weather Advisory',\n", + " 'Flooding, Weather Advisory',\n", + " 'Aviation Advisory, Political Info / Event, Ground Transportation Advisory, Network Disruption, Maritime Advisory, Hurricane, Weather Advisory',\n", + " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Death / Injury, Individuals in Focus',\n", + " 'Individuals in Focus, Protest / Riot',\n", + " 'Public Safety / Security, Individuals in Focus',\n", + " 'Miscellaneous Events, Public Safety / Security',\n", + " 'Maritime Advisory, Protest / Riot, Miscellaneous Events',\n", + " 'Miscellaneous Events, Political Info / Event, Maritime Advisory, Outbreak Of War',\n", + " 'Port Disruption, Waterway Closure / Disruption',\n", + " 'Production Halt, Fuel Disruption',\n", + " 'Miscellaneous Events, Ground Transportation Advisory, Public Health Advisory, Network Disruption, Maritime Advisory, Regulatory Advisory, Security Advisory',\n", + " 'Regulatory Advisory, Political Info / Event, Network Disruption, Hurricane, Weather Advisory',\n", + " 'Maritime Advisory, Military Operations',\n", + " 'Port Disruption, Cargo Disruption',\n", + " 'Regulatory Advisory, Public Health Advisory',\n", + " 'Public Safety / Security, Train Delays / Disruption, Hazmat Response',\n", + " 'Maritime Advisory, Political Info / Event, Military Operations',\n", + " 'Flooding, Train Delays / Disruption, Landslide, Weather Advisory',\n", + " 'Regulatory Advisory, Cargo Disruption',\n", + " 'Public Health Advisory, Public Safety / Security, Security Advisory',\n", + " 'Public Safety / Security, Ground Transportation Advisory, Network Disruption',\n", + " 'Ransomware, Data breach',\n", + " 'Civil Service Strike, Border Closure / Delay',\n", + " 'Outbreak of disease, Miscellaneous Strikes',\n", + " 'Political Info / Event, Ground Transportation Advisory, Public Health Advisory',\n", + " 'Weather Advisory, Network Disruption',\n", + " 'Production Halt, Tropical Cyclone / Storm',\n", + " 'Piracy, Maritime Advisory',\n", + " 'Protest / Riot, Miscellaneous Strikes, Maritime Advisory, Public Safety / Security',\n", + " 'Outbreak of disease, Production Halt', 'Border Closure / Delay',\n", + " 'Weather Advisory, Ground Transportation Advisory, Hazmat Response, Maritime Advisory',\n", + " 'Non-industrial Fire, Port Disruption, Public Safety / Security',\n", + " 'Miscellaneous Strikes, Protest / Riot, Public Safety / Security',\n", + " 'Border Closure / Delay, Aviation Advisory, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Phishing', 'Cargo Disruption, Fuel Disruption',\n", + " 'Kidnap / Detention, Maritime Advisory',\n", + " 'Port Disruption, Power Outage',\n", + " 'Miscellaneous Events, Political Info / Event, Individuals in Focus',\n", + " 'Port Disruption, Outbreak of disease',\n", + " 'Maritime Advisory, Environmental Regulations',\n", + " 'Weather Advisory, Tornado', 'Industrial Action, Production Halt',\n", + " 'Chemical Spill, Non-industrial Fire, Vehicle Accident, Roadway Closure / Disruption',\n", + " 'Protest / Riot, Ground Transportation Advisory, Public Health Advisory, Security Advisory',\n", + " 'Network Disruption, Political Info / Event, Protest / Riot',\n", + " 'Weather Advisory, Flooding',\n", + " 'Aviation Advisory, Maritime Advisory',\n", + " 'Political Info / Event, Public Health Advisory, Security Advisory',\n", + " 'Train Delays / Disruption, Storm, Weather Advisory',\n", + " 'Landslide, Train Delays / Disruption',\n", + " 'Port Disruption, Train Delays / Disruption',\n", + " 'Public Safety / Security, Public Health Advisory, Maritime Advisory',\n", + " 'Roadway Closure / Disruption, Cargo Disruption, Maritime Advisory, Port Disruption',\n", + " 'Regulatory Advisory, Ground Transportation Advisory, Maritime Advisory, Weather Advisory',\n", + " 'Network Disruption, Political Info / Event, Ground Transportation Advisory, Public Health Advisory, Maritime Advisory',\n", + " 'Outbreak of disease, Cargo Disruption', 'Hail, Weather Advisory',\n", + " 'Weather Advisory, Hail',\n", + " 'Regulatory Advisory, Public Health Advisory, Network Disruption',\n", + " 'Cargo Disruption, Customs Regulation',\n", + " 'Military Operations, Public Safety / Security',\n", + " 'Public Health Advisory, Storm, Weather Advisory',\n", + " 'Maritime Accident, Port Disruption, Severe Winds',\n", + " 'Flooding, Roadway Closure / Disruption, Storm',\n", + " 'Flooding, Power Outage, Severe Winds, Storm, Weather Advisory',\n", + " 'Political Info / Event, Miscellaneous Strikes',\n", + " 'Ground Transportation Advisory, Regulatory Advisory',\n", + " 'Flooding, Public Health Advisory, Severe Winds, Weather Advisory',\n", + " 'Production Halt, Environmental Regulations',\n", + " 'Cargo Disruption, Trade Restrictions',\n", + " 'Non-industrial Fire, Vehicle Accident, Roadway Closure / Disruption',\n", + " 'Political Info / Event, Protest / Riot, Public Safety / Security, Security Advisory',\n", + " 'Trade Regulation, Maritime Advisory',\n", + " 'Maritime Advisory, Miscellaneous Events',\n", + " 'Miscellaneous Events, Individuals in Focus, Public Safety / Security',\n", + " 'Miscellaneous Events, Political Info / Event, Maritime Advisory, Individuals in Focus',\n", + " 'Political Info / Event, Miscellaneous Events',\n", + " 'Maritime Advisory, Miscellaneous Events, Public Safety / Security',\n", + " 'Miscellaneous Events, Political Info / Event, Public Safety / Security',\n", + " 'Industrial Fire, Cargo Disruption',\n", + " 'Train Accident / Derailment, Vehicle Accident, Roadway Closure / Disruption, Train Delays / Disruption',\n", + " 'Weather Advisory, Network Disruption, Maritime Advisory',\n", + " 'Flooding, Storm',\n", + " 'Regulatory Advisory, Political Info / Event, Public Health Advisory',\n", + " 'Public Safety / Security, Protest / Riot, Ground Transportation Advisory, Public Health Advisory',\n", + " 'Regulatory Advisory, Network Disruption',\n", + " 'Port Strike, Cargo Disruption, Port Disruption',\n", + " 'Roadway Closure / Disruption, Industrial Action',\n", + " 'Roadway Closure / Disruption, Protest / Riot, Ground Transportation Advisory',\n", + " 'Kidnap / Detention, Maritime Advisory, Miscellaneous Events, Terror Attack',\n", + " 'Political Info / Event, Protest / Riot, Miscellaneous Events',\n", + " 'Miscellaneous Events, Ground Transportation Advisory, Death / Injury, Terror Attack',\n", + " 'Miscellaneous Events, Political Info / Event, Maritime Advisory, Public Safety / Security',\n", + " 'Regulatory Advisory, Cargo Disruption, Customs Delay',\n", + " 'Port Closure, Cargo Disruption, Port Disruption',\n", + " 'Miscellaneous Events, Protest / Riot, Ground Transportation Advisory',\n", + " 'Public Transportation Disruption, Cargo Disruption, Cargo Transportation Strike, Port Strike, Port Closure, Port Congestion, Port Disruption',\n", + " 'Train Delays / Disruption, Non-industrial Fire',\n", + " 'Port Closure, Severe Winds',\n", + " 'Maritime Advisory, Aviation Advisory',\n", + " 'Miscellaneous Events, Maritime Advisory, Public Safety / Security',\n", + " 'Fuel Disruption, Protest / Riot',\n", + " 'Earthquake, Train Delays / Disruption',\n", + " 'Port Disruption, Cargo Disruption, Port Congestion',\n", + " 'Flooding, Ground Transportation Advisory, Roadway Closure / Disruption, Public Health Advisory, Power Outage, Storm',\n", + " 'Individuals in Focus, Political Info / Event',\n", + " 'Bomb Detonation / Explosion, Non-industrial Fire, Maritime Accident',\n", + " 'Weather Advisory, Tropical Cyclone / Storm',\n", + " 'Port Disruption, Ground Transportation Advisory, Train Delays / Disruption, Severe Winds, Storm, Weather Advisory',\n", + " 'Weather Advisory, Security Advisory',\n", + " 'Political Info / Event, Network Disruption, Miscellaneous Events, Outbreak Of War',\n", + " 'Port Closure, Maritime Advisory, Port Disruption',\n", + " 'Production Halt, Regulatory Advisory',\n", + " 'Cargo Transportation Strike, Port Congestion',\n", + " 'Flooding, Power Outage, Severe Winds, Storm',\n", + " 'Customs Delay, Customs Regulation, Trade Restrictions',\n", + " 'Customs Regulation, Border Closure / Delay',\n", + " 'Production Halt, Force Majeure',\n", + " 'Outbreak of disease, Ground Transportation Advisory, Security Advisory',\n", + " 'Maritime Accident, Waterway Closure / Disruption',\n", + " 'Port Disruption, Protest / Riot, Maritime Advisory',\n", + " 'Port Closure, Chemical Spill',\n", + " 'Ground Transportation Advisory, Wildfire, Weather Advisory',\n", + " 'Port Strike, Port Closure, Port Congestion',\n", + " 'Port Congestion, Cargo Disruption, Port Strike',\n", + " 'Cargo Transportation Strike, Port Disruption',\n", + " 'Protest / Riot, Plant Closure',\n", + " 'Port Congestion, Roadway Closure / Disruption',\n", + " 'Port Congestion, Port Closure, Port Disruption',\n", + " 'Port Closure, Waterway Closure / Disruption',\n", + " 'Industrial Action, Production Halt, Force Majeure',\n", + " 'Production Halt, Power Outage',\n", + " 'Tropical Cyclone / Storm, Power Outage',\n", + " 'Outbreak of disease, Ground Transportation Advisory',\n", + " 'Border Closure / Delay, Regulatory Advisory',\n", + " 'Public Safety / Security, Public Health Advisory, Security Advisory',\n", + " 'Hazmat Response, Public Safety / Security, Security Advisory',\n", + " 'Power Outage, Roadway Closure / Disruption, Storm',\n", + " 'Organized Crime, Cargo Disruption',\n", + " 'Roadway Closure / Disruption, Cargo Disruption, Weather Advisory',\n", + " 'Miscellaneous Events, Political Info / Event, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Miscellaneous Events, Terror Attack',\n", + " 'Miscellaneous Events, Maritime Advisory, Terror Attack',\n", + " 'Port Closure, Customs Delay',\n", + " 'Maritime Advisory, Public Safety / Security, Militant Action, Military Operations',\n", + " 'Production Halt, Outbreak of disease',\n", + " 'Miscellaneous Events, Maritime Advisory, Individuals in Focus, Public Safety / Security',\n", + " 'Miscellaneous Events, Maritime Advisory, Individuals in Focus, Terror Attack, Outbreak Of War',\n", + " 'Miscellaneous Events, Maritime Advisory, Death / Injury, Individuals in Focus, Terror Attack',\n", + " 'Military Operations, Protest / Riot',\n", + " 'Power Outage, Roadway Closure / Disruption, Severe Winds, Storm, Weather Advisory',\n", + " 'Weather Advisory, Hazmat Response, Network Disruption, Maritime Advisory',\n", + " 'Industry Directives, Regulatory Advisory',\n", + " 'Protest / Riot, Civil Unrest Advisory',\n", + " 'Regulatory Advisory, Hazmat Response, Maritime Advisory, Weather Advisory',\n", + " 'Production Halt, Industrial Action',\n", + " 'Maritime Accident, Maritime Advisory', nan,\n", + " 'Political Info / Event, Protest / Riot, Individuals in Focus',\n", + " 'Flooding, Roadway Closure / Disruption, Landslide, Severe Winds, Storm, Weather Advisory',\n", + " 'Port Disruption, Workplace Accident',\n", + " 'Miscellaneous Events, Individuals in Focus, Public Safety / Security, Terror Attack',\n", + " 'Regulatory Advisory, Aviation Advisory, Cargo Disruption, Ground Transportation Advisory',\n", + " 'Bomb Detonation / Explosion, Maritime Accident',\n", + " 'Network Disruption, Maritime Advisory, Public Safety / Security, Militant Action',\n", + " 'Miscellaneous Events, Ground Transportation Advisory',\n", + " 'Flooding, Landslide, Hurricane',\n", + " 'Weather Advisory, Ground Transportation Advisory, Network Disruption, Hurricane',\n", + " 'Hazmat Response, Protest / Riot, Public Health Advisory',\n", + " 'Military Operations, Political Info / Event',\n", + " 'Flooding, Roadway Closure / Disruption, Power Outage, Landslide, Severe Winds, Storm, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Severe Winds, Storm',\n", + " 'Aviation Advisory, Ground Transportation Advisory, Public Health Advisory, Regulatory Advisory',\n", + " 'Public Safety / Security, Political Info / Event, Network Disruption, Militant Action, Security Advisory',\n", + " 'Power Outage, Roadway Closure / Disruption, Severe Winds, Storm',\n", + " 'Individuals in Focus, Miscellaneous Events',\n", + " 'Miscellaneous Events, Protest / Riot, Maritime Advisory',\n", + " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Maritime Advisory',\n", + " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Ground Transportation Advisory',\n", + " 'Public Safety / Security, Political Info / Event, Miscellaneous Events',\n", + " 'Miscellaneous Events, Maritime Advisory, Individuals in Focus',\n", + " 'Miscellaneous Events, Political Info / Event, Protest / Riot',\n", + " 'Public Safety / Security, Individuals in Focus, Kidnap / Detention',\n", + " 'Port Closure, Roadway Closure / Disruption, Port Disruption, Flooding',\n", + " 'Regulatory Advisory, Protest / Riot, Public Health Advisory, Miscellaneous Strikes',\n", + " 'Public Safety / Security, Non-industrial Fire, Roadway Closure / Disruption, Train Delays / Disruption',\n", + " 'Aviation Advisory, Political Info / Event, Maritime Advisory, Miscellaneous Events',\n", + " 'Chemical Spill, Hazmat Response',\n", + " 'Public Safety / Security, Roadway Closure / Disruption, Hazmat Response, Bomb Detonation / Explosion',\n", + " 'Flight Delays / Cancellations, Ground Transportation Advisory',\n", + " 'Regulatory Advisory, Protest / Riot, Ground Transportation Advisory, Network Disruption',\n", + " 'Aviation Advisory, Ground Transportation Advisory, Public Health Advisory, Maritime Advisory, Regulatory Advisory',\n", + " 'Death / Injury, Political Info / Event, Miscellaneous Events, Individuals in Focus',\n", + " 'Regulatory Advisory, Outbreak of disease',\n", + " 'Public Safety / Security, Political Info / Event, Miscellaneous Events, Death / Injury, Individuals in Focus',\n", + " 'Power Outage, Severe Winds, Storm',\n", + " 'Customs Delay, Cargo Disruption, Weather Advisory',\n", + " 'Port Closure, Typhoon',\n", + " 'Regulatory Advisory, Ground Transportation Advisory, Public Health Advisory, Network Disruption',\n", + " 'Regulatory Advisory, Political Info / Event, Network Disruption',\n", + " 'Public Safety / Security, Shooting',\n", + " 'Cargo Disruption, Protest / Riot, Ground Transportation Advisory',\n", + " 'Protest / Riot, Vehicle Accident, Roadway Closure / Disruption, Public Safety / Security',\n", + " 'Train Delays / Disruption, Ground Transportation Advisory, Miscellaneous Strikes',\n", + " 'Flooding, Train Delays / Disruption',\n", + " 'Regulatory Advisory, Political Info / Event, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Power Outage, Severe Winds, Storm, Weather Advisory',\n", + " 'Roadway Closure / Disruption, Cargo Disruption, Protest / Riot',\n", + " 'Public Safety / Security, Public Health Advisory, Flooding, Storm, Weather Advisory',\n", + " 'Customs Delay, Port Congestion',\n", + " 'Military Operations, Protest / Riot, Public Safety / Security, Security Advisory',\n", + " 'Public Safety / Security, Ground Transportation Advisory, Maritime Advisory',\n", + " 'Cargo Transportation Strike, Industrial Action',\n", + " 'Postal Disruption',\n", + " 'Cargo Disruption, Roadway Closure / Disruption',\n", + " 'Protest / Riot, Network Disruption, Militant Action, Security Advisory',\n", + " 'Public Safety / Security, Roadway Closure / Disruption, Train Delays / Disruption',\n", + " 'Aviation Advisory, Ground Transportation Advisory, Maritime Advisory, Miscellaneous Events, Death / Injury, Terror Attack, Outbreak Of War',\n", + " 'Miscellaneous Events, Ground Transportation Advisory, Terror Attack, Outbreak Of War',\n", + " 'Political Info / Event, Protest / Riot, Miscellaneous Events, Terror Attack',\n", + " 'Miscellaneous Events, Protest / Riot',\n", + " 'Miscellaneous Events, Maritime Advisory, Public Safety / Security, Robbery',\n", + " 'Public Safety / Security, Death / Injury, Individuals in Focus, Robbery',\n", + " 'Miscellaneous Events, Ground Transportation Advisory, Public Safety / Security, Robbery',\n", + " 'Miscellaneous Events, Maritime Advisory, Death / Injury, Kidnap / Detention, Public Safety / Security, Robbery',\n", + " 'Outbreak Of War', 'Port Closure, Port Disruption, Typhoon',\n", + " 'Flooding, Roadway Closure / Disruption, Port Closure, Port Disruption, Public Safety / Security, Storm, Weather Advisory',\n", + " 'Miscellaneous Events, Political Info / Event, Protest / Riot, Ground Transportation Advisory, Individuals in Focus',\n", + " 'Port Strike, Port Congestion, Port Disruption',\n", + " 'Maritime Accident, Port Disruption, Public Safety / Security, Military Operations',\n", + " 'Train Accident / Derailment, Train Delays / Disruption, Hazmat Response',\n", + " 'Tropical Cyclone / Storm, Power Outage, Landslide, Public Safety / Security, Flooding',\n", + " 'Flight Delays / Cancellations, Non-industrial Fire, Roadway Closure / Disruption',\n", + " 'Miscellaneous Events, Ground Transportation Advisory, Network Disruption, Death / Injury',\n", + " 'Death / Injury, Protest / Riot, Ground Transportation Advisory, Kidnap / Detention',\n", + " 'Ground Transportation Advisory, Protest / Riot',\n", + " 'Aviation Advisory, Ground Transportation Advisory, Network Disruption, Maritime Advisory, Miscellaneous Events',\n", + " 'Weather Advisory, Hazmat Response, Network Disruption',\n", + " 'Ice Storm',\n", + " 'Roadway Closure / Disruption, Ground Transportation Advisory, Storm, Weather Advisory'],\n", + " dtype=object)" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Category'].unique()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Understanding \"Severity\"" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "severity_counts = data['Severity'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAH2CAYAAAChsP9pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACE1klEQVR4nO3dd3gU5drH8e/W9N57Qgu9dwQBQURRsBzrEbtgO4p6FBTFcnztelTUY0fFghWUqoKgIL1LJ7T03pPNZnfm/WPJQkhCTTKb7P255BJmd2fv3ZTfzj3PPI9OVVUVIYQQQmhKr3UBQgghhJBAFkIIIVyCBLIQQgjhAiSQhRBCCBcggSyEEEK4AAlkIYQQwgVIIAshhBAuQAJZCCGEcAESyMItuMP8Ny3hNbpCja5QgxD1kUAWjWbq1KkkJyc3+GfIkCGa1LV06VIeffTRU96vsLCQ559/nlGjRtG1a1f69+/PTTfdxK+//toMVZ6Z5ORk3nrrLQCsViv/93//x88//3xO+3zrrbfqfM26d+/OmDFjePHFFykqKqp1/6lTpzJy5MjT3v++ffu47rrrTnm/H374geTkZNLS0s7qeU7mnXfe4aOPPnL+u+Y1C+EKjFoXIFqXsLAwZs6cWe9tJpOpmatxmDVr1invY7FYuOGGG7Db7dx5550kJCRQWlrKokWLuPfee3nssce46aabmr7Y0zRnzhwiIyMByMnJ4dNPP+X5559vtH2D40iyoqKC7du388EHH7Bs2TK++uorgoODAbj77ruZOHHiae938eLFbN68+ZT3Gz58OHPmzCE8PPzsXsBJvPHGG9x7773Of//jH/9g6NChjf48QpwNCWTRqMxmMz179tS6jDO2ePFiUlJSWLJkCYmJic7to0aNwmKx8Oabb/LPf/4Tg8GgXZHHacr3+MR9DxkyhMGDB3P99dfz2muv8Z///AeA+Pj4Jnn+4OBgZ+g3tcjISOcHGyG0Ji1r0ez+97//0bVrV4qLi2ttnzVrFl26dCE/Px+AjIwMHnzwQfr370+PHj246aab2Llzp/P+aWlpJCcns2jRIv71r3/Rq1cv+vfvz/Tp06moqADgxhtvZN26daxbt47k5GTWrl1bb015eXkAKIpS57ZJkyZx9913Y7Vandv27t3LpEmT6N27N7179+aee+4hNTUVgKqqKvr06cOLL75Yaz82m42BAwc6Aw3g22+/5ZJLLqFr164MHz6ct956C7vd7rx96tSp3HTTTcyYMYPevXtz8cUXY7fbnS3rtLQ0LrjgAgCmTZvGyJEjWb58OcnJyaxcubLW82/YsIHk5GQ2btxY73twMt27d+fCCy9k7ty5VFZWOms7vpX8999/c9NNN9GnTx969erFzTffzJYtWwBHa7imc3J8uz05OZmZM2dyxRVX0L17d2bOnFmnZV1jzpw5DB8+nO7du9f5Xmio9XzicwHMnDnT+ff6Hrdw4UKuuOIKevXqxZAhQ3jyySdrfa++9dZbjB49muXLl3PppZfStWtXxowZw9y5c8/4fRXieBLIotHZbLZ6/9QMprn00kux2Wz88ssvtR63YMECzjvvPEJCQigoKODaa69lx44dPPHEE7z66qsoisINN9xASkpKrcfNmDGDmJgY3nnnHW677Ta+++473n33XedtnTt3pnPnzsyZM4cuXbrUW/PQoUMxGo3cdNNNzJw5ky1btlBdXQ04wui2227Dy8sLgIMHD3LttdeSn5/Piy++yHPPPUdqairXXXcd+fn5eHh4MGbMGBYtWlRrANGqVasoLCxk/PjxALz33ns88cQTDBo0iP/973/ccMMNfPDBBzzxxBO1atuwYQOZmZm8/fbbPPTQQ7WO0sPDw51Bd9dddzFz5kyGDh1KeHg48+bNq7WfuXPnkpiYSJ8+fU7jq1jXkCFDqK6uZvv27XVuKysr4/bbbycoKIi33nqL119/ncrKSm677TZKS0v5xz/+wVVXXQU4gvUf//iH87H/+9//uPTSS3nzzTcZM2ZMvc+dlZXFzJkzeeCBB3jttdcoLi7mxhtvJCMj47Trr2nFX3XVVc6/n+idd97hwQcfpGfPnrz55pvcc889LFmyhBtvvBGLxeK8X25uLs888wwTJ07k/fffJzY2lkcffbTO96YQZ0Ja1qJRpaenNxh6jzzyCLfddhsxMTH069eP+fPnO38xHzlyhG3btvH6668D8Omnn1JUVMRXX31FTEwMAMOGDePiiy/mjTfe4M0333Tu9/zzz3cO2ho0aBCrVq1i+fLlPPTQQ7Rr1w5fX1/g5G3e5ORkXn/9dZ5++mneeust3nrrLTw9Penbty9XXXUVY8eOdd535syZeHl5MWvWLOe+Bw0axKhRo/jwww959NFHGT9+PN9//z0bN26kb9++gOMDR5s2bejWrRulpaW88847XHPNNUyfPh2A8847j8DAQKZPn84tt9xC+/btAccHnGeeeabe1qrZbKZTp06Ao4XcuXNnAC6//HI+//xzysvL8fHxwWKxsGjRIu68884G34NTCQ0NBY51E463f/9+CgsLmThxIr179wagTZs2zJkzh/Ly8lqt4RO/Dn379uWWW25x/ru+wLfb7bz99tt0794dgB49ejBq1Cg+//zz0xqwd/zzRkZG1vu9UFxczLvvvsvVV1/Nk08+6dzeoUMHbrjhBr7//ntuuOEGACorK3nuuecYNGgQAImJiYwYMYIVK1bQtm3b06pHiBNJIItGFRYW5jw6PVFUVJTz75dddhkzZswgNzeXsLAwFixYgK+vr7MFunr1ajp16kRERAQ2mw0AvV7PsGHD+Omnn2rt98RfrpGRkaSnp59x7RdeeCEjRoxgzZo1/PXXX6xdu5a//vqLlStXsmjRIt544w10Oh1r1qyhf//+eHp6Omvz9fWlb9++/PXXXwD079+f6OhoFixYQN++famqquK3335zBuLmzZuxWCyMHDnSuQ/A+fpXrVrlDOTAwMAzPs955ZVX8t577/Hrr78yYcIEfv31VyoqKpgwYcIZvy+no3379gQHBzN58mQuuugihg4dypAhQ/j3v/99ysfWfKA4mbi4OGcYg+P7rGfPnqxfv/6c6j7eli1bsFqtjBs3rtb2vn37EhMTw7p165yBDLW/72q+PjWnSoQ4GxLIolGZzWa6det2yvtddNFFPPvssyxatIiJEyeyYMECxowZg6enJwBFRUUcPny4waPtmvOYgLOVXEOv15/1taYmk4mhQ4c6R95mZ2fzn//8hyVLlrB8+XJGjBhBUVERCxcuZOHChXUeXzMYSafTcemll/Ltt98yffp0fv/9dyoqKrj00kudrw9o8Ig1JyfH+XcfH58zfh0JCQn079+fuXPnMmHCBObOncvgwYOJiIg4433VyMrKAqj3w4GPjw9ffPEF7777LosWLWLOnDl4enoyfvx4pk+fjtlsbnC/3t7ep3zumqPz44WEhJCZmXkGr+Dkas4T1/dcoaGhlJaW1tp2/PedXu84+yfXOItzIYEsNOHn58fIkSNZtGgRAwcOZN++fbXOnfr5+dG/f38eeeSReh9/sl/wZ+Paa68lKSmpzqVDERERPPfcc/zyyy/s37+fESNG4Ofnx+DBg2u1WWsYjcd+pMaPH897773H2rVrWbhwIf369XO23/39/QF45ZVXao3qrlFfKJypK6+8kscee4yUlBRWr17NK6+8ck77++uvv/D29m7wQ1KbNm14+eWXsdvtbNu2jXnz5vHVV18RHx/P7bfffk7PfeIAQHCcxz3+AxA4Wts159jLy8vP6DkCAgIAR0u+TZs2dZ4rLi7ujOsW4kzIoC6hmfHjx7Nlyxa++uoroqOj6d+/v/O2/v37c/DgQZKSkujWrZvzz7x58/juu+/O6PKjmqOXk4mJiWHx4sXOkdLHO3jwIOA4l1hT2/79++nUqZOzrq5duzJr1qxak4i0bduWLl26sGDBAlasWMFll13mvK1Hjx6YTCays7NrvT6j0chrr71WZ4TxyTT0XowZMwYvLy+eeuopfHx8GDVq1Gnv80S7du1i6dKlXHnllXh4eNS5ffHixQwcOJDc3FwMBgO9evXiqaeewt/f3znw6nS+Dg05ePAgR44ccf47MzOTzZs3M2DAAADnufyao3ig3tHkJ6uhR48emM1m5s+fX2v7hg0byMjIcJ4bF6KpyBGyaFRWq9V5qUt9kpOTna2+oUOHEhgYyJw5c7j99tudRzkAN998M/PmzePmm2/m1ltvJSgoiIULF/LNN98wbdq0M6rJ39+fzZs3s3r1ajp37uw8EjrelClTWLt2LVdddRUTJ06kV69e6PV6tm/fzscff8ywYcMYNmwY4JgQ49prr2XSpElcd911eHh4MGfOHH777bdag83A8aHjxRdfxGg0ctFFFzm3BwUFcfvtt/PGG29QVlbGgAEDyM7Odp6n7tix42m/Pj8/P8Bx3r1t27b06NEDcLRUL7nkEubMmcN111132l2Fmq+fqqqUl5ezfft2Zs2aRWJiIvfff3+9j+nduzeKonDPPfdw55134uPjw6JFiygtLeXCCy8EjnUF5s+fT48ePc7oiNPDw4O77rqLKVOmYLfbeeONNwgMDHRO1nL++efz/PPP8+STT3Lbbbc5R6Wf2O739/dn06ZNrF+/3jnYrkZgYCB33nknb7/9NiaTiREjRpCWlsYbb7xBu3btuPzyy0+7XiHOhgSyaFS5ublcc801Dd4+d+5c5yAeo9HIJZdcwueff17r6BEcreKvv/6aV199laeeeoqqqioSExN57rnnnJfPnK4bbriBv//+mzvuuIPnn3/eeR73eLGxsfz444+89957/Pzzz3zwwQeoqkpCQgK33XYbEydOdH5g6NixI1988QWvv/46jzzyCKqq0qFDB95++23nNcE1xo0bx0svveRsdR/vgQceICwsjC+//JIPP/yQgIAABg0axIMPPljnvifj6+vLLbfcwpw5c1ixYgWrVq1yzopWM+vVFVdccdr7O/7r5+npSVxcHNdddx23336780j0ROHh4Xz44Ye88cYbPP7441RWVtK+fXveeustBg4cCDgGzc2bN4+pU6dy1VVX8dRTT512TZ07d2bMmDE89dRTlJaWMmjQIB577DFnyzopKYkXX3yRd999lzvvvJO2bdvy7LPP8uyzz9baz+TJk3nnnXe444476h0DcN999xEaGsrs2bOZM2cOgYGBXHTRRTzwwAOnda5biHOhU2UUghCt1owZM9i6datMWiFECyBHyEK0Qp999hkHDhzgm2++4eWXX9a6HCHEaZBAFqIV2rBhA3/++Sc33XRTnetqhRCuSVrWQgghhAuQy56EEEIIFyCBLIQQQrgACWQhhBDCBUggCyGEEC5AAlkIIYRwARLIQgghhAuQQBZCCCFcgASyEEII4QIkkIUQQggXIIEshBBCuAAJZCGEEMIFSCALIYQQLkACWQghhHABEshCCCGEC5BAFkIIIVyABLIQQgjhAiSQhRBCCBcggSyEEEK4AAlkIYQQwgVIIAshhBAuQAJZCCGEcAESyEIIIYQLkEAWQgghXIAEshBCCOECJJCFEEIIFyCBLIQQQrgACWQhhBDCBUggCyGEEC5AAlkIIYRwARLIQgghhAuQQBZCCCFcgASyEEII4QIkkIUQQggXIIEshBBCuAAJZCGEEMIFSCALIYQQLkACWQghhHABEshCCCGEC5BAFkIIIVyABLIQQgjhAiSQhRBCCBcggSyEEEK4AAlkIYQQwgVIIAshhBAuQAJZCCGEcAESyEIIIYQLkEAWQgghXIAEshBCCOECJJCFEEIIFyCBLIQQQrgAo9YFCCEcbHYFVQWDXoderzvpfa3VdhRVBcd/AKiqevT/x+5nMuoxmwwn3ZeqqtgVx4MMeh063cmfWwjRNCSQhWgGdsURtkZD7aZUaYWVghIL+UUWCkosFJZaKCqtotxSTaXFRkWVjUqLjcoqGxVVjm2VVjuKojbwTHXpdOBhMuBpNuLpUfv/3h5GAnw9CPTzIMjPgyB/T0IDvAjy98DfxwOT8Vi9iqKiqKqEthBNRKeq6un/ZAshGqSqKna7iv64I9xqm53M/AqOZJWQnlNGem452QXl5BdbyC+2YLMrGld9ct6eRkICvIgK9SEqxIfoMB9iwnyJDfcl2N/TGcx2xfE6DHo5CybE2ZJAFuIs1LR5a454LVU29qcXcTC9hPTcMsefnDLyiitprT9hRoOeyBBvokJ9iI/wo01MAB3ig4gI9kan06GoKspx75EQ4uQkkIU4DTa7cix8rTZS0orZe6SQ/WlF7E8tIjO/vNUG75nyNBtIig6gTUzA0ZAOJC7cD4NBj11R0HHqc+RCuCMJZCHqcXwAZ+SVsWVvLjsPFrDvSKGE71kwGvS0jQ2ga5sQurYNpUubELw8jCiKiooqrW4hkEAWAqgdwFn55WzZm8u2/XlsT8mjqLRK4+paH70OEqMD6NImhK5tQ+jeNhRfb7NzsJocQQt3JIEs3JJ69PymwaCnpNzK2h2ZbN2by/aUfApKLFqX55biI/3o2ymCAV0i6ZgQjF6vq/VBSYjWTgJZuI3jj75Ss0tZvT2TtTuy2JdaKC1oF+PjZaJXchj9OkXSv3MEvt5m7HYFvVxyJVoxCWTRqtkVBf3REb87DuSzZnsW63ZmkV1QoXVp4jTpddA+Loh+nSMY1iuGqFBf7HYFgxw5i1ZGAlm0OqqqoqqOCTG27c/j942prNmeSbnFpnVpohEkRfszrFcsw3vHEhroJW1t0WpIIItWo+ao6WBGMUvXp/LnlnQ5H9zKJScEMaxnDOf3jiXA10PCWbRoEsiiRasJ4byiSpauP8LyTWmk5ZRpXZZoZnoddG0bysi+cQztGYPRqEcHcr5ZtCgSyKLFqWlJq6is3pbJgr8O8ndKvtZlCRfh42ViRJ9YLhmSRGy4nxw1ixZDAlm0GDVHwwXFFhasOsgv6w7LNcLipDomBjF2UCJDe8ZgMMhRs3BtEsjC5dUE8eY9OcxfdZANu7LPaLUjIXy8TIzsE8e485KIDvPFrigyO5hwORLIwmUpikq1XWHRXwdZuOoQmfnlWpckWjidDvp2jOCqC9rTOSlE2tnCpUggC5eiqCo6oNxiY+7y/SxYdZCyymqtyxKtUPu4QK4c0Z5B3aJQVVWuaxaak0AWLkFRHOsI5xdX8t2yffy67ghVVrvWZQk3EBnizYTz2zG6fzxGg17m0RaakY+EQlM1C9tn5JXx2pebuO0/vzJ/5UEJY9FssvIr+N8P27jl2V/45re9WKw27C1wjMLIkSNJTk7mk08+qff2J598kuTkZN56661zeo5zefzp2rhxIxs2bGjy53E1EshCE8rRxkxmXjn/N2sdd7+0jN83prbIX4SidSgpt/LFkt3c+uwv/Lh8P9ZqO3a7onVZZ8RkMrFkyZI62202G7/88kuLGWF+/fXXc+TIEa3LaHZGrQsQ7qXmDElBsYXPF+1i+cZUJIOFKymtqObTBTuZ90cK/xjZnouHJKGDFnGOedCgQfz5559kZWURGRnp3L5mzRq8vb3x8vLSsDpxKq7/HSZaDUVRKaus5oO5f3PH//3Gsg0SxsJ1FZVW8cG8v7nj/37lt/VHUBTV5Y+Yu3fvTnR0NIsXL661feHChYwdO7bWEfLmzZuZOHEiffr0YcCAAUybNo3CwkLn7aWlpTz66KP07duXgQMH1tsK37RpEzfccAPdu3dn+PDhPP3005SVHZspb+TIkbz44otcfPHFDBgwgHXr1lFcXMz06dMZOnQoXbp0YdCgQUyfPp3KykoAkpOTAZg2bRpTp04FIDs7mylTptC3b18GDBjA5MmTOXToUKO9b65CAlk0ObuiYLHa+HLJbm77z6/8vPIANhf/xSZEjbwiCzO/3crkF5ayalsGgEsH89ixY2sFstVq5bfffuOSSy5xbtu2bRs33ngj7du355tvvuGNN95g69at3HbbbdjtjvEbDzzwANu2beN///sfn3zyCcuXLyc9Pd25j927d3PLLbcwdOhQfvrpJ1555RV27NjBrbfeyvFjhWfPns306dP58MMP6dmzJ1OnTmXnzp3MnDmTJUuWMG3aNObOncucOXMAWLlyJQCPPfYYjz/+OBUVFdx4443OfX3++ecEBQVx9dVXk52d3XRvpAakZS2ajN2uoNPpWLjqEF//uoeScqvWJQlx1jLzy3l59kYWrDrI5Mu7kxQTgKKq6F3svOzYsWP56KOPyM7OJiIiglWrVhEcHEznzp2d9/n4449JTk7miSeeAKBt27a89tprjB8/npUrVxIXF8fKlSuZNWsWffv2BeDVV19lxIgRzn189NFHDBkyhMmTJwOQmJjIq6++yqhRo1i3bh0DBgwA4Pzzz2fw4MHOxw0ZMoR+/fo5j4RjY2OZPXs2e/fuBSAsLAwAPz8//Pz8+PbbbykpKeHll1/GaHRE1nPPPcfatWv55ptvuO+++5rkfdSCBLJodDWXMO0+XMi732/lcFap1iUJ0Wh2HizggdeXc0G/eG4e1wUfLxMGF7pUqmvXrsTFxbFkyRImTpzIwoULax0dA+zdu5chQ4bU2taxY0f8/PzYs2ePs33crVs35+2hoaHExcU5/71z504OHz5Mr1696tSQkpLiDOSEhIRat11//fUsW7aMH3/8kUOHDrF//37S0tJo06ZNva9n586dFBcX069fv1rbq6qqSElJOdXb0aJIIItGpSgqxWVVvD9vOyu3ZGhdjhBNQlHh13VHWLUtg2tGdWD8sLao4DKzftW0ra+55hqWLl3Kt99+W+v2hqafUFUVk8nkPNesKLVb8zVHqDW3XXrppc4j5OMFBwc7/+7p6VnrMZMmTWLfvn2MGzeOiy++mC5dujiP1OujKApJSUm8++67dW7z9vZu8HEtkWt894gWz2ZXsNsVvv99H3c+/5uEsXALFRYbn8zfyd0vLWPr3lwAl5hnfezYsWzatInvv/+euLg42rZtW+v25ORkNm7cWGvb7t27KSsro23btnTq1AlwDNqqUVJSUutSpPbt27N//34SEhKcf2w2G88//zyZmZn11rVr1y7++OMP3njjDR5++GEuu+wy4uPjOXLkSIMfEjp06EBGRgZ+fn7O54mOjubVV19l/fr1Z/X+uCoJZHFOan75bNufx90vLeOzhbuwyKQews1k5JXz1Idr+L9Z6yitsDonvNFKp06dSEhI4NVXX63Trga45ZZb2LNnD88++ywpKSmsXbuWhx9+mM6dOzNo0CDi4+O56KKLeOaZZ/jrr7/Yu3cvjzzyCFbrsXEgt956Kzt37uTpp58mJSWFzZs389BDD3Ho0CESExPrrSs0NBSj0ciiRYtITU1l+/btPPDAA+Tm5tbat7e3NykpKRQWFnLZZZcREBDAv/71L7Zu3UpKSgpTp07ljz/+cJ6Hbi0kkMVZs9sVKqtsvDJ7AzPeX01Gniz+INzb6u2ZTHphKcvWpwJoGsxjx46lrKyMiy++uM5tPXr04MMPP+Tvv/9mwoQJPPDAA/Tq1YtPPvkEk8kEwIsvvsj555/PlClTuOGGG2jXrh1du3Z17qNnz558+OGH7Nq1i8svv5y77rqLpKQkZs2ahdlsrremiIgIXnjhBZYtW8bFF1/M/fffT0REBDfffDN///2383633nors2fPZtq0afj5+TF79myCgoK47bbbuOqqq8jOzubjjz+uc+Tf0slc1uKM1Yws/WtbBu9+v42iMlmTWIgTdW8fyv3X9CI0wEvmxxanRQJZnBG7XaGiysbMb7fw17b6zxMJIRw8zAZuGNPx6KAvVdZgFiclgSxOS82lTH9sTuO9H7fLNcVCnIH2cYFMua43MWG+crQsGiSBLE7Jblcot1Tz5pwtrN2RpXU5QrRIJqOemy7pzPhhbZ0fcIU4ngSyOKVNe3J47cuNFJfJUbEQ56pPx3AevL4PPp7GFrFghWg+EsiiXjVz9c46uuqNfJcI0XgCfT2Ycl0veneM0LoU4UIkkEUddkUhr8jCC5+uZ39akdblCNFqXXpeG269rEuLWd5RNC0JZOGkqio6nY7lm9J457utVFbZtC5JiFYvMcqfRyf2JTpUBny5OwlkATha1DZF5e1vt/L7xlStyxHCrXiYDNzzjx6M6BPn/GAs3I8EssBuV8grquSZj9ZyJFtWZhJCKxcPTuTOCd1Ah1yz7IYkkN2cqqps3pvLS59voLyyWutyhHB7yfFBPH5Lf/x9zHJe2c1IILupmukvv1u2j88X7sQFFqgRQhwV6OfB4zf3p0N8kJxXdiMSyG7IrijY7Sr//Xozf25J17ocIUQ9jAYdd17ejbGDkuS8spuQQHYzdrtCYWkVz3y0hoMZJVqXI4Q4hYsGJnDXlT0A5Gi5lZNAdiOKorL7cAHPfbJO5qIWogXplRzG4zf3x2jQy3nlVkwC2U2oqspf2zJ49ctNVNu0XTxdCHHmkqL9eebOwfh6mzBKKLdKEshuYt4fKXz0098yBaYQLVhYoBfPTBpEVIiPHCm3QhLIrVjNQJCPfvqbuStStC5HCNEIfDyNTL91AJ2TQuSccisjgdxKKYqKqqq89tUm/tgsI6mFaE2MBh3/uqYXI/rEaV2KaESaB/KNN97IunXrGrx99erVBAcHn3QfGzduRFVV+vbt29jltUh2RcFarfCfj9eybX+e1uUIIZrITZd05qqR7bUuQzQSo9YFAIwdO5bHH3+83tuCgoJO+fjrr7+e559/XgIZx2VN5RYbj7+7ikOZclmTEK3Zpwt2Ulll48axnbQuRTQClwhkT09PwsLCtC6jxbPbFcoqq5n69krScsq0LkcI0Qy++W0v1mo7t13WVetSxDly+WF6W7dupXPnznz88cfOba+99hp9+vQhNTWV5ORkAKZNm8bUqVNJS0sjOTmZ9957jyFDhnDBBRdQVlZGaWkpTzzxBAMHDqRPnz5MnDiR7du3O/f51ltvcfPNNzNz5kwGDx5Mr169ePLJJ8nMzGTSpEn06NGD0aNHs3z5cudjrFYrL7/8MkOHDqVXr15cffXVrFy5stnem+PZ7Qol5VYeeetPCWMh3MzcFSm8+8M2wDGYU7RMLh/IPXr0YNKkSbz55pscOXKEDRs28MEHH/D0008TFxfnDMDHHnusVtv7xx9/5NNPP+W///0vPj4+3HHHHaSmpvLee+/xzTff0LNnT6677jp27tzpfMyGDRs4ePAgX3zxBdOnT2fOnDlcddVVjB07lh9++IG2bdsydepU5zf8tGnTWLVqFa+88go//vgjY8eOZfLkybVCuznY7ArFZVYemfknGXnlzfrcQgjXsHDVQd6csxmQUG6pXKJl/fPPP7NkyZI620eNGsXLL7/MPffcwx9//MH06dNJS0tjwoQJjBs3DsDZ6vbz88PPz4/i4mLAcV65Xbt2gGNg2JYtW1izZg2BgYEAPPjgg2zatInPPvuMF154AQBFUXj66afx9fUlKSmJl19+mYEDBzJhwgQArrvuOn7//Xdyc3OprKxk/vz5zJ07l06dHOdvbrnlFnbv3s1HH33E8OHDm+rtqqVmKsxpb68ku6CiWZ5TCOGafl13hGqbwpTreqPiWEBGtBwuEcgjR47k4YcfrrPd29sbAKPRyMsvv8xll11GSEgITzzxxCn3mZCQ4Pz7jh07UFWVESNG1LqP1WqlqqrK+e+QkBB8fX1rPX98fLzz356ens7H1RxZX3/99bX2WV1djb+//ynrawx2u0J+iYWpM1eSW1TZLM8phHBtyzelYbXZefTGfqjIohQtiUsEso+PT60Arc/evXtRFIXc3Fz27NlDr169Tnr/mvAEx5Gvr68vP/zwQ537mc1m599NJlOd2/UNLBJe0xL64osv8PHxOa3HNCa7XSGv2MKjM/8kv9jS5M8nhGg5/tqWyWtfbeKh63trXYo4Ay5/DhkgJyeHGTNmMHnyZMaNG8ejjz5KRcXpt2c7dOhAWVkZ1dXVJCQkOP988MEHLF269Kxqat/ece1fbm5urX3+8MMP9QZ/Y7LbFUorrDz2zkoJYyFEvVZsSuPd77dpXYY4Ay4RyBaLhdzc3Hr/WK1WHnvsMcLDw5k8eTKPPfYY5eXlzvO+4Ggtp6SkUFhYWO/+hw4dSqdOnZgyZQpr1qzh8OHDPP/8886BWmejffv2jBgxghkzZrBs2TJSU1P54IMPeO+992q1uRubXVGwWO08/u5f5BRKm1oI0bBFqw/x6YKdp76jcAku0bJetGgRixYtqve2++67j7/++os5c+ZgNpsxm8088cQT3H///YwcOZLhw4dz66238uGHH5KSksL06dPr7MNgMPDxxx/z8ssv88ADD1BZWUnbtm2ZOXMmgwYNOuu6X3/9dV5//XWefPJJiouLiY+P57nnnuPyyy8/632ejKKo2OwqT76/miPZpU3yHEKI1uW7Zfvw8TLJjF4tgOZTZ4rTUzM39VMfrmHL3lytyxFCtDB3X9mdiwYlyiAvF+YSLWtxcjWfmV6avUHCWAhxVt79YRt/bE5HUeQYzFVJILcAOp2Ot7/byl/bMrUuRQjRQqkqvP7VJrbtz8WuKFqXI+ohgdwCfL5oF7+sPax1GUKIFs6uqDz/6Xoy88qx2yWUXY0EsgtTFJVlG47wzW97tS5FCNFKVFhszHh/NeUWmxwpuxgJZBdltyvsPlzAW99s1boUIUQrk1NYyTMfrkFRQJFxvS5DAtkFqXY7BoOesABPPEzyJRJCNL49Rwp57cuNMt+1C5Hf9i5GURV0BgNpP8wlxM/MJ9NHkxDlp3VZQohWaOXWDD5bKBOHuAoJZBejQ4eqKIQM6M++N97CUFXJG/cPY0j3KK1LE0K0Qt8u3cfS9UfkcigXIBODuJgvtv7I4aJ0Hhl8J1TbOPD+R8RMuBTvuDjmLNvPF4t3a12iEKKVMRr0vPKvoSRG+WMwyHGaViSQXYSiKKxN28zrqz8EIMw7hBdGPYqvhw+HZ3+JX4cOBA/ox4Zd2Tzz0VqNqxVCtDZhQV689dAIvDyM6PVyXlkL8lHIBdgVO+mlWbyz7jPnttyKfCbNf4wDRakkTvwntrIyMub+RL/Okfzv0ZF4muVLJ4RoPLmFlbz0+QZkjJd25Le6xhRVocpu5cU/36XKbq11m02xMe3XF1h2YBXhI4fj16kjBz+eRVSwF7OeuJDoMJ8G9iqEEGdu054cvvxlD9I41YYEssb0Oj1vrZlFTnleg/f53/rZvL/xK3zatSV6/KUc/PBjzHYrbz90Pn07RTRjtUKI1m7Or3vYvDdXZvLSgJxD1pCiKvyWspIPN351WvdvF5TIjOH3Y0LP4dlfEnHhKDyjopi9eA/fLtvXxNUKIdyFn7eJtx4eQaCfBwa9HLc1FwlkjdgVO9nleTyy5Dms9urTfpyv2ZuXRj9OqG8w6fN+xjsulsBePVm5NYOXPt/QhBULIdxJ+7hAXrpvKEYZdd1s5J3WiAq8/tcHZxTGAGXWCu5e8Dhbs3YRM/5SFJuN7F9+Y2jPGN56aDgmo3xJhRDnbl9qEbPmy6QhzUl+e2vki60/cLgo/awf/9yKN/lhxyKC+vTGr1Myqd9+T0KEL7OeGE1YoGcjViqEcFc//ZnC3yl5cj65mUggNzO7Ymdb1i4W7v39nPf19d8/8erqD/GIiiJy7BhS53yLt17hvUdH0r1daCNUK4RwZ6oKr365EatNkZm8moEEcjNSVIVKm4WZa2eh0jjf3OvTt/DQL89iNeqIu+YfZC/5FVt+Ps/eMZBLz2vTKM8hhHBfeUUW3v52i0wW0gwkkJuRXqdn5ppZFFlKGnW/mWW5TPp5KqmlWcRcPp7SPXsp27uXO8Z34f5rejbqcwkh3M+Kzen8uSVd1k9uYhLIzURRFRbvW86mzL+bZP9WxcbDS/7DysPrCBt2Huggf/VaRvVP4NX7hyFjvYQQ5+Lt77ZSUmaVUG5C8mu6GdgVO1mluXy+9Ycmf64313zCJ1u+w7dDe3zbtyNr8S+0jw3g4ycuJMjPo8mfXwjROpVXVvPKlxvluuQmJO9sM9Dr9MxcO4vqM7zE6Wwt3vc7Ty1/A32gP2Ejzidr8S/4m3V8OG0kHRODmqUGIUTrs21fHgtWHcQuA7yahARyE7MrCr+m/Mn+gkPN+ry78/Zz98InKLZXEDl2DPmr16KWlPDiXYO5cEBCs9YihGg9Plu4k9LyKhl13QQkkJuQoqqUV1fw5ba5mjx/SVUpd/88nV25+wkfcT6V6elUHD7CvVd1Z/IV3TWpSQjRslVYbLzz/TYZdd0EJJCbkF6n45NNc6iortSsBgWFp35/jQV7lhLQvRt6k4nibX9zyZAkXrjnPOR0kBDiTK3ensm6HVkyYUgjk1/HTcSu2NmevZtVR1xjfulPt3zHG2s+xiM6Ep+kBPLXrKVzUjAfPTYaP2+T1uUJIVqYd3/Yis2uyFKNjUgCuYmoqHyw4Uuty6jlr9SN/PvX57F5mgjq24eCNWsJ9jHy8eOjaBsToHV5QogWJK/IwqcLdmldRqsigdwEFFXl+x2LyCrL1bqUOtJKMpk0/3GyKvIJGTSQkl270VsqefW+8zi/V4zW5QkhWpAFqw6Qkl4sretGIoHcyOyKQk55HvN2/6J1KQ2y2Cw8sOgp1qRuJqB7N6qLCrHm5fHQ9b25eVxnrcsTQrQQigpvztmMTicDvBqDrIfcBJ7+/XV25OzVuozTclnHC7m+62VUFxVRXVyCb5skNu/J4cn3V2tdmnABqqpQfGQtRYdWU11RgNHDF5+IzoR0uBCD6diqYhX5B8nfs4iqkkz0Ri98I7sQ2nEMemP9K49ZitI4smomEd2vIiCub63bCg+spOjQKmyWYsy+4YQkj8E3otOpa1XsHFk1k9COF+MT1r7O7Tk7fqLo4Eo6jHup1vbKwsPk7V6EpTAVvdGMT0QnQjuOxejhdzpvEQAZGz5HbzQT2fOaWttLM/8mb9d87NUW/GN7E9Z5HDrdseOgnB0/o9iqiOxxVa3HFR9ZT1nWdmL633raNWjpnqt6MLp/PAZZO/mcyLvXiOyKnT8OrW0xYQzw0+5feO6Pt9D7++EVFUXJ7j30Sg7ng2kX4OVh1Lo8obHClBXk/D0Pn/BORPe9iaA2wyhJ20Tmxs+dg3mqSrNIX/sBOr2RqN7/JKTDKErSN5O56at696nYbWRtnQNq3TZn4YE/yN01H//YPkT3nYjJO4SMDZ9SWXDwlLXm71uK0TOw3jCuyD9A0cFVdbZXFh4hbfX/UKoriex5DRE9/kF1eQGpq97GfhpXR6iqQs6OnyjL2l7nNltVGVlbvsIvuieRPa6iNH0zxUfWOW+vriigJG0DIR1G13msf1xfbJYSio+sP2UNruCLxbuplrb1OZNAbkQ2xc7nW77Xuowztj1nD/ctmkEZVvw6tKd07z7CAz2ZNX0UcRG+WpcnNKKqCgUpywmIH0BYp7H4hLUnMHEwEd0mUJG3j6riNABK0zcDEN33JnzCkwmI709ox4soz9lFdUVhnf3m71mCUm2ps12xV5O/bylBbYYR0mEUPuEdierzTzwDYsnf+9tJa7VZSihMWU5I+wvq7tdWRfbWbzB6+te5rWD/MvRGT2IHTsIvuju+EZ2JGXArqqJQmLLipM9ZVZJJ2ur3KD68Fp2+7pUKlsLD6HQGxxF+ZFf8ontSkbfPeXveniUExA/A5FV3QKVOpyO43Ujydi9CaaYZ/s5FUVkVX/+yB0UarudEArmRKKrCT7t/pbiqVOtSzkpBZRGT5k9jf8Fh/Dq0x5KZhRk7b045n4FdI7UuT2hAsVXhH9Mb/5hetbabfcMBqK7Id9zPbkOnN6AzHAslg8kbAHt1ea3HVhYcoujQKsK7TqjzfJbCIyjVlfhGdnFu0+l0+EZ1pSI/5aTBVHjgD4xegXgGxta5LXfXAgwefvif0BoHsJbl4BWchMHs7dymN5jxDIqjPOfkI4iztnyNqqrEn3cvBo/6P7jq9Abn+VWd3uBYYBiwFKdTnrOH4HYjGty/T0QnVMVGSWrLOEr+6c8D5BdbZAavc3BWgfzTTz9x9dVX07NnT3r16sWVV17J119/3di1tRiqqlJRXcn8PSf/FO/qFEXh8aUv8cv+FXjFRGOvrEQpL2PaxL5cd2Gy1uWJZmYweRHedTxewYm1tpdl7QDA7Ov4oBYQ1w+A3J3zsVvLqSrNIn/fb5j9IvHwj3Y+TrFbydr6DcHtRuLhH1Xn+axlOY79+oTV2m7yDgVVobo8v8FaS9I34xfVrc728ty9lKRtJLLH1UDdgUcGsw/VlXWP4qvL86muKGjw+QAie15L/JC7630tAB4BsSg2C2VZO6iuLKY8Z7fzvczbtZDgdsMxmLwa3L/eYMInohMlRzsQrq7apvDxT3/LDF7n4IxPEn733Xc899xzPP744/Tp0wdVVVm1ahX/+c9/yMvL4957722KOl3edzsWUmmr24ZriT7c+DX78g8xuc8NqFVWqgsLue7CZNrEBPDcJ+tOvQPRalUWHqFg/+/4RHTCw98RyB7+kYR2upic7XMpOrgSAKNXEHGD76o1gClv1yL0BjPB7UZgsxTX2bdy9OdHb6y9KlnNv5UGfr6qSrOxV5XiGRhXa7u9upLsrd8R0uFCzL5h9T42IK4v2du+J2fHTwS3PR/QU3jwT6xlOaiK/aTvRUNBXMPkFUB41yvI2vI1ir0av6huBCQMpjx3L9ayHKL73UzxkfUUHvwTg8mbsC6X4hlQ+9JDz4A4SjO2otgsDQ6QcyUrt2Yw4XAB7WIDZYDXWTjjQP7yyy+58sorueqqY6MC27RpQ3Z2Np999pnbBbKiqhRVFvPr/j+0LqVRrTi0hsNFaTwz4kHMHoFU5eQysGsU7z4ygin/XYHFKgM43E1lwSHS13+CyTv46BGnQ8H+38nbvYiAhMH4RXXFbi0nf99S0ta8T9zguzB6+FGRl0LxkbXEn3efo3Vbj1Ne8NHApTU1R7Im7+Ba23N3/IzRK4CgNkMb3GVA/AAUWxV5e345+mFCh29UNwLiB1DcCK3igPh++Mf1QVXs6A0mVFUhb9dCQjqMpro8l5wd84jpfytVxRlkrJ9F4ohH0RuO/Vo2eQc5ugOVxXj4uX4gA7w/929evX+Y1mW0SGf8EUav17N582aKi2t/wr3zzjuZM2cOAFarlZdffpmhQ4fSq1cvrr76alaudHxyLi8vp1evXnz5Ze1ZrGbOnMnw4cNRFMdUbB988AEXXHABPXr0YPz48fz000/O+65du5bOnTvz/vvvM2DAAK644goURSE7O5spU6bQt29fBgwYwOTJkzl06NCZvsQzez90Or7aPo9qxdakz6OFQ0VpTJ4/nTxLIZ4R4VTl5xMT5ssn0y8kMtj71DsQrUZpxhbS1ryP0TOQ2IF3YjD7AI5LjfL3/YZfTC8iuk3AO7QdftE9iB1459GBVitQbFVkbf2GoLbDMfuGoyr2Y+Grqs4j0ZrLqBRbVa3nPnbkXH8g1dyuM5id28qyd1KasYWI7lce9xyqs2b1uBHeQW2G0W7M0yQOf5g2o58gus8/sVdX1jqvfC50Oj36o+fXS9M3oyo2/OP6Upq5Ha/gJLxD2hCYNBh7dSWWosO1H3v0NTXUHXBFe48U8ueWdGwy6vqMnfER8u23386UKVMYNmwYAwYMoG/fvgwcOJBu3brh7+8YxTht2jRSUlJ45ZVXiIiI4Pfff2fy5MnO0L3ooouYP38+119/vXO/P//8M+PHj0ev1/Paa68xf/58nnzySdq0acP69et56qmnKC0t5YYbbgDAbrezYsUK5syZQ2VlJRaLhRtvvJEuXbowe/Zs9Ho9n3zyCVdffTU///wzERERjfSWHaMoClllufxxeG2j79tVVFRXcO+CJ5k69G56RXXFVlaOt5cn7/x7OP+ZtYFNe3K0LlE0sYKUFeTtWohXSBui+06sdd7Tbi1HtVfjFZRY6zFGD1/MvmFUlWZjKUrDVllIwb7fKNhXe5xF9rZvyd72LR3GvYTp6Lnj6or8WmFYXZ6PTm/A5B1Sb301Hw6U4y5TKsvcjqrYOLzitTr337dwGv6xfYjseQ2WolSqK4vwi+rmHKwGUFWSjod/485cp9ht5O35hfAul6LT6bFXlTlfp06nR2/0xH7CoNCa11QzSK6l+OqXPZzXI/rUdxS1nHEgX3TRRURGRvLZZ5+xatUqVqxwXBqQmJjI//3f/xEaGsr8+fOZO3cunTo5Lua/5ZZb2L17Nx999BHDhw/n8ssvZ+LEiaSnpxMTE8O2bds4dOgQV1xxBRUVFcyaNYvXXnuN4cOHAxAfH096ejofffSRM5ABbr31VhITEwH49ttvKSkp4eWXX8ZodLys5557jrVr1/LNN99w3333ncv7VC+9Xs8X2350i8nVX/jzHa7qcglXdRqLarNh0OmYcVt/Pl24mx+W79e6PNFEig6vIW/XAvyiexDZ8xp0+tq/MgwevuhN3lQWHCQwcZBzu91aTnV5Hp6B8XgGxhB/Xu2fP1tVKRnrZxHcfpRz0g+v4AR0BjOlmdud54NVVaUs62+8gtvUauUez+QVCEB1ZbHzcSEdRhOYOLjW/YqPrKX4yDriz7vPGeIV+QfI37ME79B2zg8a5bl7sZZmE9Tm/LN5yxpUdGgVRk9/fCO7Ao73rrrQcUSsKjaU6goM5tqjtW2WItDpMdZzaZQrS80u5Y8t6ZzXPVrOJZ+Bs5r5oWfPnvTs2RNFUdi9ezcrVqxg9uzZ3HHHHfznP/8BqHX0C1BdXe08gu7Xrx+xsbHMnz+fSZMm8dNPP9G7d28SEhLYtm0bVVVVPPTQQ+iPWxvQZrNhtVqxWI61bmrCGGDnzp0UFxfTr1+/Ws9bVVVFSkrK2bzMk7Irdg4VpbE+fWuj79tVfbdjASn5h/n34DvQ6w2oisLN4zqTFBPAq19s1Lo80chsltKj52GDCEwcjKU4vdbtJu8QjB6+hHQYTe6OeeiNHvhFd8duLadg/++g0xPUZhh6o2edAVfHn/etuU1vMBPUZhgF+5ai0xvwCkqgOHU9luI04gZNbrBOs284Rq9ALIUH8Yvq6tzvieeUy7IdlzEdX4t/TG8K9v9O5sbZBLU9H1tlEbk75+MZlIh/bG/n/apKs1EVW51BV6fLbq2gYP8yovve7NzmE96Jgv2/U5y6AWtpFnqTJ55BCbUeV1lwCK/gJPTHteNbiq9/2cPQHjI//pk4o0DOysrivffeY9KkSURGRqLX6+ncuTOdO3dm1KhRjBs3znnfL774Ah8fn1qPrwlYnU7HhAkT+Pnnn7n99ttZtGgRDzzwAHBsYMd///tf2rRpU6cGs/nYN6aHx7HRmIqikJSUxLvvvlvnMd7ejd/uMegNLXISkHO1OetvHljyDM+PehQ/Tz8Um43hvWOJj/DloTf/xGaT80atRXnOblSlGltlIal/1f25iuhxNQFxfQlKGoLB5EXhgT8oSduA3uSDd0gS0X1vqhOKpxLSYRQ6vYHiw2spTFmB2S+CmH4317n06kR+Ud0oz9lDWOdLz+j5jJ5+xA64ndydP5Ox4TMMJi/84/oSmnxh7Skut/9IdWUhbS6Ydkb7r1Gw/3e8ghLwDklybvMKiie041jydi1Ab/Imqvc/neeawTFRSkV+CqHJF53Vc2otLafMcZTcIxqjHCWfljMKZLPZzLfffktUVBR33nlnrdtqjn5DQ0MByM3NpXPnYwsVvP766+j1eu6//34ALr/8cmbOnMnXX39NeXk5Y8eOBRwjto1GIxkZGYwYceyi+c8++4z9+/fzzDPP1Ftbhw4dmDdvHn5+fgQHO34JVFdX89BDD3HRRRdx8cUXn8lLPSm7YmdHzl525u479Z1boZzyfCb9/BjPjXqEpCDH0UabmEBmTR/N/a+vIL+45QxAEQ0LiO9HQHy/U98R8I/tXeuI8lRM3sF15pQGx7nUkPYX1Dvj1skEJg2j6NBqKvIP4B1S94M8QGjyhYQmX1hnu2dgLHGD7zrp/uMGN3yEDpwyqMM6X1Lv9uC25x+93Kqussxt6PTGeic0aSm+/mUPw3rKUfLpOqOPLcHBwdx+++288cYbvP766+zatYvU1FR+//137r33XgYMGED//v0ZMWIEM2bMYNmyZaSmpvLBBx/w3nvvER8f79xXTEwMAwYM4NVXX2XUqFH4+jrOnfj5+XHttdfyxhtvMG/ePFJTU/nuu+94+eWXCQ8Pb6g0LrvsMgICAvjXv/7F1q1bSUlJYerUqfzxxx8kJzfupBYGvYE5f//cqPtsaWyKjUd/+T9+P7AaVXEcFQf4efL+oyPp0qb+wTdCNBWTVwCBSUMpTFmudSmNwjFt6R+EdBhd66i5pUnPLWPF5jRZnvE0ndVqT3PnzuWbb75h7969WCwWoqOjGTt2LJMmTcLb25vKykpef/11Fi5cSHFxMfHx8dx6661ceeWVtfYzb948HnnkET755BMGDz42AMNms/G///2PH374gZycHKKiorj66qu5/fbb0el0rF27lokTJ7J06VJiY49NlZeamspLL73E6tWrsdvtdOnShQcffJDevU//k/up2BU7+/MP8cSyVxptny3d6LZDua3n1eiPDqZTbHbem/c3C/86pG1hwq2oio0jK98itNMl+IR10Lqcc1J8ZC2lmduJHXC71qWcs+hQH9599AKZwes0yPKLZ+H5P95mc+bfWpfhUtqFJDJj2P14mB3XiqqKwi/rjjDzW/cZ9CaEqN/DN/RhiJxLPiUJ5DOgqAqZpTk8uOgZVFr222YttrDn7XUkXdcN36SgWrdV5VeQsWgfZUeK0el1BHYJJ2p0WwyeJx9y4G/2ZYxhID9+/b1z4pedB3K4/f6nKD6yAbu1As/AGEI7jcMrKP6k+7KW55G3ezGVBQdR7dWY/SIJTR6Nd+ixpfUqCw6Rve17bJZifCI6E9HtCvTGY4P+Cg+upDx7F7ED76i174q8/eTu/Jn48/7V4KxRQojG0y42kNenNO5lZK2RfFw5A3qdnrm7lrSKMD7w2RYUS93ZxeyV1aTM2kx1uZX4yzsRNaoNRduzOfzNqTsC+QUFPPXUDK6efOyStx++fJ/yI6uI7nwBUX1uAJ2etDXvYy3Pa3A/dms5qX/9D2tZDuFdLiOq9w0YPXxJW/MhFfmOS9hUxUbGxtl4BiUQ1ft6LEVHyN+39Ng+qi0U7FtGaKexdfbvHdoOo1cw+fta9mIgQrQU+9OK2HkwX84ln4IE8mlSVZWiyhJWtpAFw+ujKioFmzPZ++56bGXWeu+Ttz4de0U1bf7Zg4BOYYT0jSH+qi6U7i+g/HDRSfefs+IQ3jH+fJm5gLm7FpORlsZXX33Fo48+yvxZT9O732Bi+t+OwexNwf7lDe6nJG0jdms5Mf1vwy+6Bz7hyUT1+Sdmv3DnGrXWshzsVSWOdXrDOxKYMLDWWrOFKcvxDm2LZ0Dd5fgAQtqPpDBlBTZLycnfNCFEo/hx+X6ZJOQU5N05TSoqC/YuxX6KFWBcmSW7jLSf9xDUI5L4KzvXe5/S/QX4JARi9DnW+vVrF4zew0DJvoaXv7OVWynYlEFgd8cUpV9um8dTs1/CZrMxevRoPDzMvHTPEEYPTMInvBPlObsb3JfR07EgwPELt+t0ekzeocctiXd0jdmjI1B1eiMcnZ/YZimm6NBfhCSPafA5PAPjMHoFUnigdS0KIoSrWrcji+yCChQ5S9ogCeTTZFfsLD2wSusyzokpwJOO9w8kZmx79Kb6z51W5ZbjEVJ7IhWdXoc50IuqvIoG9128MxdVUfFPDnVu27lvFwYPI95+jv0ZjEbuv7onwwZ0xV5VUmcRgRp+0T0I61T7unG7tYLKggOYfR2Bb/IJxWD2ofjIeuzWckoztuEV7Jh0IW/Pr/jF9MLsE1pn37WeJ6o7JelbTnofIUTjUFSYu2J/PatSixoSyKfBrthZfmgNZdZyrUs5J0ZvE+aAky/hZq+yo/eoG9Z6DwP2qoZXtCo9WIhHmA8Gj2MDvxSLDb2HgUnzHyOtOAMAnV7PgO6O6QFPdwUbVVXI3vY9iq2KoKOTKOgNJiJ6XE3Bvt9I+eUZdHoDIR1GU1WaTVnmNkLaj6IseyeH/3yDIyvforyeSVw8A+OwV5VQVZp9WnUIIc7Nb+uOYLG23C5jU5NAPg0GvYGFe5dpXUbzOEk7SdfAerQA1oJKzEG1w75mV1a7lQcXP8vKw+trLcTx+gPn43uKkduqYidr89eUZW0nvMtltUZn+0Z0ou2FM2g39lliB96BwexN3u6FBCYNAZ2OzI2zCW53AUFth5Ox4VNsVWW19m3ydowuP9YGF0I0JYvVzoJVB7ErMrirPhLIp2BX7GzL2kV6SZbWpTQLvYcRpZ5PsEqVDf1JwtNeZavTBjd4GmsdVb+55mM+2/IdpSWOtbQT4yL4ZPpoEqP8699ndSVpaz+kNGMrYV3G11m9x1nz0Yn3K/IPYik8QlCb8ynP3oXJOxi/qK74RXXD5BVY57x1S1xrVoiWbuGqg+hP8uHenUkgn4JBb2DJ/hVal9FsPEK9qcqvrLVNVVSshRY8QxtepMPobcJ+wmVUHqHeKFV2bOXHRnQv2LuM79csIDo6Gk9PTzy9zPz3/qEM7Vl77dTqyiJSV72NpfAwUb1vIChpyClrz9u1gOB2IzGYPLFby9Aft4as3uTV8Fqz5tqLoAghmk5uUSWb9+bKJVD1kEA+hTJrBZvcaFYuv7bBlB8uqhWipfsLUKx2/No1PEe1OdCT6uLag7T82jpawkU7cpzbFJvC4a0pqLEmCiuKADCYjPz7+t7cONaxLq692kLamvexWUqIGXAHftHdT1l3acY2bFWlBCQ41uQ1mH1rBbC9qhSDR+21ZqsrHUfqJq/aE6MIIZrWkjWH5BKoepzVesjuwq7Y+ePQmhZ9qdOZCu0fQ97aNFI+3ULk8CRsldVk/rIfv/Yh+MQ3vEi6X9tgiv7OwW6xOWf0Mgd6EdQzkozF+1GrFTxCvcn96wh2i42AQVHc9fPjzBg5BZ9KMwUFBfzjgh60iQngnimPUV2eR0iH0ej0eiqPLuIOjsubTlyTVlXs5O1ZTGjyhc5F7L3D2pO9/QcKjl63bLOU1Jnf2FJ4EJN3MGbfsEZ574QQp2fdjizKKqz4ere8dZ6bkgTySRj0BlYcWqN1Gc3K6GOm7S29yFi0j8Pf78BgNhDQJZzoMe1O+jj/5FB0Bj0l+/IJ6hbh3B57WUcMXiZyVh5GsdrxivajzcSeeIR4o6AwY9mrmJdXsH7ZGvbs2UPfThGYyx0jovP3/kr+3l9r1+cVVGepu+Ija9HpjfjF9HJuM3kFEtnjH+TtXgQ6HZE9r8XoWfsDRXnOXnyjTn30LYRoXDa7yq/rjnDZ0DZypHwcmcu6AaqqklGaxZRF9a+/LOpKW7CXqpwy2t5y5qtrnRffn3v6/ROD0THRR0VFFQ++uZL03LJTPPLsVOQfJH3tBySNnIrRs/5BZUKIphMX4cc7j4zUugyXIh9NGqCisuzAX1qX0aJEDEugMquMirQzn45y5ZF1PPLbC1RWOSYf8fb2YOaDwxjQObKxywQcU2sGJg2VMBZCI6nZpew9UoiiyDFhDQnkk/jz8DqtS2hRTH4exIxLJn3R3rN6fGpxBpPmP05miWMQmNFs4rGb+3L1qMZd27Yibx/VlUWEdBjdqPsVQpyZxasPIVdAHSMt63rYFTvbs3fzf3/M1LoUt/XwkEn0i+mBTqdDVVVWb8/k+U9b7sIeQoi6PM0GvnhmLOYGpvJ1N3KEXA+D3sDvB1drXYZbe2XVe3y9fR6K3Y5Op2Nw92je/vcIzEb5lhWitbBY7azbkSXXJB8lv93qUVltYUP6Vq3LcHs/7lrC//35NtXVjmui4yP9mfXEaMKDvDSuTAjRWP7cki4jrY+Sd+EENsXOyiPrqVYaXkhBNJ9t2bu4f/FTlFQ6Bor5+Xryv0dG0KP9yVdyEkK0DBt352Ctdp+5Hk5GAvkERr2BP9zs2mNXl1dRyJ3zp7E//xAAJrOJZ24fyPhhbbUtTAhxzqqqHW1rm7StJZBPVFpVxt68g1qXIU6gKAqP/fYiv6b8iaoo6I0Gbru0M1OuO/NrnoUQruXPLekYpW0tgXw8m2JnQ/o2VGTguav6YMOXvLfhC+w2Gzq9npF943h9yvnIWC8hWi5pWzvIr7HjGPUGNmZs17oMcQrLDv7FY8tewmJ1rNbULjaQT564kGB/z1M8UgjhiqRt7SCBfBy7Ymdb9i6tyxCn4WBhKpPnTyenNA+AQH8vPpg6kk6JsnKTEC2RtK0lkJ0URWFn7j4stqpT31m4hIrqCu5d+ASbM/5GVVXMHiZeuGswFw1K1Lo0IcQZ2rQnx+2vR5bVnmroYL2LX3t86KvtVGSW0vnBwbW2lx0qIuu3FCqzyzB4GgnoFEbkBW0weDi+vPs/3kT5oaIG99vjmZNP8G4trGT/x5voMLkfRh8zql0hZ9URCjZlYiutwhziTfjQhFqrPJ2KvcrGnrfX4ZsYSPwVnZ3bq0uqOPLDTirSSvCK8iVuQic8Qrydt1dmlnLgsy10vH+Qc5nH5/98m0vih/PJ1Hf4fPZs7r6iG22i/Xnn+22nXY8QQlsWq52dBwvo0iYEvd4959OUI+Sj9Do9mzL+1rqMBhVuzaJ4V26d7ZacMg58tgWdUU/C1V2JGJ5E4dYsjny7w3mf2HHJtLujT60/8Vd2Bh2E9Iups8/jqarKkR93ETYoHqOPY+3SrN8PkrX0AEE9Ikm8vjs+8QEc+XYHRTtyTvv1ZCzaR3WRpc729EV7Uax2Eq/thsHTxJHvd9Z+3C8phA9NcIZxjQVHlhN/fgemTZ0KOh1jByfx0r3noZfvcCFajPW7srUuQVPy6+qojJJscsrztC6jXtUlVaQv3IvJ36PObYVbHd/Aidd1w799CCF9ooka1ZaSvflYixyDnjzDffCJC3D+8Y7xJ3dNKl6RvkSPbX/S5y7elYslp5yQ/seCu2BzJkHdI4gckYRf22BixyXjHetP3tq003o9JXvzKNqRg96zboOmLKWQsCHx+LULJmJkEhVpJdirHJO0lKYUUJVXTkj/2Hr3W5GsZ8vObfy84GcAOiWF8PHjo/H3kUXQhWgJNu3OdtujY5BABhyDudanb9G6jAalztuNX9tgfNvUHbCk2BR0Bh364yZnN3g71hS2VdQ/21j+hnQqM0qJvbQj+lNcL5Tzx2ECOofVup9qU9B71A5Tg7cJe2X1KV+LrbKa1Hm7ibqwXZ2jXAB0oDc5nktvOPqDqTqO1DN/2U/kyDYN1qw36vHrHMqM157lUGEqACGB3nz82AW0jQk4ZW1CCG0dziqlqNR9x/FIIONYTGKji7ar8zdmUJlRQswl9S9BGNw7CoCMxfuwVVRjySkj+/eDeEb44BXpW+f+9iobWcsOEtQjEu/Yk68FbMkrpzKjlMDOYbW2hw6Mo3BLFiX78rFbbBRuzaJ0fwFBPU69dnH6gr14hvkQ0je63tu9YwMo3JqNvbKags1ZeEb4YPA0UrQtG9WunvI5AruEU5Fewv1fTmfFwTWoioKHp5lX/3UeI/rEnbI+IYS21u1038ufZFAXUGGtZG/+Aa3LqMNaVEnG4n3ETejkPH97Iq8IX6IubEf6/D3krXG0jE2BnrS7rTe6elo/BZszsVdWEzEs8ZTPX3agEADvmNrBHTY4jorUYg5+fmwQXHDvKMLPSzjp/op35lKyO4/ke/uja2AR1JiL23Po67/5+/k/MYd4kXB1VxSbQtbSA8Rc0gFrYSVpP+/BVmYluHcUYYPjaz2+ptbSAwW8ve5T9hcc4pYeV2EwGplybU+Sov34+Oed9T21EMIFbNqdw4UDTv67pLVy+0C2K3a2ZO1EUV3rE5mqqqT+uBv/9iEEdglv8H7Zfxwi67cDhPSPIaBzGPaKarKXHyJl1mba3dYHk2/tIM9fm45/x1A8Qr0b2OMx1kILBk8jBi+Tc5tiU9j/0SZspVXEXpqMR6g35anF5Kw4hN5sIObi+o/kbeVW0n7eTdSYdpgDG16tySPEm+R7+mO32jGYHW343FVHMAV44J8cyt531+HbNpjAruEcnL0NjxBv/JOPLTRh8DRi8DRiLXQMGFuyfwUHC1N5cti/MJs9uHx4e5KiA3nivb9O+fqFEM1vy75cFEV1y3PJbt+y1ul07M7br3UZdeSvS6cyu4zose1R7QrqcS0c1a6gKqrj8qMVhwjsHkHsuGT82gQT2DWCNjf3wlZqJXfl4Vr7rMwqoyq/gqDup24tA9gtNvTm2guHF+/MwZJVRvxVXQjpF4NvUhARwxKJGtOOvDVpVGaX1buvtJ/34BHmQ0jvqPpfj1p7utKaMLZXVpP952GiRrejqqCSyswywgbH4x3tT0CnMIp21h3ZrTcbnAPBAPbmH+DuhU+QX14AQM8OYXz42Ci86zuHLYTQVHllNfvTiur8TnAHbv8bSa/TsyfP9drVRTtysFdUs/PlVXVu2/b0ciKGJxLSLwalWsEnvvaAJZOvGY9Qbyw55bW2l+zJQ2/S498h5LRqMHqbsFtqDwyzHr1U6cTn9EkIBMCSU45XRN1z18U7c521H69wSxaFW7Joe0svfJPqDlrL/vMwPvEB+MQHUJ5a7KjLy/Fta/AyYs2orPMYe2U1Rm9TrW0lVaXcM/8Jpg//F10jkokI8WHW9NH8e+ZKDmeVNvQWCCE08HdKHm1iAjAa3Oso2e0D2Wqv5kjR6V2u05xiL0tGqao92Xr27wepyCwl6frumPw8MPqYMXgZKT9cTOhxlwLZyq1U5VfgHVv7SNgx2YZfrRHZJ2MO9ESx2rFVVmM82rb2DPUBoPxwEX7tjgV7xRFHWHoE19+Obj+pb51tB7/chneUHxEjkuptoVuLLeSvS6f9nY7H1pxHry6zYg7wpLrUivGElrytshqlWsEcWHdeawWFZ5b/l3/2uIJL24/Ey8vMGw8M46UvNvHX9sxTvh9CiOax61ABV4w4+SWZrZFbB7KqquzPP4Tdxc4fw7HgO57B24TOoK81yCpyZBvSF+zF4GEgoEs4topqcv48jE6nqzPgyZJdhm+74NOuoea+5YeLCejoOE/r3zEU71h/jny/k4gRSXiG+lCeVkzOH4cdtx2tzVZupaqgEs8wxyjpEweGAegMegzepnpvA8hadoDAruF4hjveC3OQJx5hPmT9loJ/pzCKd+USN6FjrceUH3Z8MPA7yeucvfUH9hcc5P7+t2AwmZh6Yx/mLN3HF0v2nPZ7I4RoOrsOFWhdgibc+hyyXVVc8vzxmQgdEEv8lZ0pTyvh4OytZCzeh2eoN+3v6lfnaLW63Fr/tb8N8AjywivKj9J9+c5tOr2ONhN7EtA1guwVhzgweyuFW7MIH5ZAwtVdnfcr2ZvP/g82Upl5du3gyuwyiv/OIWJE0rHn1ulIuKozlVnlpM3bTWi/GAI61b4kq3RfPt4x/icdOAawJnUzD//yf1RYytEZDFwzOpknbu1/VrUKIRpXcZmV7IIKrctodjrVHc+cH+f5P95mc6ZrXoPsCop25JA6dxedHx7inBvbVdmtdna+vJL4KzrXCeqGmA1mXhg9ldgAx/Xc6TmlPPD6cixW1+uaCOFOHri2F+f3jnWrFaDc55U2YF/+Qa1LcGkBncPwDPchf3261qWcUv76dDzDffDvGHrqOx9ltVt5cPEz/HVkA6qqEhPux6wnLiT6NC4LE0I0nZ0HCzC42aVPbh3IWaU5lFnLT31HN6bT6Yi/sjN5a9KwlVu1LqdBtnIreatTib+ic4OTjpzMf1d/xOdbvkex2/Dx9uDth0fQt1PD138LIZrW7kMFZ/Wz3JK5bcvapthZcWgN762frXUpwoV0CWvPtPPuwWz2QLHb+Xzxbr5b1rLHGQjREul08PV/Lsbb03TqO7cSbnuEbNDp2ZuXonUZwsXsyN3HfYtmUFRRjN5gYOLFnXnkxrqXbAkhmpaqwp4jhW41QYjbBrJOp3PJCUGE9gotxUxe8Bh78lLQ6XQM7RnDzIeHYzzFylhCiMZ1ML0Yu10CudWz2KrILK077aIQAIqi8MTSV1i093dURSEhKoDPnhhNWD0TjgghmsahzBK3+iDsPq/0BGklmai4zycvcXY+2fwNM9d9it1WjZ+vJ+8/OpJu7U5v6lEhxLk5mFGidQnNyi0D2abYOVzk+pfxCNfw5+F1TP3tRSqrKjGaTfznzkGMOy/p1A8UQpyTtJwyFMV9DpzcMpD1Oh2pxRlalyFakMPF6dw1/zGySnPQGwzcOb4r91/bU+uyhGjVbHaFjDz3uTTVTQNZL4EszliFzcK/Fs5gfdpW0OkY1S+B1x84Hzc6xSVEs0tJK8Jud4+Z89z2V0l8QAxtgxPwMsogHXFmXl71P77e/hOK3U67uEBmPTmGID8PrcsSolU6lFkCbjI/iFtODGJT7Bj1x5YgLLaUklqcQVpJJuklWc4/hZZiDasUrq5HZGceGTwJk8lMtbWax95bze5DhVqXJUSr0rdTBDNuH6h1Gc3CLQO5KusgmV89i1dSdzxjkzGHJ2IMDAcvHwxGM3qdo3FgsVWRUZLtDOuM0mzSSrLIKct1ySUbRfML8w7h+VGP4u/lh2KzMfP77fy67ojWZQnRakQEe/Ph46O1LqNZuF0gq4qd8l2ryZn7ev130BvxjO+CV0InzBFtMIdEg08AepMHhqNH1XbFTm55AUeK00kvyXKGdXpJFhZbVTO+GuEKjHojz17wMG2DE1AVhUWrD/HuD9u1LkuIVkGv1/HDi+Mw6Fv/GVb3C2S7jaK/fqTwj6/P+LGmsHi8krrjEd0Oc2gser8QdB5eGA3H5lotspSc0P7OJkPa325hUr9/MjJxEDq9nt2HCnj07T9RpJEixDn7aPpowoNa/wpsbhfIADnz3qTs7xWNtj+9T+Bx7e8EjAGO9rfR6OFcraSm/V1zVJ1ekkV6aTbZZbko0v5uNS5ocx6397oGg9FIYUkl97z8O6UV1VqXJUSL9sykQfRsH9bqV39yy0BO/2QqVRn7mv6JjGa84jrhmdAFc0QS5uCoetvfOeX5tYP6aFhXSfu7RWoXlMiM4ffjYfbEWlXNv2eu4kCGdEiEOFt3XdGdCwcktPppNN0ykA+9dhNKZZmmNZjDE/BM7I5ndDtMobHo/YLrtr8ri0ktySStOJP00mNhXWRxr+nkWiJfszcvjn6MMN8QFJuN17/ewvLNMjucEGfjyhHtuHFsJwwGCeRWRamq5NAr/9S6jAbpfQLxatMDr5iOmMLjHaO/PX0wGs3Odk1ltYWMUkf7O6PEMfI7oySL7PI8aX+7mMeH3UePqM6oisK8Pw/w0U87tC5JiBZnaM8Yt1gG1e0C2VqQQdq792ldxpkzmvGK74xnfBfMkUmYgyIbaH/ncbgo3TGYrDTLEdbS/tbUtV0v4/KOF6IzGPg7JY9p76zSuiQhWpTkhCBe+dcwrctocm4XyJbU3WR89rjWZTQqc0Qinond8IxujykkBoNfCHh41mp/F1YWk1acSWpJBukl2aSXZJJemk2xtL+bRb+YHkwZcBtGk4n8ogomv/g7FqtN67KEaBGC/T35dMYYrctocm4VyKqqUrF3HdnfvaR1Kc1C7xuM99HR36awhtvf6aVZpBZl1DpPnVOeL+3vRhbhG8bzFzyCr6cv1qpqHnjjD1KztR3LIERLoNfB3Jcvk1HWrYlqt1G6fTl5C97VuhRtGc14JXTBM74zHhFJmIKjwNu/VvvbptjJKcs7Nvr7aFhnlGRTZbdq/AJaLrPeyHOjHyUhMBa7zcaLszexenum1mUJ4fK+/s/F+HiZTn3HFsztArl43XwKln2udSkuyxzZ5mj7ux2mkBjH6G9z7fZ3QWXR0fZ3JhklWc5BZcVVpRpW3rLcN+BmzkvoD4rKd8v389nCXVqXJIRL++CxUUSG+GhdRpNys0C2U7DiS4pXz9W6lBZH7xeCd1I3PGM7OtrfAWF12t8V1ZXHTX5ybFBZTnkebvRtdtouaj+cm3tciU5vYNv+XKb/b7XWJQnhsl7+11A6JgRrXUaTcq9AVlXyFr5L6ZalWpfSehg9jrW/I5MwBUXW2/7OLss9bkpRx6CyzNIct29/J4e25Ymh92E2e5BbWMHkF5Zitcm5eyFO9NjN/RnYNbJVn0d2q0AGyPruRSr2rNO6DLdgjmqLV0I3PKLbNtz+rigitSSDtJIsx8jvEsciHSVu1P729/DjpQunEewdRFVVNfe8spzsggqtyxLCpdz7jx5c0C8eYyueHMTtAjnjsyewpO7Uugy3ZvQPdcxSFpuMOSweQ0AYeHrXaX+nl2SRWpxRa0rRnIr8Vtn+1qPniRH30yW8A3abjedmbWD9rmytyxLCZUy8uBMTzm+HqRVPn+l2gZz63gNU56VqXYaoj8mz9ujvoEjw8UdvNB/X/raRVZZLalHG0UlPHOepM0uzsdpb/iION/a4knEdRgIwZ+k+vli8W+OKhHANE85vy83jOrfqZRjdLpAPv3Eb9rIircsQZ0TnaH8ndsUj6sTR30bnvQoqijhSnEF6SWatsC6talnX+g6O68N9/W9GbzCweU8OMz5Yo3VJQmhuRJ84Hry+t9ZlNCm3C+QDz18DisyQ1FoYA8Icl2nFdsQcFocxIAzV0xuj4bj2t7WStBLHZVrHn6fOdeH2d6x/FP8Z+TDeHt7kFFYw6YWl2GSwl3Bjg7pF8djN/bUuo0m5VSAr1VUceul6rcsQzcHsiVdCN7ziOmGOTHSO/jYYPdAfbXlV221kl+U6L9OqmQAlozSbahdof3saPXlh1KNEB0RiqarmrpeWkVdk0bosITTRp2M4T90xSOsympRbBbKttIAjb96hdRlCU3rM0W3xSuiKR3Q7zCHR6Hxrt79VVaWg8lj72zGgzHGpVqm1vNkrnjL4DgbG9kKxKzz7yTo27s5p9hqE0Fr3dqE8d9cQrctoUm4VyFU5h0n/4EGtyxAuyhgQhldSDzxiOhwd/R3qGP19XPu73FpBWkkWacXHz/2d3eTt78s6jub6bhPQAV/9upevftnTZM8lhCvqmBjEy/e17hWf3CqQLWm7yfi0da30JJqezuyFV2JXPOM6Ya4Z/e3tV2/7+3Bx+rHpREuzyCjNabT2d7fwZKYOvRujwcTG3dk8/eHaRtmvEC1B25gA/vvgcK3LaFLuFcjpe8mYNU3rMkSroccjpj2eCV3wiGqLOSQGnV8QOlN97e/0o5Of1CzSkXVW7e9gr0BeHD2NAC9/cgoquOP5X1FkrJdwA3ERfrzzyEity2hS7hXIGfvJ+ORRrcsQbsAYGIFXYnc8YztgCovD4H908hODqU77O/WEQWV55QWoNPxjqdfreXbEQ7QPbYPFauOuF5fKYC/R6kWGePPBY6O1LqNJuVUgV2UdIP2jf2tdhnBjerO34zKtuI6YI5MwBUbU2/7OKsvhSFE66aXZzku1MkuzqT7ukr3bel/Lhe2Goagqz360ho27c7V6WUI0uWB/Tz6dMUbrMpqUewVy9iHSP3xI6zKEqIcej9gOeCV0wRzZ1jH6u572d35F4bFFOkqzifWP5JIOIwEdX/2ym69+2avtyxCiifh5m/jy2Yu1LqNJGU99l1ZE13qnXBMtnUJV2m6q0upOlWkMOtr+jknGNyyOrgGxdA3vUKv9raoq113YkZgwP175YmNzFy9Ek2vNqzzVcKtA1rXiOVBF62UrzKa08FdKN/9aa7vewxuvpO54xDra3+aQGM7vHUvbGH/+/dZKyiq1n9xEiMai10sgty5u8AlLuA+lqoLy3Wso331srmvf7iOIHjuJT58czf99ukEmERGthtHQ+n9/u9Uho05a1qKVK9v2O+kf/xtdWR4zbuvP5Cu6a12SEI2iNa/yVKP1v8LjSSALN1Cdm0rahw9TtmMllwxJ4t1HRuDr6V7NMNH6GNygZe1eCeUGX1AhANRqC7k/vUnOzzOJDvHi0xkX0js5XOuyhDhrBkPrj6vW/wqPIy1r4W6Ob2E/dbu0sEXLJUfIrY0EsnBDx1rYq6SFLVosgwzqamVklLVwU44W9hvkzn+bGGlhixbIKIO6WhkJZOHmSrcuI+3jR461sC/vpnVJQpwWb6/W39Vxq0DWGUxalyCE5qpzjxxrYZ/XhnekhS1aAF8vs9YlNDm3CmS9h7ecRxaC2i3s2BAvPp0xWlrYwqX5eplo7UsvuFU66XQ6DN7+WpchhMs41sLO56nb+zNJWtjCRfl4mbArEsitisE3UOsShHApx7ewx53Xhnf+LS1s4Xp8vU208gNkNwxkn0CtSxDC5RxrYb9DbKgXnz4pLWzhWny9TK1+XK77BbJvkNYlCOGySrcudbSwy6WFLVyLr5cZfStPZLcKZNVux+AToHUZQrg0Zwt7p7Swhevw9zG3+iUY3SqQQcUoLWshTkmttpA7r3YLu1eHMK3LEm7M30cue2pddDppWQtxBo5vYT99xwDulBa20EhIgKfWJTQ5twpknd6AwS9Y6zKEaFGOb2Ffel4b3pYWtmhmZqMeX285Qm51jHKELMQZO76FHXe0hd1TWtiimYQEemldQrNwu0CWQV1CnL3SrUtJ/+RRdBUFPCMtbNFMwoIkkFslvYc3GKTdJsTZsuYcJu3Dhyjb+Ze0sEWzCJMj5NZLJgcR4tyoVgu58/5L7gJpYYumFxrghc2uaF1Gk3PLQDZK21qIRlG65YQW9gRpYYvGJy3rVszgF6J1CUK0GrVa2EMdLWwfaWGLRhQW5I2hlU8KAm4YyKpixxwao3UZQrQqJ7awP3tyND2khS0aSXSoD7pWPm0muGEgA5jDE7UuQYhW6fgW9rN3DOCOCV21Lkm0cEaDjvAgb63LaBZuF8g6vQFzZJLWZQjRatW0sMt3reayoW15++EReEsLW5yl6FDfVj+HdQ23C2QAU1CkXPokRBNSrRZy5r5O7oJ3iQv35nNpYYuzFBfhp3UJzcYtA1mnN2AOkfPIQjS10i2/kf7xI9LCFmctLtLPLS55AjcNZABzeILWJQjhFqSFLc5FfIQfbjCeC3DTQFbtNsxh8VqXIYTbcLawF/6PuHBvxyjs9qFalyVagMQofwx694gq93iVJ9IbMEckal2FEG6ndPOvpH/8CPqKAp69cyC3j5cWtmiYXq8jKtRH6zKajVsGsk6nwxwhI62F0MLxLezxw9oyU1rYogGRwd4YDe4TU+7zSk9g9A1E7+k+n7yEcCXHt7DjpYUtGtAmxr2mOXbbQAYwh8nALiG0dKyFXSgtbFFHh/ggtxlhDW4cyKqqYI6QQBZCa44W9oOU715ztIU9XFrYAoCOicFuMYd1DbcNZBRFRloL4SJUq4WcH1872sL2cbSw20kL250Z9DraxgS4xRzWNdw2kHUGo0yhKYSLKd38K+mfPOpoYU+SFrY7i4/0w2wyaF1Gs3LbQAYcR8g6t34LhHA51uxDjlHY0sJ2a8nxQaiqqnUZzcqt00hv8sAjqo3WZQghTqBaK+u0sLtLC9uttI8Pwq5IILsNVbHjldhd6zKEEA04voX9n0kDuf2yLlqXJJpJ56QQt7oGGdw8kNHp8GrTQ+sqhBAnUauFfX473npIWtitnZeHkZgw95snwq0DWafT4xnbEZ3RrHUpQoiTOL6FnRAhLezWrmubELcaXV3DrQMZHKOtPWM7al2GEOI0OFvYlY4W9m2XSgu7NerRPsytJgSp4faBrNpteCXJeWQhWgpr9iHSPnC0sCcMlxZ2a9S7Y7jbnT8GCWTQG/Bq01PrKoQQZ8DZwl70nrOF3a1diNZliUYQ6OdBXISf1mVowu0D2bHyUyJ6T1+tSxFCnKHSTb+Q/slU9JWFPDdpELdKC7vFc+cZ2tw+kMERyp4J8oMsREtkzT7obGFfLi3sFq9HB/c8fwwSyMDR88iJ3bQuQwhxluptYbeVFnZL1KdjhFuePwYJZMAx0tq7bW+tyxBCnKNaLezJ0sJuaaJCfQj299S6DM1IIB9lCorA4CefqIVo6Y61sNc6W9heHtLCbgl6J4ejuNn81ceTQD5KVVW5/EmIVsLRwn6V3EXvkxDhw+czpIXdEgzpHg3um8cSyE6KIueRhWhlSjctOdrCLjrawu6sdUmiAX7eJrq0CUGvd78ZumpIIB+lMxjwbtdHlmMUopVxtLAfPNrCbs9bDw3H0ywtbFfTt1MkbjhbZi2SPscxePlK21qIVujEFvbsp6SF7WoGd49CcbPlFk8kgXwc1W7Ht+swrcsQQjSRE1vYt0gL2yV4mAz0Tg7H4KaXO9Vw71d/Ap3BgE/HgbL6kxCtmLOFvWcdVwxvz5vSwtZcr+RwzCaD1mVoTgL5BHqTB97t+2pdhhCiCanWSnJ+eIXcRe+TKC1szQ3qFum2s3MdTwL5BKpix7fb+VqXIYRoBqWblpA+67gW9jhpYTc3o0HHwK5Rbjs71/HkHTiBTm/Au20v9F6y2IQQ7sCadZC0Dx9ytLBHtOfNB6WF3Zz6dIzA29OkdRkuQQK5Pjo9Ph0HaV2FEKKZqFUV5PzwCnmL3ycx0tHC7tpGWtjN4YJ+cdilXQ1IINdPVfHrNlzrKoQQzaxk47EW9v/dJS3spubnbaJ/50i3H11dQ96Feuj0ejzjOmLwd991OYVwVye2sN948HxpYTeRob1i0bnxzFwnkkBugKoo+HY5T+syhBAaOL6FnRTpy+ynRtNFWtiNbnS/eLeeu/pEEsgN0SFtayHcnLOFbSnmeWlhN6rYcF/axQW69dzVJ5JAboBOp8ccFocpLF7rUoQQGrJm1Uwksl5a2I1oRB8ZzHUiCeSTUBU7vl2Gal2GEEJjjhb2y+Qt/oCkSF8+nyEt7HOh18Go/vEymOsE8m6chE5vwK/7cFkBSggBQMnGxaTPmoahytHCvlla2GelT8cIgv09tS7D5UjSnILRLxjvDv20LkMI4SKsWQccLey967lSWthn5bJhbaRdXQ8J5FNQFTuBgyZoXYYQwoWoVRXkfC8t7LMRE+ZLzw6yslN95B05BZ3egGdMBzxiOmhdihDCxdRpYV8iLexTuWRIkhwdN0AC+TSodjsBA8drXYYQwgXVamGPlBb2yXh5GBk9QAZzNUTeldOgMxjwSe6PMTBC61KEEC7I2cJe8uGxFnZSsNZluZyRfePwkHWPGySBfLpUlYD+47SuQgjhwko2LCL908ccLey7B3PTxdLCPt74YW20LsGlSSCfJp3egF+vUeg9ZVlGIUTDrJkppB9tYV91QXv+++D5eJrlqLBnhzCiQn3R6WRmroZIIJ8Bnd6If+/RWpchhHBxynEt7DaRfnw+40K3b2FfMbydDOY6BQnkM6HTEdD/UjDIgA0hxKk5WtjT3L6F3T4ukF7JcqnTqci7cwZ0Oh0GnwCZTlMIcdrqtLCnnI+n2b1+9V4zKlmOjk+De31XNAJVUWSiECHEGanVwo7y4/MZY9ymhZ0Q6ceArpFydHwa5B06Qzq9HnNoLF5tempdihCihTm+hf1/dw1m4sWdtC6pyV09qoMcHZ8mCeSzoNrtBMpEIUKIs1DTwq7ct4F/XNChVbewo0N9OK9HjBwdnyZ5l86CzmDAK6k75ogkrUsRQrRASlUF2d+/VKuF3bkVtrD/cUF7VFXVuowWQwL5LKl2O8EjbtC6DCFEC1ayYREZNaOwW1kLOyzIixF94+To+AzIO3WWdAYD3m174RnvnpcxCCEaR1VNC3v/xlbVwr52dDLIwfEZaflfdQ2pip2QC27SugwhRAunVFWQ/d2L5C35yNnC7pQYpHVZZy0+wo9R/WQRiTMl79Y50OkNeES3wzt5gNalCCFagZINC50t7BfuHtJiW9g3j+ss547PggTyOVIVhZCRN4JO3kohxLk7sYX9egtrYXdpE0K/znLd8dmQd+wc6fR6TMFR+PUYqXUpQohW4vgWdtvoltXCvu2yLnLd8VmSQG4EqqoQPPx6dCZPrUsRQrQiJRsWkjFrGkZrCS/ePYQbx7p2C3tw9yjaxwXJ0fFZknetEeh0evRefgQOnqB1KUKIVqYqM4W096dQsX8jV49y3Ra2Qa/j1nFdUBQ5d3y2XO+r2kLp9HoCB07A6B+mdSlCiFbG2cL+5WOXbWGPGZRIeLA3er2sd3y2JJAbk15P8AU3al2FEKKVKlm/gIxPH3O5Fra/j5mJLlJLSyaB3Ih0egO+nYfgEdtR61KEEK1UVcZ+0j54kIoU12lh33xJZzw9DOh0cnR8LiSQG5mq2Akdczsg35hCiKahWMrJ/vZYC/uzGWPoqFELu2NiEKMHJGDQS5ycK50qV283iZyfZ1K27Xety9Ccoqos2lvI/D35ZJVVE+hpYGCcP//sEY6P2VDvY+buyuO99VnMuqIDEb7meu+zL7+SKQtTuH9QDKPb1f+LaE1qCU//foRFE7ueVq02RWXKwhRu7R1Jr2jfOre/tz6Tubvy6+xvf34ln27JZm9eJaoK7UI8ubV3JO1CvE76fFsyy/hiWw6HCi2Y9Ho6h3tza58Iov08nPeZvzufr7fnoqgwvlMI13SrPUbh2eVHaBfsyXXdw2tt/2xLNiUWO/cOjD6t1y5aLo/odkRc+W8MPkF8s2w/sxfvbrbn1ut1vPngcGLDfWVkdSOQd7AJqKpCyKib0Hv7a12K5r77O4931mXQP9aPJ4fHc2XnUJamFPHciiP1zuSTVlLFrE3ZJ92n1a7w6qo07Cf5KLktq4yX/kw7o1q/3pZDmI+p3jDenl3OvF35dbZnlFTxyJKDVNkUpgyO4cEhMVQrKg8vPkBacVWDz7Ujp5zHfztEgIeRf58Xx139o0gvqeLhRQcpttgAOFho4d31mfyjaxi3943ky205bEwvde5jV24Fu3MruLxzaJ39X901jDVpJWzOLDuj90C0PMe3sK8ZncxrDwxrthb2JUOSiI/0kzBuJPIuNgGdTo/ew5vQi+7UuhRNKarKtztyubhDMLccPeoc1zGEewZEszmznH35llr3tysqr61Kw8+j/iPnGp9vyaHcaq/3topqO7M2ZzPt10MYz2C0Z0FFNd/8nVfnSBOgstrOa6vSCPE21rlt3u58PIw6nhmZyMA4fwbG+fPsyEQ8jHp+2l03wGt8+3ce8QEePHZ+HP1j/RiaGMB/RiVSXGXj15QiALZmlREf4MH4TiGMbBNI7yhfNmeWO/fx4YYsru8ejqex7o+xp1HPhE6hfLAh67TfA9FyHd/Cbhfj3ywt7CA/jxY7taerkkBuIjq9Ad9Og/DpNFjrUjRTUa0wsk0gw5MCam2PC3C0oTNLrbW2f78zj8JKG9d0bfjSsZ05Ffy0O597BtTfil2yr5DF+wq4Z0A0l3U8/fVlf9iZT7ivifb1tJk/3JhNsJep3tZ4XIAHV3YOxdN07EfJ06Qn1NtU5/UdLznUiwmdQtEfNwgmxNuEt8ngfJwOHebjjjyMBh3K0a7CX0dKKLbYuKh9w790hycFcLjIwrq00gbvI1qXmlHYJmspL909hH9e1HQDTG8f3xWTQS8DuRqRBHITUlWF0IsnY/AJOPWdWyFfs4G7+kfTJdyn1vbVqY6ASAg8dq70cJGFL7bmMGVwLB71HPEBWGwKr61K45puYSQF1T8r2oA4P2ZdkczFHc5ssfffDxZxXnzdUwybMspYeqCQKUNi6v1hGZccwlUnfIDIKKnicJGF+ONe34mu6x7OmBPCdFtWOWVWu/N96RjmxcFCC3vyKkgrqWJbVjldwr2xKyqzNmdzU68IDCfpAoR6m+gY6s3vB4oafuGi1XG0sKdQkbKpyVrYPTuEMaxXrLSqG5m8m01Ip9OjN3sSetEkrUtxGbtzK/jm71wGxPqReDRU7YrKKyvTGNMuiO6RPg0+9pNNWXia9Cc9go7286i3hXsyR4osFFTa6BDqXWt7udXOf/9K58YeEcT6Nxyux6uyKby6Kh2zQc9lHUNOu4Zii403V6cT4mVkVNtAAJJDvbm2exj/XnyQu37az4ikQIYkBLBkfyGeRj3nJfgzZ3sud87bx5NLD5FVzxF5h1AvtmTJeWR342hhv9AkLWxvTyNTru2NXZH5qhubBHIT0+kN+HQcgE/nIVqXorkdOeU8sfQQEb5mHhwc49z+9fZcyqx2bu0d2eBjt2WVsWhvIQ8NiT3pUeHZyCqrBiDS11Rr+3vrMwnzMXF559ML1opqOzOWHWZPXgX/Pi+2wRHiJyqoqGbqLwcpqLQxfXg83qZj59Cv7x7OD9d35ofrOjG5fxSWaoUvtuZwS+8I1qaV8tPufB45L5b4AE/+74/UOvuO8DVRZLFjsckvT3d0fAv7xbuHcMOY5HPe5+2XdSXAzyyXOTUBeUebgaoqhI6dhMEnUOtSNLPiYDGP/XqIMB8zL4xOxN/TMUBqf34lX2/P5V+DYjAZdNgVlZqpcO2qil1RHYOq/krnH11DiQ/wwK6o2I+eS1VUxxH2uagZIHb8kfXatBJWHCrmX4OiUY8+R02kOWqs/Zy55VYeXnyQnTkVTBsWx6B62t/1OVhoYcqiA+RV2Hh2VAIdw7zr3Meo12E62hr8YVceiYGe9IryZeXhEgbF+dMuxIuruoSyL7+S7LLaR8k1r6migUFwovWraWFXpmzi2gs78toDwzCfYRepRt9OEXLNcROqO2xUNDpn6/riyWR/+4LW5TS773bk8fHGLLpH+vDE8Pha1x+vSS3Bpqg89uuhOo+77cd9dIvw5p89wskuq+bLbbl8uS231n3+uzqd/65OP+1rjevj7+mop8x67Chy5eESrHaVyT/tr3P/cbN3MKptIA8NiQUcoTr9t0NY7QrPjU6kW0TDbffjbc0q45nfj+BjMvDKRUkkBJ58tbAii43vd+Tx4oVJzn/XDELzPToyvbDSVuvIvKzKjg5OOXJdtG41LWz/fpfQbtRNzH56DE9+sIbdhwpPex++XiYeuLYXiqLKfNVNRAK5mej0Bnw69MO3y1DKdvypdTnNZuHeAj7amMWwxAAeHhLjPNKrMbZDMP1jax9Nrksr4YttucwYEU+svwfB3kbeuLhtrfsUVFbz9O9HuKF7WJ3Hn6kIH0eA5VZU0wFHwP2zRziXJtduVS/aV8DifYW8cXFbAo6GeG65lcd+PYhBp+OVi9qcMlRr7M+vZMayw0T6mnluVCIh3qZTPubLrTn0i/FzTjgS6GmksNJxzXJBRbVz2/HyKmwEeRnrvO/CPZWsX0BV+l4irvw3L949hG+W7uOLJXtO67GTr+iOr7dJwrgJSSA3I0fr+k4qD2/HXlakdTlNrqCymvfXZxLha+LS5GD2F9S+7jjKz0yIt6lOGB0uctwvKcjTebTXIbT25UjZZY5AjPA117ntTMUGeBDuY2JnTjlDjraaI3zNRJwwP8i6NGOdWt5dl0mRxc59A6OpqFbYlVvhvM3bpHcG9P78SkwGnfPf/12djl1xBH9OeTU55dXOxwV4GmrN1gWOkdu/pBTyzqXtnNv6x/rx5up0+sb4sjq1hDZBnkSccB58R045feqZ6ES4r6qMfaR98CBhl93LtRf2o0+nCKbOXIn1JOMMBneL4vzesc1YpXuSQG5GOp0eTB6EXnwX2d88r3U5TW59WhlVdpXssmr+veRgndsfHNzwtJfN7bwEf9anl3FH39N/TLVdcV7j+9aajDq3d4vw5qUxbQDHFJcRviZeGtOGzFIrKUc/nDy3ou5ArOPb4TVmbc7mwrZBtYL6vAR/9uRV8MbqDKL8TDwyNLbWNaEFFdUcKLQwsVfE6b8o4RYUSxnZ37xAQP9xtLtg4klb2AG+Zu67uqe0qpuBzGWtkZx5b1L29wqtyxBH5VVUc+sPe8/oHLCr+3JbDqsOlzBzXFuZvEE0yCO6PRFX/Ru9d2CdFrZOB0/dPpAe7cPkmuNmIO+wBlRVIfSiOzD4ndnkFaLphHo7Lm/69u/cU9+5BaistrNgTwG39I6QMBYnVZWxj7T3H6TygGMU9qv3HxuFPeH8tvTuGCFh3EzkCFkjqmKnKvMAGZ9PB7tN63IEjhb0AwsPcGufCPpE+2ldzjn5dHM2xRYb/xoUc+o7C3FUQP9xBF8wEYvVzsc/72Tyld3lEqdmJIGsIVVRKN3yG3mL3tO6FCGEAI61sA0+gSjoJJCbkbzTGtLp9fj3vhC/nqO0LkUIIQDHRCLW7EMAEsbNTN5tjamqSuhFd+IR00HrUoQQgoBBE/Bu1wedXiaTaW4SyBrT6XSgg8h/TMXgG6h1OUIIN+aZ0JXgEddrXYbbkkB2ATq9Ab2nLxFXPgJ6uTRcCNH8DH7BRFz5MMioIs1IILsIncGAR0x7Qi68RetShBDuRm8g4sp/ozd7o5PzxpqRd96F6HR6AvpchF+PC7QuRQjhRkJG3YRHdDt0BjlvrCUJZBejqiqhY+/EI7rdqe8shBDnKKD/OAL6XeKY2ldoSr4CLsYxyEtHxD+mYvAJ0LocIUQr5tNpMCGj5TSZq5BAdkE6vQGDl78M8hJCNBnP+C6Ej78fVW14lSfRvCSQXZTOYMAjtoN8ehVCNDpTWDyR10wDnV5a1S5EvhIuTKfTE9D3IgLPu0rrUoQQrYTBL4So659EZzTLiGoXI1+NFiD4/Ovw73eJ1mUIIVo4vYc3UdfPwODlLzNxuSAJ5BYi9MJb8esxUusyhBAtlM5gIuLqaZiCI+XyJhclgdxCqKpK6CV34dNxkNalCCFaHB1h4+/HM7ajHBm7MAnkFqJmkfnwy6fg1baXxtUIIVqSkNE349NxoJwzdnHy1WlBdDo96HREXvUonvGdtS5HCNECBAy4lID+45wf6oXrkkBuYXQ6PegNRF7zOOaotlqXI4RwYT6dzyNk1M1alyFOkwRyC6TT69EZTURdPwNTWJzW5QghXJBPx4GEj/+XTPzRguhUVZXFtloo1W5HsZSRPmsatqJsrcsRQrgI327DCbv0HgCZ+KMFkUBu4VS7HXt5IemzpmEvLdC6HCGExvz7jCH0ojtRVVXOG7cwEsitgGq3YyvOIeOzx7GXF2tdjhBCIwEDxxNywUStyxBnSQK5lVAVO7aSPDK/eFra10K4oaBh1xI09B9alyHOgQRyK6La7ShVFWR+9TTWrINalyOEaCbBo24mcMClWpchzpEEciujKnZUu43sb1+g8uA2rcsRQjQlnZ7QsXfi32u01pWIRiCB3AqpigKo5Pz0JuU7VmpdjhCiKegNhF16H75dzpPBW62EBHIrpaoKOp2e/F9nUbzuZ63LEUI0JoORiCsexrt9H7msqRWRQHYDRWvmUbD0c0C+1EK0dDqjmYirp+KV0E3mpm5lJJDdgKqqlO1YSe7PM0GxaV2OEOIs6b18ibz6MTyi28mqTa2QBLKbUBUFy5EdZH37AqrVonU5QogzZA5PIPLqxzD4BUkYt1ISyG5EVexYc1PJ+uoZmUBEiBbEp9Ngwi67D53eIGHcikkguxlVsWMrLXBMIFKYqXU5QoiT0ekJOv86goZc4RyoKVovCWQ3pCp21Ooqcua9QcW+DVqXI4Soh97Th/DLH8QrqYdc1uQmJJDdVM2n7aK/fqRgxVeg2LUuSQhxlCk0jshrpmH0D5UWtRuRQHZzqqpSlb6X7B9ekdWihHAB3h36Ez7hAXQGo4Sxm5FAFo45sK0V5Pz4mky3KYRmdAQNu5qgoVfL+WI3JYEsgKPTbep0FP35DYUrvwNV0bokIdyGzuxF+IT78W7XV84XuzEJZFGLqqpYDv9N9o+voVSUaF2OEK2eKTiayGsewxgYLi1qNyeBLOpQFTv2ylJyvn8FS+ourcsRotXy6zGSkAtvQ2cwoTNIGLs7CWRRL1WxAzoKfp9N8ZqfkHmwhWg8Bt8gwi65G+92vVFVVdrUApBAFqehfN8Gcn96C8VSpnUpQrR4Pl3OI2zsJHQmD2lRi1okkMUpqYode0UJeQvepWL/Rq3LEaJF0nv7EzZ2Mj4dB8goalEvCWRxWlRFQafXU7ZzFfm/fCRzYQtxBryTBxB2yV3oPbzlqFg0SAJZnJGaaTfzf/2E0q3LtC5HCJem9/QlZMzt+HUdKkfF4pQkkMUZq/nFUnlkJ7nz35FFKoSoh1fb3oRfei96L185KhanRQJZnDVVsYOqUvjHHIrWzJP5sIXAMclHyOhb8e850nmqR4jTIYEszpmqqlTnpZE7/22qMvZpXY4QmvFq05Owcfdg8AmQo2JxxiSQRaNQFTvo9JSsX0jBii9RrRatSxKi2ZhC4wgZfTPebXqiKnYJY3FWJJBFo1IVBXt5EbkL36Vy/yatyxGiSem9/Qkedi1+vUeDospsW+KcSCCLRue8RGr3Ggp/n011gQz6Eq2LzmDCv9/FBA29Gp3RJEfEolFIIIsmo9rtoNNRum0ZhX98g700X+uShDhnPp0GEzLqJgx+ITLlpWhUEsiiydWMxi7ZsIjCv36QVaREi+QR3Z6QC2/DM6a9jJ4WTUICWTQbVbGj2m0Ur/mJorU/oVZVaF2SEKdk9A8jeOQ/8e1yHqrdLueJRZORQBbNTlUUFGslRSu/o2TjYlSbVeuShKhDZ/YkcPAVBA4cD+gkiEWTk0AWmnB826nYK0ooXPG1YxpOmVhEuAC9lx/+fS4ioP+4o3NPS2taNA8JZKEpVVUAHbbiXAqWf0H5jlXI2stCC8bACAIGXIp/z1GgN0gQi2YngSxcQs0gGWtuKoV/fkP5nrVyxCyahTmqLYEDJ+DTaSCoqlzCJDQjgSxcSs0sR7ayQorX/kzplt9QLOValyVaIa+2vQgcdDleCV1ksJZwCRLIwiWpqgqqiqrYKN26jJJ1C6guyNC6LNHS6Y34dhlC4OArMIfGyjSXwqVIIAuXV/NLs2L/JorXL6DywFbkPLM4EzqzF/69RhMw8DKMvkFyHbFwSRLIosWoaSvaivMo3riI0q3LZJIRcVLm8AR8uw3Hv/eF6ExmQCezawmXJYEsWpyadjaqSvnu1ZRsWoLlyE6tyxIuwuAXjG+Xofh1H4E5LE7a0qLFkEAWLVrNUXN1QSYlm3+lfPcabEXZWpclmpnO7IlP8kD8uo/AM6GL4wObDnQ6aUuLlkMCWbQKqqqACjq9nqrsQ5TvXEnZrjXYCmWlqVZLp8erTQ/8ug3HJ3kAOqNJjoZFiyaBLFqd48PZmptK2c6VlO9aTXV+utaliUZgjmqLX9dh+HY9H4O3H6rdhs5g1LosIc6ZBLJo1RznmxV0egPW/IyjR86rqc49onVp4gyYQuPw6dAPvx4jMQVHyXXDolWSQBZu4/hwri7Mdhw5716NNeug1qWJE+jMnngldse7bS+82/fF6BeMqiigk1HSovWSQBZu6fhwthXnUXFgM5bUXViO7MJWnKN1eW5Ihzk8Hq82PfFu3xfP2GR0eoO0o4VbkUAWAmr94reVFWE5/DeW1J1UHtlFdW4qMhFJ4zOFxuKV0BXPxG54JXbD4Olz9ChYRkcL9ySBLEQ9VMV+tD2qR6mqoPLILixHdmBJ3UVV5gFQbFqX2KLojGZMYXF4RLbBK6EbXkndMHj7Hx2AJws6CAESyEKcFlVRAEdwqLZqLBn7sBzegSVtN9bcI9hLC7Qu0WUY/EIwRyTgEZ6IOTwRj6g2GIMi0On0tU4VCCFqk0B2cyNHjiQ9PZ2pU6dyyy231Ln9ySefZM6cOdx7773ExMQwbdo09uzZo0GlrkVVVVAU50hfpbqK6sIsqnNTqc5Px5qfQXVBOtX5majVFo2rbRrOo97wBMzhiZgjk/CISETv4Q0c7TKAhK8Qp0lGSwhMJhNLliypE8g2m41ffvnFOar14osvZujQoVqU6HJ0Oh0cd9mN3uThCKbQWEcL9riBSLayIqrz07DmpVGdn0F1QQbV+RnYinNBVbQo/7TozJ4YfYMw+AZh8AnE4BuE0TcIY0B43aNexQ56Q60R0BLEQpwZCWTBoEGD+PPPP8nKyiIyMtK5fc2aNXh7e+Pl5QWAp6cnnp6eWpXZItQXQkbfQAw+AXjGdgSd3rnKkGq3oVjKsVvKUSpLsVeUoFSWYbeUoVjKjv290vFve2U5iqUUxVJx8iDX6Y89j95Q+/86PTq9AZ3Z61jYHg1ag28QRr9gDP7BGLwD0Js8au1WVRTH8+p0tV6n48OJ/CoR4lzJT5Gge/fupKSksHjxYm6++Wbn9oULFzJ27FgWLVoEwA8//FCrZZ2cnMxzzz3H/Pnz2bRpE/7+/lx77bXce++9zn0sX76cd955h3379uHj48Mll1zClClTnMGenJzMPffcw48//kh1dTWzZ88mMTGx2V57c6kvtHQGIwafAAw+AcCxNrhzRLde3+BoY8VqcdxXrz8WkMeF/ZlQFfvRuZ9P/njHbTL6WYimIj9dAoCxY8eyePFi57+tViu//fYbl1xyyUkf9+KLL3L55ZezYMEC/vnPf/LWW2+xfv16AH799Vfuuusuhg8fzg8//MDTTz/NwoULefDBB2vt48svv+TNN99k5syZrTKMT5dOp0NnMKAzGB1/TnLpj97sid7T2/F/k4fj/me5vq9ObzinxwshGof8BArAEchbtmwhO9uxUtKqVasIDg6mc+fOJ33chAkTGD9+PHFxcUyePBl/f382bdoEwPvvv8/o0aO5++67SUpK4oILLmDGjBksXbqU/fv3O/cxfvx4unXrRs+ePZvs9QkhhKuTQBYAdO3albi4OJYsWQI42tWnOjoGaNu2ba1/+/n5UV1dDcDevXvp3bt3rdv79+/vvK1GQkLCOdUuhBCtgQSycKppW1dVVbF06VIuvvjiUz7GbDbX2VZzJV19V9QpimMwktF47HyqDBQTQggJZHGcsWPHsmnTJr7//nvi4uLqHP2eqeTkZGf7usaGDRuAukfWQgjh7iSQhVOnTp1ISEjg1VdfPa129ancfvvt/PLLL7zzzjscPHiQ33//nWeffZYRI0ZIIAshxAkkkEUtY8eOpays7LTa1acyZswYXnvtNRYtWsSll17KjBkzuOSSS/jvf/977oUKIUQrI1NnCiGEEC5AjpCFEEIIFyCBLIQQQrgACWQhhBDCBUggCyGEEC5AAlkIIYRwARLIQgghhAuQQBZCCCFcgASyEEII4QIkkIUQQggXIIEshBBCuAAJZCGEEMIFSCALIYQQLkACWQghhHABEshCCCGEC5BAFkIIIVyABLIQQgjhAiSQhRBCCBcggSyEEEK4AAlkIYQQwgVIIAshhBAuQAJZCCGEcAESyEIIIYQLkEAWQgghXIAEshBCCOECJJCFEEIIFyCBLIQQQrgACWQhhBDCBUggCyGEEC5AAlkIIYRwARLIQgghhAuQQBZCCCFcgASyEEII4QIkkIUQQggXIIEshBBCuAAJZCGEEMIFSCALIYQQLkACWQghhHABEshCCCGEC5BAFkIIIVyABLIQQgjhAiSQhRBCCBcggSyEEEK4AAlkIYQQwgVIIAshhBAuQAJZCCGEcAESyEIIIYQLkEAWQgghXIAEshBCCOEC/h+qIZy2vc42XQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12, 6)) # Adjust size as needed\n", + "plt.pie(severity_counts, labels=severity_counts.index, autopct=lambda p: f'{int(p/100.*severity_counts.sum())} ({p:.1f}%)',\n", + " startangle=140, counterclock=False)\n", + "plt.title('Event Severity Distribution')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Delve into hidden info..(group by Severity and Region)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Moderate', 'Minor', 'Extreme', 'Severe', nan], dtype=object)" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[\"Severity\"].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "minor_cases = data[data['Severity'] == 'Moderate'].copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "country_counts = minor_cases['Region'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "# Keep the top 3 countries\n", + "top_countries = country_counts.nlargest(3)\n", + "\n", + "# Calculate the count for 'Rest'\n", + "rest_count = country_counts[3:].sum()\n", + "\n", + "# Create a new Series from the top 3 countries\n", + "top_countries_series = top_countries\n", + "\n", + "# Add the 'Rest' category by assigning it directly to the Series\n", + "top_countries_series['Rest'] = rest_count\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAH2CAYAAABEGEf0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAR0lEQVR4nO3dd3hTZf8G8PuczO4Wyt6rrDLKKHu0gCAgS15FloKK/BBFHCCogL76KiIiSwVEkaGgDEVAloosWYoM2bL36B5Z5zy/P9KGlra0QNuTpPfnuriAjJNv0uTk7jMlIYQAERERkRuQtS6AiIiIKB2DCREREbkNBhMiIiJyGwwmRERE5DYYTIiIiMhtMJgQERGR22AwISIiIrfBYEJERERug8EkH7nDWnXuUAPdG/7MiAoGP1vu4V5/DkUmmAwaNAg1a9Z0/alVqxYiIiLQp08fLFy4EA6HI9Pto6Oj8frrr+f5+L/88gvGjh2b6+1ef/11REdH3/fj5CQhIQFjxozBvn37XJcNGjQIgwYNeuBj5xeHw4HXX38dERERaNSoEXbt2pXlNoMGDXK9PhcvXnT9vJYtW5btMRMTE1GvXj3UrFkTu3fvfuAa7/z5FLSTJ0/iiSeeuKf7pL8uM2fOzPW2f/zxB0aOHIk2bdqgQYMG6Ny5MyZPnoxbt27db8maSUpKQoMGDVC3bl3cuHFD63LyzZ3npuz+5Mc54m6eeOKJbB/30KFDud730KFDeO2119C+fXvUr18fHTt2xFtvvYULFy4UaM25+fTTTzF//vxcb5df52Ct5XZOWLlyZbY/4/r16yM6OhrvvPMOkpKS8r2uvP4cMtLnexVurE6dOpg4cSIAQFEUxMfHY+vWrXj//fexb98+fPLJJ5BlZ1abNWsW/P3983zsBQsW5Ol2I0aMwODBg++59twcPXoUP/74Ix599FHXZenP1V1s27YNq1atwogRI9CyZUvUqVMnT/eTZRnr16/H448/nuW6TZs2wWaz5XephWb9+vXYv3//Pd1HkqRMf+fko48+whdffIEuXbrgjTfeQHBwMI4fP4558+Zh48aNWLx4McqUKXPftRe2NWvWICAgAIqiYPny5fi///s/rUvKFxMnTsz0hfD222+7Lk9XrFixAnt8IQSOHz+OIUOGoEuXLpmuq1at2l3vu2TJEvzvf/9Ds2bN8Morr6BkyZI4d+4c5s+fj40bN+Lrr79GrVq1Cqz2u5k+fTpGjhyZ6+3u9Vzv6WbNmoUSJUq4/h8fH49t27Zh0aJFiImJwSeffJKvj5fXn0NGRSqY+Pv7o2HDhpkui46ORtWqVfHee+9hzZo16NGjBwDk+UvzXlWsWLFAjpud6tWrF9pj5UVcXBwAoE+fPqhQoUK2tylZsmSW1qtGjRph9+7diImJyXKCXrt2LWrXro2jR48WSM3uKDQ0FLIso1SpUjneZu3atZg3bx7GjRuHp556ynV58+bN0a5dO/Tu3RvvvfceZs2aVQgV54+VK1eiTZs2MBgM+P777/Hcc8+5fpHwZHd+TtO/JO88VxWU8+fPIzk5Ge3atbunx/zzzz/x3nvvYcCAAXjjjTdclzdr1gwdO3ZEr169MH78eKxcubIAqs4/BXWud1e1a9dG+fLlM13Wrl073Lp1Cz///DOSk5Ph5+enUXVOnv+pzgcDBw5EqVKlsHTpUtdldzbvpYeW+vXro3nz5nj11Vdx7do1AM6m2D179mDPnj2uLoXdu3ejZs2aWLp0KaKiotCoUSPs2LEj264Cu92Od999F02bNkWTJk0wduxYxMTEuK7Prksm/fjpj5XeCjN48GDXbe+8n9VqxezZs9GlSxfUq1cPDz30EObOnQtVVTM91htvvIG5c+eiffv2qFevHvr164eDBw/e9TVUFAVLlizBI488gvr166N9+/b46KOPYLVaATi7SNJfz44dO+bYxVSjRg3UrFkz02WdOnWCLMvYtGlTpstjY2Oxa9cudOvWLctxzp49ixdffBGtWrVCw4YNMWjQIPz555+ZbhMfH49x48YhMjISTZs2xZQpUzK9Fuk2b96MPn36oF69emjVqhXeffddpKSkuK6fOXMmOnXqhFmzZiEyMhKtW7dGfHw8LBYLpk6dioceegjh4eFo1KgRhgwZ4gpRM2fOdAWDjM2wqqpi7ty56NSpE8LDw9G5c2csWrTI9XgmkwkVK1bM8jplNHfuXFSvXh1PPvlklusqV66M1157DREREa6+35iYGLz99tuIiopCeHg4IiMj8fzzz+PixYuu+50/fx7Dhw9Hs2bN0KBBAzz++OP4/fffMx37xIkTeO6559CoUSM0atQIzz//fJYm/a+//tr1HmzTpg0mTZqUaxPyqVOncODAAbRv3x49evTApUuXsG3btky3Se/iWr9+PUaMGIGGDRuiZcuW+PTTT5GUlITx48ejcePGaNmyJaZMmZKp3zsxMRHvv/8+OnbsiHr16qF79+5Yvnx5puNHR0djxowZmDx5Mlq2bIn69evj6aefxtmzZzPdbtWqVejatSvq1auHHj164I8//kCdOnUe+At63bp16NOnDyIiItCqVStMmDAB8fHxrutnzpyJ6Oho/Pbbb+jSpQsaNGiAxx57LNcuzvT34722bMyfPx8BAQF4+eWXs1xXrFgxvP766+jQoYPrs5LbOQLI/VwHOANqnTp1cODAATz++OOoV68eoqKiMnUXpH82Zs2a5fp3Tp/TO8/1VqsVH374Idq1a4fw8HA88sgjWLduXaaaDh8+jCeffBKNGzdGREQEnnrqKfz99993fb3y8hnL6/l3z549ePzxx13dszt37rzrY+dFQEAAJEnK1BK7b98+DBw4EA0aNEBkZGSW7yZVVTFt2jRER0cjPDwc0dHRmDp1Kux2O4Dsfw55IoqIgQMHioEDB+Z4/ZgxY0TdunWF3W4XQggRFRUlxo4dK4QQYt++faJ27dpi5syZYteuXeKHH34QrVq1EgMGDBBCCHHy5EnRq1cv0atXL7F//36RmJgodu3aJcLCwkSrVq3Ezz//LFatWiWSk5PF2LFjRVRUlOtxo6KiRO3atUW/fv3E5s2bxXfffSciIyNFnz59hMPhyLH29OPv2rVLJCYmisWLF4uwsDCxePFicfLkySz3U1VVPPXUU6Jhw4biiy++ENu3bxdTp04VtWvXFm+++Wam16lx48biscceE5s2bRIbN24UHTp0EG3btnXVk53x48eLunXrik8++URs375dzJ07VzRo0EAMHTpUqKoqzp07J6ZNmybCwsLExo0bXTXezYULF0RYWJhYsWKFGDZsmHjqqacyXf/tt9+Kjh07Znot0n8eERERonfv3mLdunVi06ZNYtCgQaJu3bpi9+7dQgghFEURffv2FS1atBDLly8XmzdvFv369RN169bN9PNZvXq1CAsLE6+88or4/fffxTfffCOaNm0qnnzySaGqqhBCiBkzZog6deqIvn37iu3bt4s1a9YIIYR44YUXRIsWLcT3338vdu/eLb777jvRqlUr8fDDDwtVVcWVK1fE+PHjRVhYmNi/f7+4cuWKEEKIt956S9StW1fMmDFDbNu2TXz88ceiVq1aYtasWbm+ZkIIcf36dREWFiY+/PDDPN1eVVXRt29f0alTJ7FmzRqxa9cu8fXXX4uIiAgxdOhQ1+vVpUsXMXjwYLFlyxaxfft2MWzYMFG7dm1x9uxZIYQQp0+fFhEREeLRRx8VGzduFOvWrROPPPKIaNWqlbh586YQQoiffvpJ1K1bVyxcuFDs3r1bfPvtt6Jhw4ZizJgxd63xgw8+EJGRkcJqtQohhOjUqZN47rnnMt0m/f3SuHFjMW3aNLFz507x8ssvi7CwMNG5c2fx9ttvi507d4qJEyeKsLAwsW7dOiGEEKmpqaJ79+6iRYsW4ttvvxVbt24VEyZMEGFhYeKzzz5zHT8qKko0btxYDBs2TGzZskX8+OOPIjIyUjz22GOu26xatUqEhYWJN954Q2zdulXMmjVLNGzY0PU+zovsPu+zZ88WNWvWFG+//bbYunWrWLJkiYiMjBSPPPKISE1NFUI434cNGjQQTZs2FV9//bX47bffXO/7I0eO5Ph4H3/8sWjYsKF4/fXXRWRkpAgPDxfPPPOM+Pfff3O8j6qqol69emLUqFF5ek5C5H6OyOm53/n5XrFihahZs6Zo3769WLBgQaaf89atW4UQQuzfv1+EhYWJ8ePHi/3797ten+w+pxnP9aqqiqefflpERESIr776SmzdulW89dZbIiwsTKxatUoIIURiYqJo1qyZGDVqlNixY4f47bffxGOPPSYaNWokEhIScny9cvuMpT//3M6/hw8fFnXr1hVPP/202LJli1i8eLFo1qyZCAsLEzNmzMjx9V+xYoUICwsT586dE3a7XdjtdmGz2cTNmzfF999/L8LDw8ULL7zguv2ePXtcj/Prr7+KVatWifbt24tu3bq53nOff/65aNq0qVi+fLnYvXu3mDt3rqhdu7aYPn16jj+HvChSXTl3ExoaCrvdjri4OISGhma67s8//4TZbMawYcNgNBoBAMHBwTh06BCEEKhevXqOza/9+/fP0m97p5CQEMyfPx++vr6u/z///PPYunUroqKicq3d39/f1RxcvXr1bLtwtm7dip07d+Ljjz92tTC0atUKZrMZ06dPx+DBg1GjRg0AzkGq8+fPdz2n5ORkjB07FkePHkV4eHiWY586dQrLly/HK6+8gmHDhrmOXbJkSYwZMwZbt25Fu3btXN1Y2TUl5ubhhx/G+PHjM3XnrF27Fl27ds1y21mzZsFoNGLhwoWu59C+fXt0794dH374IZYvX46tW7fi4MGDmDdvHtq2bQsAaNGiRabWLCEEPvroI7Rp0wYfffSR6/LKlSvjqaeewu+//4727du7XrOxY8eiSZMmAACbzYbk5GS8+eabrhojIyORlJSEDz74ADdv3kTp0qVRunRpALffN2fOnMF3332Hl19+2fVatm7dGpIkYc6cOejfvz9CQkLu+lpduXIFAPL8Gl+/fh0+Pj6Z6m/WrBnOnz/vGnR869YtnD59GiNGjEC7du0AAPXr18esWbNcY3xmzZoFHx8fLFiwwPW6t2jRAh07dsQXX3yBsWPHYs+ePShfvjwGDBgAWZYRGRkJX1/fTL/538nhcGD16tXo3r276/PXu3dvzJw5E1euXMkyTqZNmzZ46aWXADhb4NasWYPixYtjwoQJAJzdWT/99BP++usvPPzww1i5ciVOnDiBpUuXIiIiwnUMh8OBTz/9FP369UNwcDAAIDAwEJ9++il0Oh0AZyvSzJkzERsbi5CQEEyfPh1RUVF49913XccxGAyYOnVqnn4W2YmPj8dnn32Gxx57zPUcACAsLAwDBgzAihUrMGDAAABAamoqJk2ahF69ermea8eOHTF37lxMmzYt2+MfO3YMKSkpCAwMxOzZs3Hp0iXMnj0bAwYMwA8//JBtl2FsbCysVmue32N5PUfklRACI0aMwH/+8x8AQOPGjbFp0yZs2bIFbdq0cX2eSpcunemcfOfn9E47d+7Etm3bMG3aNNfntk2bNkhNTcVHH32E7t2749SpU4iNjcXgwYPRqFEjAEDVqlWxbNkyJCcnIyAgIMtx8/IZy1jj3c6/c+bMQfHixfHZZ5/BYDAAcH5njB49Ok+vXadOnbJcFhoaiv79++PFF190XTZ16lRUqVIFc+bMcb3fGzRogG7durnec3v27EF4eLhrbGNkZCR8fHxcr0FOP4fcsCsnjUhr1s1uQGHTpk2RmpqK7t27Y+rUqdi3bx9at26NkSNH5joAsXbt2rk+drt27VyhBHA2Gev1euzdu/cen0XO9uzZA71enyUkpY+p2bNnj+uyjEELgOvElJqamuOxAWTpUunWrRt0Ol2+zJbp2LEjdDqdqzvn+vXr2LdvH7p3755tPVFRUZmeg16vR7du3XD48GEkJydj3759MBgMaNOmjes2vr6+mU6Op0+fxtWrVxEdHQ2Hw+H607RpU/j7+2PHjh2ZHjfjz9poNGL+/Pno2rUrrl27hl27dmHp0qX47bffACDHAbu7du2CECLLY0ZHR8NqtWbpjsqOXu/8fSO7bqnslCpVCgsXLkTjxo1x8eJF7NixA4sWLcJff/3lqjM0NBTVq1fHW2+9hbFjx+Knn36CqqoYN26cK9Du2rULkZGRMJvNrrr9/f3RpEkTV1Nz8+bNcebMGfTp0wezZs3CoUOH8Mgjj9x19tiWLVtw8+ZNdOzYEQkJCUhISEB0dDRUVcX333+f5fbp4SK9bsAZotJJkoSgoCAkJiYCcL5fypUrl+l+gPOzYbVaceDAAddl9erVc52kAbiCZWpqKs6dO4fLly9n+Yxl19V4L/7++2/YbLYs7/UmTZqgXLlymT67er0+0+3MZjPatm1713PJ6NGjsXjxYowbNw5NmjRBz549MX/+fCQmJmLhwoXZ3if9NVAUJU/PoSDOERl/XkajEcWKFcvUxZqTu52T//jjD0iShHbt2mX5/N24cQMnT55EjRo1UKxYMQwfPhwTJkzApk2bEBoaitdee831frhTXj5j6XI7//7555+uwJvuoYceyvS+vJvPPvsMy5cvx7fffov//Oc/MBgMePHFFzFu3DjX2JLU1FQcOHAA7dq1gxDC9TpUqFAB1apVc537mjVrhh07dqB///744osvcOrUKQwcOBA9e/bMUy05YYtJmmvXrsFsNrt+M8ooIiICc+fOxYIFC/DVV19h7ty5CA0NxfDhw3OdjpsxcOQk4whpwDkLJSQkBAkJCff0HO4mPj4eISEhWd686Y+dfpIGAB8fnyz1ADl/0aX/tnvn89Dr9QgJCcl07Pvl7++Ptm3bumbnrF+/HtWrV0eNGjWynNTi4+OztHoBzi8pIQSSkpIQHx+P4ODgLMEy43NIH6z79ttvu2ZKZHT9+vVM/79zwNi2bdvwv//9D6dPn4afnx9q1arlej+IHOb1pz9mTl9m6eOa7qZMmTKQJAmXLl3K8Tbx8fHQ6/WumlevXo2PP/4YV65cQXBwMGrXrg2z2ey6vSRJ+PLLL/HZZ59h06ZN+OGHH2AwGNCxY0e8/fbbCAoKQlxcHNatW5elPx64Pauka9euUFUV33zzDT799FPMnDkT5cqVw6uvvppt6xcArFixAgAyDeJNt3z5cowYMcIVxgBkO8Pibp/D+Pj4LO9d4Haoyfg5vNtnI73vvXjx4tke536lf75yek9n/HyFhoZmei3S60l/X2Unu7El6V9Ax44dy/Y+QUFB8PPzw+XLl3M8bkpKCux2O4KCggrkHJHx/Qk4fxY5fa4yutvAzri4OAghXC0hd7p+/Tpq166NJUuW4LPPPsPPP/+MZcuWwWw2o2fPnnjzzTddrXp3yu0zli6382/6uTyj9NcxL8LCwlwtXY0aNYLD4cCECRPg7+/vOu8kJCRAVVXMmzcP8+bNy3IMk8kEAHjmmWfg5+eHFStW4KOPPsKUKVNQo0YNvPnmm2jevHme6skOgwmcTWe7d+9Go0aNckydbdq0cTXp7dq1CwsXLsS7776LBg0aZPpt7H7cedJQFAWxsbGZTnB3/maSl98MMgoKCkJsbCwURcn0HNO/XPP6ps7p2ABw48YNlCtXznW53W53NXHnh65du+K1115DTEwM1q1bl+OXd1BQEG7evJnl8vS1L0JCQhASEpLt65HxZxEYGAgAGDNmDCIjI7N9nJycP38ezz//PDp27Ig5c+agQoUKkCQJS5YsyTJoM6P0x/z666+zPYGWLVs2x/umCwkJQd26dbFt2za89tpr2bbqzZo1y9WCc/bsWYwdOxaDBg3C008/7foN7cMPP8zUQlOqVClMmjQJEydOxLFjx7B+/XrMmzcPISEhmDhxIgICAtCyZUsMGTIky+Nl/LLs3r07unfvjsTERGzfvh3z5s3Da6+9hsaNG2fpNrh58ya2bt2abZfo33//jY8//hi//fZbts3TeRUUFIRz585luTzj+yUv0n9bvnONmAddMyb9fXbz5k1UrVo1S40ZZ7hlF0Bu3ryZJSylczgc+Omnn1C5cuUsLUYWi+Wu05Rbt26N3bt3w2q1ur6oMvruu+8wefJkLF++/J7OEQ96rnsQAQEB8PX1zbGlqFKlSgCcXTdTpkyBoig4ePAgfvzxR3z77beoWLEinnnmmSz327dvX54+Y3kRHByc5fwmhLhrd+jdvPnmm9ixYwcmTZqEZs2aITQ0FH5+fpAkCU899VS259n08CTLMgYMGIABAwbg1q1b+P333/H555/jhRdewI4dO3IMablhVw6AZcuW4caNGzkudDV58mQ8+uijEELAx8cHUVFRrsXU0n9jeJBpizt27Mg0RXbDhg1wOBxo1qwZAOdvgFevXs10nzvfzLk140VGRsLhcGD9+vWZLl+9ejUAZx/t/Ur/0l67dm2my9euXQtFUR7o2BlFRUXBaDRi8eLF+Pvvv3MMJk2bNsVvv/2WaaaHoihYu3Yt6tWrB6PRiBYtWsDhcGDz5s2u29hstkzdM1WrVkXx4sVx8eJF1KtXz/WnVKlSmDp1Ko4cOZJjrYcPH4bVasWwYcNQsWJFVzhIDyXpv9nd+b5J73+OjY3N9JgxMTGYPn36XX/zzejpp5/GiRMnsHjx4izXnTp1CitWrEDLli0RGhqK/fv3Q1VVvPDCC64TpqIoru4XVVWxf/9+tGzZEgcPHoQkSahduzZGjx6NsLAw12cgMjISp06dQu3atV11h4eHY8GCBa4uuJdeegnPP/88AOeXwMMPP4wRI0bA4XBkaYECgB9//BEOhwNPPvkkmjVrlunPk08+CX9//0yz6e5H06ZNcenSpSzryaxevRoGgyHPv3iULl0aFStWzDJ7bOPGjQ9UX4MGDWA0GrFmzZpMl+/btw+XL1/O9Nu9xWLJFHwtFgu2bt2KFi1aZHtsvV6PWbNm4cMPP8x0+T///IPz58+7zkHZGTp0KOLi4rJd9+LGjRv48ssvUb16ddStWzfP54i8nOvy6n7OyZGRkUhJSYEQItPn78SJE5g9e7brHNq8eXPcuHEDOp0OERERmDRpEgIDA3NsQcrLZyyvWrRoga1bt2bqWt+2bZtrJsy98vf3x7hx45CQkOAaC+Xv7486derg9OnTmV6HGjVqYObMma5W6n79+rnGUxUvXhx9+vTBgAEDkJCQ4Dr/3s/PoUi1mCQlJbmmdKmqitjYWGzfvh3Lli1Djx498NBDD2V7v+bNm+Orr77C66+/jh49esBut+OLL75AcHCwq7kqMDAQ+/fvd00NvBc3btzACy+8gEGDBuHs2bP4+OOP0apVK9fJJCoqCr/++ivef/99REdHY9++ffjhhx8yHSN9sNGWLVsQFBSUpXm2bdu2aNasGd58801cu3YNtWrVwp49ezBv3jz07t37gdY8qV69Onr37o0ZM2YgNTUVTZs2xdGjRzFr1iw0a9Ys0ziOB5E+BmTu3LmoX79+jmuhjBw5Elu3bsXgwYMxbNgwGAwGLF68GBcuXMAXX3wBwPnhbt26Nd58803cunUL5cqVw8KFCxETE+P67VKn02H06NGYMGECdDodoqKikJCQgE8//RTXrl1D3bp1c6y1bt260Ov1mDJlCoYOHQqbzYaVK1diy5YtAG7/FpjeQrJmzRo0aNAANWvWRI8ePfDWW2/h0qVLCA8Px5kzZzBt2jSUL18elStXztNr1bVrV+zcuRPvvvsuDhw4gC5dusDX1xcHDx7EV199hZCQENcJJf2L95133sGjjz6K+Ph4LFmyxNWMn5KSgjp16sBsNmPMmDF44YUXEBoaip07d+Lo0aOuqeojRoxAv3798Nxzz+GJJ56AyWTCsmXLsHnzZsyYMQOA87M0ceJETJ48GW3btkVCQgJmzZqFypUrZ9ulsHLlStStWzfb5202m9G5c2esXLkSFy5cyHW8V0769OmDb775Bs8//zxefPFFlC9fHr/++itWrFiBkSNHun5GuZEkCS+++CJeffVVTJw4EZ06dcKxY8cwe/ZsAPf/y0twcDCGDRuG2bNnw2AwICoqChcvXsT06dNdn72Mxo0bh5deegnFixfH/PnzkZKSctfF6F544QWMHTsWY8aMQc+ePXH58mVMnz4dtWvXznLsjBo2bIhRo0bhk08+wb///otevXohJCQEJ0+exPz582G1Wl2hJa/niLyc6/IqMDAQf/31F/bu3ZvjYNc7tWvXDk2bNsWIESMwYsQIVKtWDQcPHsSMGTPQpk0bFCtWDI0aNYKqqnj++ecxbNgw+Pn54eeff0ZiYmKO3yF5+YzldZG3559/Hps3b8bTTz+NZ555xrUoWsYxJ/eqa9eu+Oabb7Bq1So88cQTqF+/vmsA/iuvvIIePXpAURR8+eWXOHDgAEaMGAHAGeq//PJLhIaGIiIiAteuXcNXX32FyMhIV2vbnT+HPH1O8zx/x8MNHDhQhIWFuf7UrFlTNGrUSPTr108sW7bMNV0tXcYpZEI4pzn27t1bNGzYUERERIhnnnlGHDt2zHX9H3/8Idq3by/q1q0rVq9enWWKW7rspgt/8MEH4o033hANGzYUkZGRYtKkSSI5Odl1G4fDIaZMmSJatmwp6tevL55++mnx559/Zjq+oiji5ZdfFvXq1RPdunVzPeeMU+9SUlLEBx98INq0aSPq1q0rOnfuLL744guhKEqm1ym36XrZcTgc4tNPPxUdOnRwTbn9+OOPhcVicd0mfbrahQsXcjxORhmnC6dbv369CAsLE1999dVd6zty5Ih45plnXD+vJ598UuzduzfT8VNSUsQ777wjmjVrJho2bCjGjx8v3n333Uw/HyGEWLt2rejdu7cIDw8XkZGRYvjw4Zl+9jNmzBBhYWFZ6v/5559Ft27dRL169UTr1q3FyJEjxZ49e0TNmjXF4sWLhRBCXL16VTz66KOibt26YuLEiUIIIex2u5g1a5brtWzbtq2YOHGiiI2NzdPrltHq1avFwIEDRYsWLUT9+vVFly5dxJQpU0RMTEym2y1evFh06NBBhIeHi/bt24uxY8eKTZs2ibCwMLFlyxYhhBBnzpwRI0eOFC1atBB169YV3bp1E0uXLs10nMOHD7umWzZs2FA89thjYvPmzZlus3DhQtG1a1dRv359ERkZKUaNGiUuXryYpfa///5bhIWFiS+++CLH57d7924RFhYmpkyZku37RQiR7TTKOz/ft27dEuPHjxfNmzcX4eHhokePHuL777+/632EyP49vXTpUtGpUydRt25d0atXL/H999+LsLAwsWHDhhyfR0Y5LW3wzTffiK5du4q6deuKVq1aiUmTJom4uDjX9envw02bNomoqCjRoEEDMWTIEHH06NFcHzP9Pd6gQQPRvHlz8dZbb+X5/bZlyxbx7LPPilatWonw8HDRqVMnMWHCBHH58uVMt8vLOSIv57qcziN3/ny+/PJL0aRJE9GgQQNx6dKlHD+nd94vOTlZ/O9//xNt27YVdevWFdHR0WLq1KmZ6jxw4IAYOnSoiIyMFPXq1RN9+vQRGzduvOvrlJfPWF7Pv4cPHxYDBw4U9evXF1FRUWL16tWiZcuWeZounNP59+jRo6J27dri0UcfdX0f7ty5U/Tv31/Ur19fNG7cWAwePDjTedRut4sZM2aIjh07ivDwcNGiRQvxxhtvZDq/3PlzyAtJCO5yRESUH9asWYM6depkGguyZcsWPPfcc/jxxx8LdHn29AX7jh8/XmCPQVQYilRXDhFRQVq9ejWmTZuGl156CWXKlMG5c+cwY8YMREZGarZnDJGnYTAhIsonkydPxtSpUzFlyhTExMQgNDQUXbp0ybRwFRHdHbtyiIiIyG1wujARERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCREREboPBhIiIiNwGgwkRERG5DQYTIiIichsMJkREROQ2GEyIiIjIbTCYEBERkdtgMCEiIiK3wWBCHsXhcODrr79Gnz59EBERgebNm2Po0KHYtWuX6zY1a9bEypUrczzGzJkzER0dXRjlEhHRPWIwIY9htVoxePBgLFiwAIMGDcKqVauwYMECVKtWDUOGDMFPP/2Up+MMHToUy5cvL+BqiYjofui1LoAor6ZPn47jx49jzZo1KFOmjOvyN954A0lJSXj33Xfz1BLi5+cHPz+/giyViIjuE1tMyCPY7XasWLECffr0yRRK0r300kuYN28ezGYzAODMmTN46qmnUK9ePbRp0wZz5sxx3TZjV87FixdRs2ZNbNiwAf/5z38QHh6O6OhoLFu2zHV7m82GyZMnIzo6GuHh4YiMjMSoUaMQExNTwM+aiKjoYTAhj3DhwgXExcWhUaNG2V5fqlQp1K9fHzqdDgCwePFi9OrVC+vWrcMTTzyBjz/+GH/88UeOx3///fcxfPhw/Pzzz2jfvj0mTZqECxcuAAA+/PBDbNy4ER988AE2bNiADz74ALt27cJnn32W/0/UW6kOQLEBqh0Q6t1vq1gAeyJgiwdssYD1FqAqEEJAqCqEUJ3/zvAnJ3fe7m63JSL3wK4c8gjx8fEAgKCgoDzdvn///ujVqxcAYMSIEfjyyy9x+PBhtGjRItvbP/XUU+jQoQMAYPTo0ViyZAkOHDiAChUqoF69eujSpQuaNGkCAChXrhxatmyJEydOPOCz8hJCAVQFkHWApLt9uWoDUq8CyWedf1KvArY4wJHgDB32tD+2eMCekPb/BEA4sj5Gz7NQTGVhSU7KsQxJkiFJEiRJAtL+zvp/GZIsQ5adt3U9hQyBJePlRFT4GEzIIxQrVgwAEBcXl6fbV65cOdP/AwMDYbVac7x9tWrVXP8OCAgA4Ow+AoCePXti586d+Oijj3D27FmcPn0aZ86ccQWVIkNVAKiAbHD+X7ECCceBxBNAynkg+TyQcuH235brAAqvhcLZknIPd5CktIDiDCqyrHOGFp3sCjnO44q0mzOwEBUGBhPyCBUqVEBoaCj++usvdO3aNcv1//77L9577z2MGzcOAFxdOhndrRnfaDTmePsJEyZgw4YN6NWrF6Kjo/H8889j/vz5uHbt2v0+HfcmBCDsgJz2mggFSDoDxO4H4g4BcYeB+ENA0uncu2XcmRBQFQWAAiWbqyVJgiTroNPpIOt00On0kNJaWhhWiAoOgwl5BFmW0bdvXyxatAhPP/10lgGwX3zxBQ4dOoRy5crl6+PGxsZi2bJlmDZtWqZAdPr0afj6+ubrY2lGVQAIQNY7x4HE7AVu7ATiDjqDSMIxQM25tclbCSEgFAdUJXPXkpwhqMg6nbOlhWGFKN8wmJDHGD58OLZt24b+/ftj1KhRaNSoEeLi4vDtt9/ihx9+wLRp0/I9LPj7+yMgIAC//PIL6tatC4vFgsWLF+Off/5BgwYN8vWxCo1qByQ9IEnO8R3XfwdubANu7ABi/nSODaEcqYoCVVHgwO3XSZbTwopeD51eD1nWMagQ3ScGE/IYPj4+WLx4Mb788kvMmzcPly9fhtlsRp06dbBo0aICGfNhMBgwffp0fPDBB3jkkUcQFBSEZs2a4eWXX8acOXOQmpoKHx+ffH/cfKUqzhAiyc7xH9d+dYaQG9udY0QKcRyIt1JVBaqqwGF3hhVJktNCigF6vbMLiEGFKG8kwflzRN5HtTsHqap2ZxC59BNwaa1zdown6nkWjlxm5bgzWda5gopOr2fXD9FdsMWEyBsI4RykKusByzXg4o/OIHLtF8CRrHV1RZ6qKlBtCuw251gdWaeHXq+H3mCEpGO3D1FGDCZEnkqoAIRz7ZCYP4FLPwKX1gCxf2tdGeVCVRywKQ7YrBZIsgy9wQgDQwoRAAYTIs+jOpwtIwnHgNMLgHPfAikXta6K7pNQVditFtgZUogAMJgQeYb0MSOpV4AzC4GzS5xTecmr5BZSGFCoKGAwIXJX6S0j9kTg3DLg7GLg+lZwFk3RcGdIMRhNzpCSNsOHIYW8FYMJkbtJDyTXfgNOfe4cxFoEFzij24SqwmZJhc2SCr3BAIPRBJ3ewIBCXonBhMgdpC/trqQC/34BnJgNJJ7UtiZySw67HQ67HbIsQ280wWA0ua5jSCFvwGBCpKX0sSOJp4DjnwBnFgEOz1yrgwqXmqkVxQiDyQSdTs9WFPJ4DCZEWlAdzpVYL/8MHJ/uXASN6D457DY47DbIsg4Gkwl6g3MDRgYU8kQMJkSFSSiAIxU4+anzT/I5rSsiL6KqCqypKbBZUmEwmV3dPAwo5EkYTIgKmhAABGBPAI5+BJyYBdjjta6KvJgQwtnNY7XAaDTBYDIDYEAhz8BgQlRQ0gOJNQY48oFzhg2Xh6fCJARsVgtsVgsMJjOMRpNzQ0cwpJD7YjAhym/pgcQWCxx+1xlIFIvWVVERl74misFogtFkdq2Gw4BC7obBhCg/CRWwxQH//A84+RmgpGhdEVEmdpsVdpsVeqMRRpOP63IGFHIXDCZE+UF1OKf+/vOec9ovu2zIzTlsNjhsNmcLitmH04zJbTCYED0I1e7c3ffsIuDv8YDlqtYVEd0Tu80Ku90GI2fxkJtgMCG6H0JxBpKbu4E/XwRi92tdEdH9S5vFY7daYTT7wGA0sgWFNMNgQnSvhAqkXAT+HA1cXKV1NUT5RggV1tRk2G0WmHx8uZIsaYLBhCivVIdzds3ht4HjMwDVpnVFRAVCVRSkJiVCbzDCZPaBALt3qPAwmBDlJn2339MLgAPjAesNrSsiKhTpS907u3c4/oQKB4MJ0d0IBUi5AOx6Cri+VetqiDRhs6TCYbPB5OsHWZYZTqhAMZgQZUd1OFfIPPoRcGgSF0ijIk9VFaQmJThXkOUS91SAGEyI7iRUIOEY8MeTQOxfWldD5FbsVgsUuw0mHz/IOh3DCeU7BhOidKodgAAOTnS2lAiH1hURuSVVVZGanOhanA1g6wnlHwYTonS39gK7hgCJJ7SuhMgj2G1WOBx2mH18odMbOLWY8gWDCRVtqgOAAPa/Chyf6fw3EeWZUFWkJidBbzQ5pxYznNADYjChoktVgORzwPa+QOzfWldD5NEcNisUux1mX449oQcja10AUaETqvPvs4uAnxswlBDlEyGcY0/sNmva/9kCSfeOLSZUtKh254qtu58Fzn2rdTVEXslmSYXicMDs68euHbpnDCZUdAgViDvs7LpJOq11NUReTXHYkZIYD7OvP7t26J6wK4e8n1Ccfx/7GNjYjKGEqJAIIdi1Q/eMLSbk3VQ74EgBdvQDrqzXuhqiIoldO3QvGEzIe6kOIOkMsKUrkPSv1tUQFWnOrp0EztqhXLErh7yTUIGrm4ANTRlKiNzEnbN2iLLDYELeJb0P++gU4PfugD1B23qIKAubJRXW1BQIITjuhLJgVw55D9UBQAX+eBo4u1jraojoLuw2K1RV5bgTyoLBhLyDagdsscDvjwC39mhdDRHlgeKwIzUpEWY/fwDcCJCc2JVDnk8ozvVJfo5gKCHyMKqqIDUpAaqqsFuHADCYkKcTKnBpLbCpJZB6WetqiOg+CCGQmpQIxWFnOCEGE/JwZxYC2/oAikXrSojoAVlSkjljhxhMyIMdnQrsGnp7ZVci8nicsUMMJuRZ0k9Uf48D9r8KgCcuIm9jt1lhSUkGwGXsiyIGE/IcQgUggN3DgCMfaF0NERUgxWFnOCmiGEzIMwjF+Wf748C/87SuhogKgTOcJAFgOClKGEzI/akOQLUBW7oBF5ZrXQ0RFSLF4WA4KWIYTMi9qQqgWoFfop173xBRkaM4HLAkM5wUFQwm5L6EAggb8Ftn4OYurashIg0pigOpyYkAGE68HYMJuSehOltLtnQHbuzQuhoicgOqojCcFAEMJuR+hOpsLdnaE7j2q9bVEJEbURUFqUmJALjOibdiMCH3kj4lePtjwJX1WldDRG7Iub8Ox5x4KwYTch/pJ5idA4CLP2haChG5N1VVOCDWSzGYkPuQJGDXEODcMq0rISIPoCgO1yJs5D0YTMh97Bnu3JSPiCiPFIcdVkuq1mVQPmIwIfdw8C3g1BytqyAiD+SwWWFjOPEaeq0LoCJOKMDZJcDhd7WuhIg8mM1qgSTL0BuMkCRJ63LoAbDFhLSjOpxrlOx+RutKiMgLWFNToDjsHAzr4RhMSBuqHUg+C2zt5fw3EVE+sKQkQ1UUhhMPxmBChU91APZE51LztlitqyEiL5OakgShqgwnHorBhAqXUJ1/fu8OJJ3Wuhoi8kZCIDU5CRBcHdYTMZhQ4ZJk4I9BwM0/tK6EiLyYECrXOPFQDCZUuP4eB5z/TusqiKgIUBQHpxF7IAYTKhyqApxbChz5QOtKiKgIsduscNht7NLxIAwmVPBUO5B4ktOCiUgTlpRkDob1IAwmVLCECqg2YGsPwMH+XiLSRmoKN/zzFAwmVKCEEMCJWc4WEyIijQjVORiWq8K6PwYTKjBCqIBqgaj9KtD0M63LIaIiTnHYYbOkstXEzTGYUIEQqgIknIKy81mIq1uBGsMhuv4D6AO1Lo2IijCb1cJl690cgwnlu/SWEuWfDwElBeqx6VCOzQICwyB6XwZKtNW6RCIqwiwpKRBcfM1tMZhQvpMkGeqRjwHrTddl4spmKH++BjiSITr8AtTnbsJEpBXBxdfcGIMJ5SshVKgXfoK49WfWK5POQNk32nld+BvAQ7sA2Vz4RRJRkacqDthtVraauCEGE8o3QlUAy3WopxflfCNHMtTD70M59SVE8aYQfa4AIQ0LrUYionQ2SyrXN3FDDCaUfyQJypGpznVLciEurIay/w3nvzvvAWq9XNDVeZyrCXo0+aAadp/1yfE2X+8KRs23w3AxTp/r8f69acDwb8ui0fvVEDm5Gp5fVhYXYg2ZbvPJr8XRYkpVRH1SBSv/zjxQWQigz9yKWH0w4P6eEJEbYpeO+2EwoXwhhApxbjmQcA/rlcQfhbJnFET8UYiIj4CojeBb0ulKvB5DF5VDolWX423O3DLg419C83y8/l9WRFyKDh8/ehVvd7+GUzeMGLqoHCx257oOW0744cs/QjCu8w0MbRGLt34qhZPXja5jrD0cAFUAj9RLfLAnR+RGVFWBzcopxO6E3wL0wISqAMkXoJ69j8357PFQ/54EcXYZROmOEL2vAP7V8r9ID6EKYOXfgeg1pxJuJefcCqKowLgfSiPYV8nTcWduKQ5/k4KvBl9E+7BkPFw3CR/1uYJUu4zDl53jfHae9kXLqinoUT8Rg5rFoVoJG/aktdbYFGDar8Xxcoeb4PpU5G3sVitURWE4cRMMJpQPhLMLRzju8/4q1LNLoR58B9D7QnQ7AlQdkq8Veorj10yYuKYkejVIwIe9r+Z4u/k7Q3AzWYdhrWNyPaYQwMaj/ng0IgE+htsn3nplrdj+ymk0qeTcfVWSAJP+9vUGnYAinCnkm73BKBvsQNvqKff71IjcWnqXDsOJ9hhM6IEIIaCeWQIkn3/wY8Xsh7L3JSD5HESzL4BW99EC4+HKBNmx6cWzGNf5BswGNdvbnLxuxKzfi+N/Pa5lCho5uRinR6JVh7JBdry9tiQiJ1dDvXer4/+WlsXVhNutMg3Lp2LPWR+cuWXAgYtmnLhmRKMKqUi0yPh8WzG81vHmXR6FyLMJocKamsIl690AgwndN+fqricgzv+Yfwe13oTy1ziIi2uBSv+B6HkOMJfOv+O7uWAfFaUDc255cqjA2B9K4z8R8YisnJqnY8amOMPHR5tL4FqiHh/3vYJ3e1zDkSsmDP66PFJszhNxlzpJ6FQ7Cd0/rYzBX5fHqKhbCC9rxbwdIYislIq6ZSx4f0MJdJlVGaOXl0ZMCk8f5F0cdhscdhtbTTTGMws9EOXYDADZ/2Z/34QD6qn5UA5/CJhLQvQ8A5Trmb+P4aE+31oMCRYZr9xD64UtbRhKqL8Dsx6/jNbVUtCzfiKm/+cKzsUY8dMh5+wbSQLe6X4d+8edwl/jTuGZVrG4lqDH4j3BeCn6JpbsDcbO076Y+dhlyDIwaU2pgniKRJqypjq7KxlOtMNgQvdFCBXi/Eog5VLBPcaNnVD2vgxYbkC0XQE0/bzAHssTHLliwufbi+G/3a/BqBdwqM7BsgCgqhKUHPKhv9F5RdvqyZAztFI3LG9BgEnBkSumTLc36gV0aWeG6b8VR/fwRFQNtWPDEX/0qJ+AGiVteLJZHH457p/jYxJ5KiEEbJZUduloKPfFD4juIIQKWGOgnvu+4B8s9TKUfa9ADhsOqcZzECXbQtrQHHAkFPxju5lfjvvDrsh4alGFLNd1mlkFkZVSsOipi1muq1DMDgkCNkfWE62iSjDnME7l5HUjfj4SgPUjzwAAbiXrEezjbH4JNCtwqBJiU3QI9c/bzCAiT2G3WaE3GiHLOgYUDTCY0D2TJBnKic/ztJBavlBtUI/NgIj7B3LN4RB9LkPa0h24vqVwHt9NPNY4Du3DkjJdtuWEP2b9Xhyf9buEysWz/3n4GQWaVkrFxmMBeLnDLRjTZt78cdoHKXYZTSpmP1blo82hGNg0DqUCnMGjuJ8DN5Kcp4wbSXroJJHn6cpEnsaakgIffy4mqAV25dA9EaoC9eYeiFv7Cv+xr/4C5c8xgD0JInoT0OB/hV6DlkoFKKhX1prpT7lgOwAgrJQVVUPtrtv+fdGM8zG3V3V9ucNNXE/U4dlvyuH3k75Y+XcgXllZBg3KpSK6ZlKWx9pz1gd/X/TJNB25fVgyvv8rCFtO+OHzbcXQtkYy9DyDkJdSVYV76WiEpxW6N0KBemKedo+fdAbK3tHOYFR3HNB5DzcCzMbj8yvi063FXP+PqGDBwicvQhXAi9+VxeSNJRAVlowvBl5yjSfJaMrmUAxrHYMA8+1BJIObxaFppVS8srI07IqEt7tdL4ynQqQZmyUVEILhpJBJgq845ZEQAurphRDnV2ldCgBAqtADcrUnAXsipF86ALF/aV0SFZSeZ+EwlYUlOWvrDlFB0huMMPv6aV1GkcIWE8oTIRQg9TLEhZ+0LsXFtRGgEBCddwO1XtW6JCLyMg67DYriYKtJIWIwoTyRJB3UE3MfYNn5AhJ/DMreURBx/0BEfAhEbwLf1kSUn7gibOHiGZxyJVQFaswBiNgDWpeSPXsC1ANvOzcCLNUBos8VIKCG1lURkZdQFQ6ELUwMJpQrSdZB/XeB1mXkIm0jwANvAzpfiK6HgapDtS6KiLyEzZK3LSDowTGY0F0JVYF6bSuQdEbrUvJExP7t3Agw6SxEs3lA60JYBI6IvJ4QAnYrW00KA4MJ5Uo9vVjrEu6N9SaU/eMhLq4BKvZN2wiwrNZVEZGHs9ksWpdQJDCYUI6EUCAurQMsHrhehXBAPfUllMOT0zYC/Bco31vrqojIkwkBu9XCVpMCxmBCOVPtUM99p3UVD0Tc+APK3tGA5TpEm++ByDlal0REHsxmZatJQWMwoWwJoUI9txywJ2pdyoNLvQJl36sQV7cA1YdBdDsKGIO1roqIPJTNmspWkwLEYEJZCCGc+9G40WJqD0y1QT02E8rRmUBANYheF4GSUVpXRUQeyG61cqn6AsRgQtkQUM+vAFSr1oXkO3H1Fyj7XsuwEeAHWpdERB6IXToFh8GEslIsEJc3aF1FwUk+m7YR4B6g7lig815uBEhE9yR9wTW2muQ/BhPKRAgF4sJqQPHy3waUFKiHJ0M5OR+iWAREn6tASCOtqyIiD2KzctG1gsBgQpmpDqgX12pdRaERF3+C8td4QCgQnXcBtV7TuiQi8hAOm42tJgWAwYRcnOuWrAccXjAT514kHIey96W0jQAnA9G/gB8NIsoLO8ea5Duefek2IaBe+FHrKrRhT4B64B2oZ5dClIpydu1wI0AiyoXd5n2TBLTGYEIAnHviiCu/ALYYrUvRkApxdhnUA5MAnQ9Et8NAtWe0LoqI3Bx3Hs5fDCbkJElQz6/Sugq3IGIPQNk7Ckg8AxE5B2izQuuSiMiN2a1sNclPDCbkbC25sQuwXNW6FPdhveXcCPDCT0CFPhC9LnAjQCLKlhAqFIedrSb5hMGEIMk652Z9lJlQoP77lXMjQFNx50aAFfpoXRURuSGb1QpJkrQuwyswmBRxQgiIlMsQcYe1LsVtOTcCfNm5EWDr74Fm87QuiYjcjKo4oCgOtprkAwaTIk9AvbhG6yLcX/pGgFd+Bao9A9H9GDcCJKJM7Gw1yRcMJkWd6nDuuku5U21Qj8+CcnQG4F/VuRFg6Q5aV0VEbsJht0GoqtZleDwGkyJMqArE1d8AJUXrUjyKuPorlH2vAvZEiPYbuBEgEbnYOHX4gTGYFGGSrIN6eb3WZXim5HPOjQBvpm0E2GUfNwIkIji44NoDYzApooRQIeKPA0lntC7FcympUP+ZDOXEPIiQhmkbATbRuioi0pAQglOHHxCDSRElSTLUS0Vns76CJC6tzbAR4B9Ande1LomINGS32TgI9gEwmBRRQrFA3PhD6zK8R8JxKHtHQcQdhmjwP6DDr4Cs17oqItKAs8WEg2DvF4NJESRUB8S17YBq17oU72JPhHrgbahnvoUo2R6i1xUgoKbWVRGRBhw2G7tz7hODSREkyXqI61u1LsNLCYhz36VtBGiG6HYQqPas1kURUSGz29mdc78YTIogYYuHiOVKrwUp80aAnwNtVmpdEhEVIlVRoKoKW03uA4NJESNUBeLaFgDs/yxwro0AVwMVejs3AvQpr3VVRFRIHDab1iV4JAaTIkaSdVCvshun0AgF6r8LoBz6ADAWh+hxEqjQV+uqiKgQsDvn/jCYFCFCCIjUq0DSv1qXUuSIm7ug7BsNpF6DaL0MaDZf65KIqIAJVYXi4MZ+94rBpEhRoV79Vesiiq7Uq1D+fA3iyi9AtaEQ3Y8DxmJaV0VEBchuZ3fOvWIwKUIkSQdxjd04mlJtUI/PhnJ0OuBf2TnuhBsBEnktB4PJPWMwKSKEEBBJ54DUq1qXQgDE1d+g7HsNsCc4NwKMmKJ1SURUEISAorA7514wmBQVQoW4uUvrKigj10aAu4DarwJd/gT0vlpXRUT5TLFzMct7wWBSREiyDurNfVqXQXdSUqH+M8W5EWBwA4jel4HiTbWuiojykcNh5+yce3BPwWTQoEF4/fXsNyh7/fXXMWjQoDwfa+bMmYiOjnb9/+TJk9iyZcu9lJPrMbNz8OBBPPfcc4iMjES9evXQuXNnTJ06FUlJSa7b2O12LFiw4J4e+/Lly1i71n03xRP2RCDxlNZlUA7EpbVQ9o8DVAWi006g7jitSyKifCJUFaqqaF2Gx9CsxWTo0KFYvny56//PPfccDh06VKCPefLkSQwaNAjVq1fHokWLsG7dOrzyyitYs2YNRowY4brdmjVr8P7779/TsceOHYtt27bld8n5QqgOiJt7ALCP060lnLi9EWD994AOv3EjQCIv4bDbOc4kjzQ76/n5+cHPz69QH3PlypWoVKkSXnvtNddlFSpUgNlsxrPPPotjx46hVq1aXvfmkWQ91FvsxvEIaRsBSpX6Qq7SH+h9BdLGNkDiMa0rI6IHoDjsMJrMWpfhEQqsxaRmzZpYvnw5nnrqKdSvXx+tW7fGrFmzXNdn7HaJjo7GpUuXMGvWLFd3UGJiIt566y00b94cjRs3xuDBg7O0qCxbtgydOnVC/fr1MXz4cMTHx9+1JkmScOnSJZw6lblLo2XLlli7di2qVKmClStXYty4ca7nsHv3bqiqijlz5qBz584IDw9Ho0aN8Mwzz+D8+fMAnF1ce/bswapVq1zPyWazYcqUKWjTpg0iIiLw2GOPYfv27a7HVBQFU6ZMQbt27RAeHo4uXbrg22+/vZ+XOldCVSBi/i6QY1NBEBDnvod6YCIgmyC6HQCqP6d1UUT0ALjQWt4VaFfO5MmT0bt3b6xduxYDBw7EzJkzsXfv3iy3W758OUqXLo2hQ4di5syZEELg2WefxYULFzBnzhx89913aNiwIZ544gkcOXIEgLO75Z133sFTTz2FH3/8EY0aNcKSJUvuWs/jjz8OvV6P7t27o1+/fvj444+xbds2KIqC6tWrw2QyoWvXrhg/fjwAYPv27YiIiMDChQsxf/58vP7669iwYQNmz56Ns2fP4oMPPgDgDFkRERF4+OGHXd1T48aNw44dO/DRRx9h1apVePjhhzF8+HDXOJpvvvkG69evx7Rp07BhwwYMHDgQkyZNwr59+duyIYQKEf8PoKTm63Gp4InYg1D2jAIST0M0/RRo+4PWJRHRA1Ac7M7JiwINJr169ULPnj1RoUIFDB8+HIGBgfjrr7+y3K5YsWLQ6XTw9fVFcHAwdu3ahb///huffPIJGjRogGrVquHll19Gw4YNsXDhQgDAokWL0LVrVwwYMABVqlTBsGHDEBUVddd6KlWqhB9++AGDBg3C9evXMWfOHDzzzDNo3bo1vvvuOwCA2WxGQEAAAKBEiRIwGo2oWLEiJk+ejKioKJQrVw4tWrRAly5dcOLECQBAcHAwDAYDzGYzihUrhnPnzrnGqTRr1gyVK1fGkCFD0K1bN8yf71yK/Pz58/D19UX58uVRrlw5DBw4EF999RWqVKmSb69/Ouf4EvJIthgo+9+AuPAjUL4nRK+L3AiQyEM5HJw2nBf3NMZEr9dDVbPflVZVVej1mQ9XrVq1TP8PCAiAPQ/zuf/55x8IIbIEDZvNBqvVCgA4ceIEunXrlun6iIgIHDt29774MmXK4I033sAbb7yBCxcuYOfOnfjmm2/w1ltvoVSpUmjXrl2W+0RHR+PAgQOYPn06zpw5gzNnzuDUqVMoVapUto+R3qrTv3//TJfb7XYEBgYCAAYMGIDNmzejXbt2qF27Nlq1aoVu3bqhePHid63/XkmSDHEraxgkDyIUqP9+DRF/DHLtlyB6nIK0czBw4TutKyOie6DY7ZB8OG04N/cUTAIDA5GQkJDtdfHx8QgKCsp0mdFozHK7vDRjqaoKf39/rFy5Mst1GY95Z0gyGAx3Pe6HH36INm3aoEWLFgCcA18ff/xx9O7dG506dcLvv/+ebTCZO3cuZs+ejd69e6NFixZ46qmn8Msvv+Q4PTj9OS5ZsiTLAF9ZdjZSVa5cGRs3bsSePXuwY8cObNmyBfPmzcP777+P3r173/V53AthiwNSL+fb8Ug74uZuKHtHQ1fvdYjW30I63QXYPVTrsogoj4QQUBUFkixzXZO7uKeunLp16+Lw4cOw2TKv/W+z2XDw4EHUq1cvX4oKCwtDUlIS7HY7KlWq5Pozb948/PLLLwCA2rVrZ+kWym268R9//IEvv/wyy+VGoxFms9nVWnHnG+bzzz/H888/j0mTJuHxxx9Hw4YNcfbs2RxDVo0aNQAAN27cyFT/ypUrXWFr4cKF2LhxI1q1aoUxY8bgp59+QosWLbBu3bo8vEJ54xz0eiDfjkduwJK2EeDlTUC1IRDdT3AjQCIPwu6c3N1TMOnbty9UVcXIkSOxf/9+XLp0CXv27MGIESOg1+vRt2/f+y7Ez88PZ8+exc2bN9GmTRvUrl0bo0ePxq5du3Du3Dm8//77WLlypat7aNiwYdi0aRO++OILnD17FosWLcKGDRvu+hijR4/Gzp07MWrUKOzdu9dV/5gxY5CcnIzHH38cAODr61wW/PDhw7BYLChTpgx27NiBU6dO4fTp05g2bRo2btyYKaD5+fnh0qVLuHr1KmrUqIGoqChMnDgRv/76Ky5cuIB58+Zhzpw5qFixIgAgJiYG77zzDn755RdcunQJ27Ztw9GjRxEREXHfr2EWkgwR90/+HY/cg2qHeuIzKEc+AfwrpW0E2EnrqogoDxSHg60lubinYFKsWDEsW7YMgYGBeOGFF9C5c2e8/PLLCA0NxXfffZelK+deDBo0CFu2bMHQoUOh0+nw5ZdfIjw8HC+99BJ69OiBvXv3YtasWa5umPbt22Pq1KlYsWIFHnnkEWzcuBFDh969Wbtt27ZYtGgRbDYbRo0ahc6dO2P06NGQJAlLly5FaGgoAKB58+Zo0KAB+vXrh99++w0ffvghLBYLHn30UQwcOBAnTpzA22+/jVu3buHyZWc3Sb9+/XDixAn06NEDiqJg2rRpeOihhzBhwgR07doVP/zwA9577z1XN83IkSPRt29fvPvuu+jcuTMmTJiAJ554As89l3/TQiVJgog7nG/HI/cirm1J2wgwHqL9z0DER1qXRES5UBWH1iW4PUlw7pLXEvZEKNvzvk0AeSidGXKtFyCXbAXE7Ac2twYcKVpXlb96noXDVBaW5KTcb0vk5nwDglzjDSkrvjJeSgiF3ThFhWJJ2whwLkRwfYjeV4DizbSuiohywMXW7o7BxGtJEPFHtS6CCpG4tA7K/tcB1Q7RaTtQd7zWJRFRNtidc3cMJl5KkmSI+CNal0GFLeEklD0vQcQehKj/LtDhd24ESORmFIUDYO+GwcRLCdUBJJ7RugzSgiMR6sH/Qj2zBKJka4jeV4HA2lpXRURpVEVhV85dMJh4q+TzgGBzYdElIM4th/r3REA2QHQ9ANT4P62LIqI0DCc5YzDxQkJ1QCSeyv2G5PVE3KG0jQBPQTSZDbT9UeuSiAjO7hzKHoOJN5JkiCR241AaW2zaRoA/AOV7QPS6BPhW1LoqoiKNC63ljMHEC0mSDJF0VusyyJ0IFeq/X0M59D/AGALxyAmg4mNaV0VUZHFmTs4YTLwVgwllQ9zcA2XvS0DqFYhW3wLNF2hdElGRJISAEGruNyyCGEy8kLDcAJRUrcsoMFdj7Wg++jj2HE/OdPnvhxLx2Ptn0OTFY+g4/iRm/XQDNsfdB5epqsBXG2/h4bdOodELx9D7v6exZnd8ptskpSoYPfcimr10HH3fO42DZzK/tjfi7Wjx8nFcvJl5c0u3Zbl2eyPAqk9CPHISMBbXuiqiIkdVGEyyw2DiZYRQIRK8d+DrlRg7np1+HompmT/QO44kYeSnFxFWzoSZ/1cBQzoVx9ebY/De0qt3Pd7Mn27gkx+vo0+rYHz6fAW0qO2HsV9dxtq9t8PJ5+tu4vhFKz56phzqVPTBy/MuZgo8s9fcRI9mQSgfaszfJ1uQMm4E6FsRotd5oHRnrasiKlJUlTNzssNg4m2EgEj2voGvqiqwamcc+r53BrcSlSzXz1t/C3UqmvHu4LJoUdsPA6KK4amOxbBqZxxSrNn/VpJqU7Ho1xgMii6GZ7uEonktP4zpWwpNa/hiya+xrtv9cSwZj7UJRptwf7zSpySuxDhw/rqzdeT0VSs2/JmA57qGFswTL2DOjQBfAWzxEFFrgUYfa10SUZGhKlnPZQRwSUgvI8k6r1xY7fglK9755ir6tQtBi1p++L/ZFzJd/99BZeBQMv/mYdBLUAWyXJ7OqJew5LXKKBagz3K/RMvtE4YEwGSQXNcBgKI6jzlt1XUMii6W5RgeJeUClH2jIdccCanWaKBUFLCplfdtBEjkZlRV5cycbLDFxAuJlAu538jDlClmwM//rYax/ykFszHrB7lCCSOqlDYBcI4J2bQ/AV9tuoWuTQIR6KvL9pg6WULN8maUCNJDCIGbCQ7MW38TfxxLRr+2Ia7bNajqiw1/JSI2yYFVO+NQPECHyqWM+OtUCg6cScWTHb1gfIZigXrkIygn5kAE1eNGgESFQFXZYpIdD/41j7IjhApYbmhdRr4L9tMBftkHjIxuxNvRfqxzjE2FUANG9SyRp+Ov25eAMfMvAwDa1fPHI82CXNc93z0UL8+9hNavnkSJID0+GFIWJoOMqSuv47mHQ2G1qxj31SWcuWZDh4YBeKFHCehkz/wtSFz6GUrCKejqvQ7RaTukQ28D/7yrdVlEXkmoKoQQbDW5A1tMvI0tFhBFN4WbDDLmv1QRHz9bDga9hCc+PItrsfZc71evsg++fqUSxj9eCvv/TcFzMy+4BqUVC9BjwSuVsHd6TWyZXAMt6/hj0/4E3Epw4LG2IXh7yVX4mXWYNqw8fj2QiKW/x+byaG4u8fZGgGjwX6DjVm4ESFRAhMqZOXdiMPEyIvWK1iVoKtBXh+a1/NC5cSA+H1kBMYkKVuyMy/V+FUsY0aSGLwZEFcPrj5XCvpMp+PNU5mnBvibnx8WhCHzyww28kNYa89vBRDzRPgTVy5rQs3kwNu1PzPfnVejSNgJU/l0EUaKVcyPAoDpaV0XkdTgzJysGEy8iVAeQUvSCiaIKrN+XgKPnLZkuLxdqRJCvDjfisl9hMSbRgR93xeFWQubr61QwAwCux2Xf0rJiRxzMRgldmwQiLkmBogJBad1Mgb5yluN5LgFxfgXUvyc4NwJ8+G9uBEiUzzgzJysGE68iQViuaV1EodPJEqb9cB0f/3A90+VHzqciLllBWDlTtvez2AXGL7iClXe0qOw46ly4LaycOct9ki0qPl1zA6N7lYQkSQjx10GWgJtpYeRGgsOzZ+hkQ8QdzrwRYLuftC6JyGtwZk5W3nUGLeIkWQekFr1gAgAjuodi/IIreOebK3ioUSAu3LBh9pqbqFHWhN4tgwEANruKoxesKBWiR+kQA8oWM6BPyyB8tvYm9LKE2hXN+PNkCr7YcAuPtgpC9bJZA83Xm2+hWhkTWtf1BwDodRJa1fHD5+tuYmBUCFbuiMPA6GKF+dQLR9pGgHKVAZAqPQrR6xKkjS2AlPNaV0bk0TgzJysGEy8jLHdf6dRb9WweDLNBxvwNt7B6Vzx8TTI6NAzAS71Kwmx0NgzeiHeg/4dnMaJbKJ5/xDk+5K3+ZVA+1Ijvt8fhcowdpUP0GPlICQzplDVc3EpwYMHmGMx/KfPOvBP6l8HYry5h7JeX8VCjQPRv74XBBHBuBHh6EUT8Mch1RkM8cgLSriHAuW+1rozIY3Hwa1aS4Kgbr+LYPhiwJ2hdBnk7c0nowscB/pUgnVkC7BpcsI/X8ywcprKwJCcV7OMQacA/KCT3GxUhHGPiRYRiZSihwmG5DuWvMRCXNwJVB0E8cgoweuay/ERaY/tAZgwm3oShhAqTaod64nMoRz4GfCtA9DoHlOmidVVEHkcIdudkxGDiTRhMSAPi2lYo+14GbHEQ7dcAjT/RuiQij8JxJpkxmHgJIQSEzcNXHCXPlXIRyr6XIa7vAGqOcq55ovfXuioij6Cqgt05GTCYeAuhADa2mJCGFAvUIx9DOf45EFQXovdloHgLrasicnvsysmMwcRrCHblkFsQl9dD+et1QLFCdNoKhL+ldUlEbo2tJZkxmHgNGcIer3URRE6Jp6DsfQki9gBQ/x2g4zZANmhdFZFb4hiTzBhMvIQk6wC7F2weR97DkQT14LtQ/l0IUaJl2kaAdbWuisjtCCG4LH0GDCbehF055HYExPmVzo0AJT3Ew/uBGiO1LorIrXCMSWYMJl5E2NiVQ+5JxB2GsncUkHASoskMoN0arUsichtC5RiTjBhMvIkjResKiHJmi4Xy95sQ51cA5bo5Z+34VtK6KiI3wGCSEYOJN1HtWldAdHdChXp6MZSD7wKGIIhHjgOV+mtdFZGmOCsnMwYTbyIYTMgziFv7oOx9CUi5BNFyEdBikdYlEZGbYDDxJmwxIU9iuQ7lzzEQlzYAVQZCPPIvNwKkIoutJrcxmHgTBhPyNMIB9eQcKP98DPiWh+h1HijzsNZVEZGGGEy8iXBoXQHRfRHX0zcCjIFo/xPQeLrWJREVMraYpGMw8SYqgwl5sJSLUPa9AnFtB1DzRYiHD3AjQCo6mEtcGEy8hFAV8J1NHk+xQD36MZTjnwFBdZxTikNbaV0VUYHj2fs2BhNvwW4c8iLi8gYof411bgTYcQtgKqF1SURUSBhMvAWDCXkbWwLUy+sBoQB6X62rISpgbDNJp9e6AMov3ACKPJUMhIRDKtYIcmANwKcsYAiAJDtPT0IICCGg2DnrjLwYc4kLg4m3kPijJA9gDAaKR0IOCYfkXxkwhQI6MyTJ2XgrHBao1hiI5EuQA6pA0vtCqCosqclQFUXT0omocPDbzFvIOq0rIMosqDakYo0gBdWE5FMOMAZCkg0AnLupClsCRPIVZxCxxEK1xgCKBbJvWRjKRQGyHnabFTZLqsZPhKgQSGz1Tsdg4iUkSQdndw7bA6mQ6f2B0KaQg+tBCqjqHKiq97ndCqLYoFpiIOJOQFhjnf+2xQHZbPVuKBcF2b8ihFBhSU5kKwkVGcwltzGYeBNZz9VfqWD5V4NUvAmkoFqAbzlIxmBANkCSJOdYEHsiROp1Z/iwxkC1xuZp12vJpxSM5TtA0hlhs1rYSkJFEJNJOgYTbyLpATCYUD6QzUBoE8ghDZytIOaSgN43rWUOEKodwhILJeFfCEuMszvGGuecQXOPDGXaQg6s4mwlSUqEonCGGRU9EptMXBhMvImsB9jyTffKtwKk0EhIQbUg+VV0DlCVja4TpbAnQbXcgmo5BWGNgbDGQtiTHvhhJXMJGMp3hKw3wW61wmrJvWWFiLwfg4k3kQxaV0DuTDYCxSKcrSCB1QFzaUDvB0lObwVxQFjjoCacTeuGcYaQgtjqQF+6NXRB1SCEQGpyIhQHW0moCGNrSSYMJt5E5o+T0phLO1tBgus4W0FMxQDZlKEVJBmq5RZEwpm0WTExEPbEgq/LVBzGCp0g682w26ywprKVhIixJDN+k3kT2aR1BVTo9ECx+pCLNYQUGAb4lAb0/rcXJ1MVCFsc1MTzzlYQS2xaK4it8Cst1QK64DC2khDdiS0mmTCYeBNDgNYVUEEyFgdCm0EOqQvJrxJgKg7oTBkWJ0t1toIknk8LIDEQtgRoPoXcGAJjxYcg633SWklSta+JyI1IbDPJhMHEi0iGAJ7uvYIMBNWBVLwR5MAwwDd9ifaMi5PFQyRfSpuWm744mVXjurPSl2oGXXAtQAikJidBcXDWGFEWzCWZMJh4CSEEW0w8kT4QKBEJOTgckn8VwFwi8xLtitXZCpJ02TUYVVjjAWRdnMytGINgrNAZssEXdpvNOeNGMDYTZYctJpkxmHgLoQCGQK2roLsJrAmpeGNIgbUg+ZYFDEGArE9bnEyFsCWmLdEe6xoPAsXzFhrTlWgCfbG6bCUhyiNJZjDJiMHEawhIhkB25bgDvR9QvAnkkPqQ/Ks6W0H0vpmXaLfGQMSfTAsgMRC2+PtanMyt6ANgrNgZstEfDrsN1tQUZ0seEd2VJMkQQnCRtTQMJl5DYouJFvyrQCreNG1xsvKAIfiOJdqTIFJvOFtB0lZIzcsS7Z5GFxoBffH6AABLShIcdraSEOWVJMtal+BWGEy8haTjGJOCJJuBYo0gF2sAKaAa4FMK0PlmWJzMuUS7mvCva6dc5xLtXj4lVu8HY8UukI0BbCUhuk/prankxGDiJSRJAowhWpfhHXzLO1tBgutA8qvgfF1zXKI9bVpuPizR7ml0xRtAH9oAgARLSjIc9sJfG4XIG8iyxG6cDBhMvIkxSOsKPIusB0IiIBeLSGsFSV+cLKcl2tMXJyvi3RR6X+eMG1MQHHY7rKnJbCUhegDsysmMwcSbMJjkzFwCUmjztFaQSlmXaHekpC3RfjZtifbYtCXa+YWbka5YOPQlGoGtJET5h105mTGYeBFJNjp3hrXFaV2KhvRASDikYhGQA2sAPmUBQ4Yl2oUCYY2HmnjBtVOuaonRZIl2jyKbYajUGTpTCBwOO6wpKRDCzddSIfII7Ma5E4OJtzGXKjrBxFgMCI2EHFwXkn9lwBR6xxLtlrTFyS64VkgVtniwFeTe6ELqQF+yCQAJltQUOGzut8IskafiGiZZMZh4GclcCiLhuNZl5L+gumlLtNfMYYn2BOcS7Rmn5brhEu0eRTY597gxF4fisMPCVhKifCdzfEkWDCZeRKgOwKek1mU8GH0gENoEcnB9SAFVAHMooPO5Y4n2GIjky7c3qvOEJdo9jBxcE4aSkYAkw5qaAjtbSYgKBMeXZMVg4mUkc2nP6agIqOFcoj2oFuBbDpIh6I7FyRIhUq65AohzcTLPW6Ldo8hGGCs8BMlcHKqiwJKaAKEy9BEVFEnmqq93YjDxIpKsh/AprXUZWel8by/RHlAVMJcE9D6QpLRpuYodwhoDJf5Uhmm5cZ6/RLuHkQOrw1C6BSDJsFlS2UpCVAjYlZMVg4mXkXzLaFuAXyVIoWlLtPtWdM4SyrJE+820lVHTNqpzJGtbc1En69NaSUqwlYSokMk6HVtL7sBg4m2MIc7l6Qu6tUE23bFEe+k7lmh3OKfiJpx2BRBhjfX+Jdo9jBxQFYYyrZytJFYL7FaL1iURFSly2jmTbmMw8TKSJDt3s029mn8H9SkDKbQZpODazlYQU7E7lmhPdk7Ltf57e1quPTH/Hp8KgB7Gih0h+ZSCqiqwJidCVdl1RlSYJElma0k2GEy8kORXEeJ+gomsB4IbOJdoD6wO+JQB9H63FydTFQhbLNTEc64puVyi3fPIAZVgKNMGkHSwWy2wsZWESBOyjq0l2WEw8TJCKIBfReDmnrvf0FTi9uJk6Uu0Z1qcLMXZ+pFwNm0wagyEjUu0ezYZhgodIfuWgaqqbCUh0pis44yc7DCYeCHJr1KG+CCnLdHeCHJgmLMVxBCQYYl21blRXdJF1065qiUWUDkjw5vIfhVgKNeOrSREboTjS7InCW4L6nWEPRmw3Upbot2ceYl2awyE5ZZrhVQu0e7tZBjKR0P2KwehqrCkJkNV2EpC5A58/AOg07F94E58RbyQZPCDqjogkq+4dsp1LtHO35KLEtmvLAxlowBZD7vNCpuFi9MRuRO2mGSPwcRL2S9vhbDe0roM0oQEQ7n2kP0rOltJkhPZSkLkZiSZM3JywmDihYQQkM3FoBTBYHLw+CVMX7gFh09ega/ZgFaNqmL0U9EoHuyX7e3PX4nBI8PnZLm8WsVQrJz5LADg+q1EvDV9DQ4ev4xaVUth0gtdUalsMddtj52+huGTlmLN58Ph72sqmCeWR5JPaRjLR0PSGWGzWthKQuSm2FqSMwYTbyRUSObiQPxJrSspVEdOXcEzb36DZg0qY9q4PrgRk4QZi7bg/P9WYOGHg7O9z/HT1wEAc//7BHxMBtfl5gz//vCLzUix2PDxuD74ds0+vPnJT1j04ZOu6z/5+jc8/WgLzUOJoWw7yAGVIYSK1KREqAoXsyNyV7JOxxk5OWAw8UKSrINsDtW6jEI37evfUKtKKUwf3xey7Pyw+/ma8OG8Tbh4LQ7lSwVnuc/xM9dQqngAmtWvnONxdx04i0kjH0aLhlUQHOiDfqO/QkqqDb4+Ruz6+wzOXrqFGW/2LaBnlTvJpyQM5TpA1pvYSkLkITjoNWd8ZbyUZC5WOEvTu4m4hBTsO3we/x3V3RVKAKBji5ro2KJmjvc7duYaalYtdddjSxJgMjo/Kga9s/lVUVUIITDt698won8bGA3afJT0pdtAF1QVQgikJiVCYSsJkUfQ6fVsLckBg4mXkiQZkrk4ROp1rUspFCfO3oCqCoQE+mLc1B+xZc8pCAh0aF4TY5/thEB/c7b3O37mOiqWCcHgMQtx9PRVBPiZ0SO6Hp4f0NYVQhrULIe1v/+DBrXKY/Uvh1CjUgkE+JmxdsthOBQV3dvXK8yn6mQuDmP5TpD1ZthtVlhTUwq/BiK6L7LMjfvuhsHESwmhQvYpBaWIBJPYBOcX88SZa9G6UTV8Mv5RnLscgxmLfsfFa3FY8P7ALCeC2IQUXL+VCEVRMfrJKJQpGYTdB87iq5W7cO1mAt5/pScAYMyzHfHKB6vQZsA0VCwbgg9f6wW7XcGsJVvx+rBOuHgtFu99tgE3YpPQu2MDDOoZWaDPVV+6JXRBNZytJMmJUBxsJSHyJDq9nuNL7oLBxIvJvqWgxBzSuoxCYXc4u6zqVCuNSS90BQA0a1AZAX5mvD71R/zx9xm0jKia6T4+JgM+f7sfKpYJQbm08SdNwivCaNBh1pKtePaxVqhaIRQVyxTD99OfRorFBl+zEQCw8Mc9KB0aiHZNa+Dx0V+iRcMqGNWqFkb+93tULBuCdk1r5P+TNIXAWOEhyHqftFaSVHBxPCLPI3N8yV3JWhdABUOSZMi+pQAUjUTu5+MMDG2bVs90eatGzjBy7PS1LPcxmwxo0bCKK5Ska9PEeYzjZzK3NqWHkoQkC+Z/vxOjBrfHxauxOHb6Ggb1jESd6mXQoUUYNu88ni/PKSN9qeYwVe4ByCakJieldd0wlBB5Io4vuTsGEy8myQZIpmCtyygUFcs41xWx2TMP9nUoKoDbg1czOnc5Bt+v34+EpMwr4lptzt2SiwX5ZvtYX674AxF1yqNh7fKIiXd2IQUF+AAAAv18cCsu+QGeyR2MQTBWewz6kFpw2G1ISUqA4uBuzkSeSpJkyDK/eu+Gr44XE0JA9rn7jBNvUbVCcZQtGYQN244g4/ZPW/Y413JpVLdClvvcjE3Cu5+tx6adxzJdvmH7Ufj7mlC7Wuks97l2MwHL1v2FFwa2B3A7vNyKTQIA3IhNyjHQ3Ct9yaYwVekFSWe+3UrCra2IPJpOz26c3PAV8mrCOc4k7ljuN/VwkiTh5aei8dqUVRgz5Uc8+lAD/HvhJmYt3oqOLWqidtXSSEqx4vSFmyhfOgTFgnwRUbsCmtWvjKlf/gKL1Y5qFUKxbd+/+GbNPrw6tEO2M3lmLdmKh1rXQrWKznViypUKRtUKoZi+aAuim9fEr7uOY9IL3R7syRgCYKzQGbLRHw67DRYGErpPhw4dxsxPP8U//xyBr68PWjRvgZdeHIlixZwtjEOfHYYDBw5mud+iBV+hTp3a931cu8OBKVOmYuPmzSgWEoJXXn4JrVq2dN3fYrGgT9/H8L/3/ouGDRrk87N2bxz4mjvuLuzlhMMC66mlWpdRaH7fexJzlu3AybPXEeTvg67t6mLkwLYwGvTYe+gcnnnzG7zzYjf07FAfAJCUYsXnS7fjlz+O42ZsEsqXDsGgHk3R56GGWY598ux1DByzED/OHobSJQJdlx87fQ1vTV+Da7cS0LdzBF4Y2O6+Tzq60EbQF68HQMCamgKHnd02dH+OHj2Gp4c9h8imTfD4Y4/hxs0bmDX7M5QrWxZfzZ8HIQTaRXdAr5490alDh0z3rV69Gnx8fO7ruADw3ffLMfeL+Xhj3Os4evQoln73HX5cuQIhISEAgC8XfI3Dhw/j44+mFOyL4IZ8/QMh67gc/d0wmBQB1tOrIGzxWpdBd6P3h7FiZ8jGADjsNlhTU8CPJj2I4SNGwmq1Yv68Oa4xDb/+9hs+mjoN8+Z8DlVV0OvR/+CzWTMRGdk0345brlxZvPLaWJQqWQJjXnsVQgi079AJ777zNtq0boW4uHj06fsfzJvzOapVq5rLo3kZSYJ/YLDWVbg9jjHxckIIyP7ltS6D7kJXvAFM1fpAMvjDkpIMS0oyQwk9kLi4ePz511/4T98+mQZaRkdFYd2a1ShXriyOn3COvwoLC8vX4wJpqyWbTGn/lqDX66GqzoHpX3z5Jdq2bVP0QgkAPceX5AmDSREg+2Ud+EluQO8LY5XeMJSIgOJQkJIYD4fdpnVV5AVOnjoFVVURHByCN96agDbto9G6XRQmTHwbiYmJAIATJ07A19cXn8yYgehOndGidVu8+NJonD137oGOCwD169XDth07cP36dfy25XekpqaiTu3auHTpMlb/tAbDnxtW4K+BO9LpjfylIw8YTLycJEmQfUsCsiH3G1Oh0RWrB1O1vpCMgWmtJEk8YVG+iY2NBQC88+57MJlMmPrhZLz04gvYun07Rr38CoQQOH7iJFJSUhAYEICpH07GW2+Mw/kLF/DMsOG4cePGfR8XAB77T19UrlQJ3Xr0wtv/fRdvjn8dJUqUwOzPPkfvXj0RFBSEiW+/4xwA+/5kpFos2T6et9EbDBz0mgdsVyoCJEmG7FcWamLOvwlRIdGZYajYBTpTMBx2O6yp7Lah/OdIW+umdq2amPDmGwCAyMimCAgIwPg338Ku3Xvw/P8Nx5ODBqJRowgAQAQaon79+uj7WD98u3QZXnxh5H0dt0XzZjCbzfjow8mwWCwwmUyQJAlHjx7DH7t24YcV3+Ozzz7H9evXMfWjD/HB5Cn4fM5cjB71YmG8NJrR6bioWl6xxaQIEEKF7MdxJlrThdSBqfpjkI1BsKSylYQKjq+vHwCgTevWmS5v2aI5AOD48eMIC6vhCiXpypcrhyqVK+PEyVP3fdyMzGaz68t4+sxZGDRwAIKCgrD519/Qu1cvVKlcGY/26Y1ff/3tfp6mR9EZDPy85xGDSREgSTJ0/hxnohnZBEPlHjCUioSqKEhJTIDDxrEkVHAqVnB+3m13vM8caRs+mswm/LRmLQ4ezLqXltVqRUhI8H0fNzs7//gDZ86exRP9Hgfg7BIKCnJOuQ8MDMCtmJi8PC2PpjcY2WKSRwwmRYSkN0MyFde6jCJHDq4JU/XHIZtCYE1NQWpyEoRQtS6LvFyVKpVRtkwZbNy0KdNv6b9v3QYAiGjYEPO+mI9PZs7MdL+jx47hwsWLaNK48X0f906qqmLGzNkY9szT8DE7Fy0MCQnBrVu3AAA3b95yrW/irWSZy9DfC75SRYQQKqcNFybZCGPl7jCUag5VVZGSlAC7zap1VVRESJKEUS++gIOHDmPcG29i9549+HbZMkyd9gk6REehVs2aGPbsMzhw4CAmTHwbu3bvxqoffsRLL7+KsLAa6N7NuUO3zWbDoUOHce3a9Twf905r1/0Mm82Gnj0ecV3WpnUrLP7mW+z84w98s3Qp2rVtUzgvjEZ0Bs7GuRdcYK2IEEJAWGNhO7ta61K8nhxUA4ZSzQFJhs2SykBCmtm6bTu+mP8lTp46hcDAQDzcpTNGDH8ORqNzp+yNmzZj4aLFOHP2LHx8fBDVvh1Gjvg/BAUFAQAuX76MR3r1wbBnnsZzw57N83HTWa1W9O77GF5+aRQ6doh2XR4fH48Jk97B/r//RmTTJpg44S0E+PsXwiuiDR+/AMg6Hbty8ojBpIixnl4JYUvQugzvJBtgrNAJkrkEVEWBJTUZQmW3DVFRJkkS/Lja6z3hdOEiRAgVusCqcNz8W+tSvI4cWBWG0q2crSTWVNitbCUhIkCnN3DTvnvEYFKkSJADqwEMJvlID2PFTpB8SkJVFViTE6CylYSI0ugNxtxvRJkwmBQhkiRBMgZAMhWHsN7SuhyPJwdUhqFMa0DSwWa1wG4tGqtXElHeSJIEnZ4Lq90rBpMixtmdUwWOGwwm90+GoUJHyL5loKoqrMmJrg3KiIjSsbXk/jCYFDGSJEMXVA2OG/u0LsUjyX4VYCjXDpB0sFstsLGVhIhyYDBmv+Ac3R2DSREk6X0g+ZSCSL2mdSkeRIahfDRkv3IQqgpLSiJUha0kRJQ9WaeDrNNpXYZHYjApglyzcxhM8kT2KwdD2faArIfdaoXNmqp1SUTk5gwGE2fj3Ceu/FoESZIMXWBVQGKavzsZhnLRMJTvCAEZqcmJDCVElCd6I/fGuV9sMSmiJJ0BckAlqAmntS7FLcm+ZWAoFwXIBthtVtgsDCRElDd6g4Gh5AEwmBRRQqjQB9eCjcEkC0PZdpADKkMIFZbkJKiKQ+uSiMiD6NmN80AYTIooSZIh+ZaEZAyCsMVrXY5bkHxKwlC+A2SdCTarha0kRHTPuHbJg+MYkyJMCBW64DCty3ALhjJtYKz4MCAZkJqUyFBCRPdFzynCD8yrg0lSUhIaNGiAli1bwm635+ux7XY7FixY8MDHiY6OxsyZMwEAK1euRM1stg0vKM41TcKK9iBYc3EYq/dzru1isyElMR4Ku26I6D4ZjFxU7UF5dTBZu3YtihcvjsTERGzatClfj71mzRq8//77+XrMrl27Yvv27fl6zFzJeucMnSJIX7oVTJW6A7IRqcmJsFpStC6JiDyYTm+ALOvYjfOAvDqYrFixAm3atEHz5s2xdOnSfD22ECJfjwcAZrMZJUqUyPfj5kYXUqfQH1NTphAYqz8OfXANOOw2pCQmQHGwlYSIHozRZC6Q74aixmuDyb///osDBw6gVatWeOihh7B7926cOXPGdX3GLpTsLlMUBVOmTEG7du0QHh6OLl264NtvvwXg7HIZN24cAKBmzZrYvXs3Zs6ciYEDB2L06NFo1KgR/vvf/wIAvv/+ezzyyCOoX78+GjZsiP79++PQoUPZ1nxnV86JEyfw3HPPoWnTpggPD0eHDh3w5Zdf5t+LBOdALdkcAsmn8AORFvSlmsNUuQcgm5CanARragoAnkiI6MHIOh0HveYTrw0my5cvh6+vL9q2bYtOnTrBYDDcU6vJN998g/Xr12PatGnYsGEDBg4ciEmTJmHfvn3o2rUrxo8fDwDYvn07IiIiAAB79+5FaGgofvzxRwwaNAibNm3CO++8g2eeeQY///wzFixYAKvVijfffDPXx09NTcXQoUMRHByMpUuXYs2aNejSpQsmT56Mo0eP3t+LkgMhVOiLhefrMd2OMQjGao9BH1LL2UqSlADFkb/jjoio6GJrSf7xymDicDiwevVqREdHw2w2Izg4GK1bt8YPP/wAq9Wap2OcP38evr6+KF++PMqVK4eBAwfiq6++QpUqVWA2mxEQEAAAKFGiBIwZBju9+OKLqFChAipXrozg4GC899576NmzJ8qVK4eGDRuib9++OHHiRK6Pn5qaisGDB2PChAmoVq0aKleujBdffBEAcPz48ft4VXImSTJk/4qQjEH5elx3oS/ZFKYqvSDpzLdbSXgCIaJ8IskydHouqpZfvHIdk99//x03b95Et27dXJd169YNv/32G37++Wf06tUr12MMGDAAmzdvRrt27VC7dm20atUK3bp1Q/HixXO8T/HixV2BBQCaNm2Kf//9F7Nnz8bp06dx7tw5HD9+HKqq5vr4xYoVQ//+/bFmzRocOXIE58+fx7FjxwAgT/e/dwK6YnXhuLqzAI6tEWMgjOU7Qzb6wW6zOQe3MpAQUT7jLsL5yytbTFauXAkAGDlyJOrUqYM6depg7NixAHDX7hxHhgGQlStXxsaNG/HFF1+gefPm2LJlC3r16oVVq1bleH+z2Zzp/z/99BN69OiBCxcuoFGjRhg7dixef/31PD2HGzduoEePHvj+++9RqlQp9O/f/66P/aCcU4erA3rfAnuMwqQLbQxTld6Q9D6wpCTBmprMUEJE+U+SYDCa2FqSj7yuxeTWrVv4/fff0adPHwwZMiTTdQsWLMCKFStw4sQJGAwGJCUlua5LSkrCrVu3XP9fuHAhihcvjm7duqFVq1YYM2YMhgwZgnXr1qF37955ehPOnTsXffv2xdtvv+267JdffgGAXJcrXrNmDeLi4rBhwwYYDAYAt7twCrIfU1+sDhzX9xXY8Quc3h/Gip0hGwPgsNtgTU1hvy8RFRi2luQ/rwsmq1evhsPhwLPPPouqVTOvzzF8+HCsWrUKS5cuRcOGDbFu3Tp07twZgYGBmDFjBnS62wuNxcTEYPbs2TCbzahVqxZOnz6No0ePYvDgwQAAX19ny8Lhw4dRvXr1bGspU6YM/vrrL/zzzz8ICAjAr7/+isWLFwMAbDYbTKac39ClS5dGamoq1q9fj8aNG+P06dOudVNsNtv9v0B3IUkydMG14Lh5EFAL5jEKkq54Q+hDGwAALCnJcNg97zkQkWcxMpjkO68LJitXrkTLli2zhBIAqFixIjp27IjVq1dj7dq1iIuLw5AhQxAQEIChQ4ciISHBdduRI0fCbrfj3XffxY0bN1CiRAk88cQTeO655wAAzZs3R4MGDdCvXz9MmTIl21reeustTJgwAQMHDoTRaEStWrXw4YcfYvTo0Th06BCaNGmS4/Po0qUL/vnnH3zwwQdISkpCuXLl8J///Ae//PILDh06hCeeeOIBX6kcSDroQmpBuXWwYI5fEPR+aa0kgXDY7bCmJrOVhIgKnN5ghCR75YgITUmCZ3C6g1CssJ76HhDuv+iYrnh96EMbApBgTU1hKwkRFRpf/0BIsszxJfnM61pMKB/IRuiCw6DEHtG6kpzpfWCs0BmyKZitJERU6PQGI2RdEd5nrAAxmFC29KENoMSfAFT3azXRhdSFvmRjABLHkhCRJoxmn1wnMdD9YTChLCRJgpCN0IXUhXLrgNbl3CabYaj4EHTmYnA47LCmpECIgljThYgoZ3qjEZIkMZQUEAYTypYkSdAXrwcl7jigWLQuB3JwLRhKRSJ9LIndlrcVfImI8pvR5KN1CV6NwYRyJsnQF68Px/U92tUgG2Gs2BmSqRhUxQFLagpEgax8S0SUu/TF1NhaUnAYTChHkiQ7pw7HHoGwJ+V+h3wmB9WAoVRzQJJhs6SylYSINCbBaGZrSUHjBGzKlXM6biGSDTBW6gZD6ZZQVYGUpASGEiLSnDFt2xG2lhQstpjQXUmSDDmwGqSYwxDWuAJ/PDmwKgylW7GVhIjcilQAe+IMGjQIe/Zk7io3GAwIDQ1FdHQ0XnvtNfj4PHgLjd1ux5IlS/DUU0898LEKA4MJ5YGAvkRj2C/+UnAPIethLN8Jkk9JqKoCa3JCAe2iTER07wqqC+fhhx/GG2+84fp/SkoKtm/fjvfffx+qqmLSpEkP/Bhr1qzB+++/z2BC3kOSZOj8K0DxKwc1+VK+H18OqAxDmdaApIPNaoHdqv0sICKidLKscy4/XwBdOGazGSVKlMh0WaVKlXD48GGsW7cuX4KJpy0+yTEmlCdCqNCnDUTNPzIMFTrDULYdVCEhNSmRoYSI3I7Jx7fwH9Nkgl7vbDuw2WyYMmUK2rRpg4iICDz22GPYvn2767aKomDKlClo164dwsPD0aVLF3z77bcAnPvHjRs3DgBQs2ZN7N69u9Cfy71iiwnliSTJgMEfumLh+bLBn+xfEYaybQFJB7vVAhsDCRG5Ib3BCJ2+8L4qHQ4Htm/fjh9//BH9+vUDAIwbNw7//vsvPvroI5QqVQq//fYbhg8fjlmzZqF9+/b45ptvsH79ekybNs11/aRJk1CjRg107doViYmJ+N///oft27cjKCio0J7L/WIwoTxzLrrWAGrC6QeYPizDUL4DZL+yEKoKS3IiVFXJ1zqJiPKDJEkw+fgW6NLzP/30EzZs2OD6v8ViQdmyZfH0009j+PDhOHfuHNasWYMffvgBtWvXBgAMGTIEx44dw/z589G+fXucP38evr6+KF++PEqWLImBAweiatWqqFKlCsxmMwICAgAgS5eRu2IwoXsjSdCXjIT90q/3fFfZrzwMZdsBsp6tJETk9tIHvBbk9ODo6Gi8+uqrEELg4MGDeO+999CyZUsMHz4cer0eR444N1Pt379/pvvZ7XYEBgYCAAYMGIDNmzejXbt2qF27Nlq1aoVu3bqhePHiBVZ3QWIwoXsiSTJ0ARXvcSCsDEO5KMj+5W+3kihsJSEi96XT6WEwmgr8cfz8/FCpUiUAQOXKlVGyZEkMGTIEOp0OkyZNcg1cXbJkCfz8/DLdV5Zl1/02btyIPXv2YMeOHdiyZQvmzZuH999/H7179y7w55DfOPiV7plzIGwLQMp9y2/ZtwxMNZ6A7F8edpsVKUkJDCVE5PbSu3AKW/PmzTFkyBB8++232Lp1K2rUqAEAuHHjBipVquT6s3LlSqxcuRIAsHDhQmzcuBGtWrXCmDFj8NNPP6FFixZYt24dAM9bEI7BhO6ZJMmQDH7QFQu/6+0MZdvDUOEhCElGanIibJbUQqqQiOj+GUxmSLKs2Rf6qFGjULlyZUyaNAlly5ZFVFQUJk6ciF9//RUXLlzAvHnzMGfOHFSsWBEAEBMTg3feeQe//PILLl26hG3btuHo0aOIiIgAAPj6OmcVHT58GBaL+3ehS8LTJjiT2xBCge3MaghbfKbLJZ9SMJbvAElnhM1qYSAhIo8hyTJ8/QMLJZQMGjQI5cqVwwcffJDluj179mDw4MEYOHAgXnnlFUybNg3r1q1DfHw8KlasiKFDh+LRRx8F4JzJk379jRs3UKJECfTq1QsjR46ETqdDfHw8nn32WRw5cgRTpkzBww8/XODP7UEwmNB9E0KFsNyC7dw6AM63kaFMW8iBVSCECmtKChTFoW2RRET3wOzrD51e73HdH96Eg1/pvkmSDJhDoQupDSX1OozlO0HWm2C3WmG1pGhdHhHRPdEbDNAbDFqXUeSxxYQemFAVQJIhhIA1NRmKg60kRORZJEmCb0AgAImtJRpjiwk9OEkCIJCSlAAw5xKRBzL5+IGhxD1wVg49MEmSAUiFMuefiCi/GYwm6A0GhhI3wWBC+UKSJBhNZshy7mubEBG5C1nWuVZ4JffAYEL5yuzrl/uNiIjcBM9Z7ofBhPKNJEmQZJm/fRCRRzCafTRdSI2yx2BC+Sq9S0en55Q7InJfOr0BRpOZocQNMZhQvhNCwOzrlzYolojIvUiSBLNGe+FQ7vjNQfku/TcQsx/7bonI/Zh8/ACJU4PdFYMJFQhJkiDLOph8fLUuhYjIhVOD3R+DCRUYSZLSTgJGrUshIoJOp+fgfA/AYEIFSggBk48v1zchIk1JkszuZQ/BYEIFKvN4EzadEpE2fPz8wSXnPQODCRU4SZKcv634crwJERU+s68f1yvxIAwmVCgkSYLeYITBZNa6FCIqQgwmM/QGI0OJB2EwoULFxdeIqLDo9AaYONjV4zCYUKEz+/pB1nEwLBEVHFmWYfb14yJqHojBhApVenOqj68/V4YlooIhSTD7+af9k104nobfDFToJEkCJMk5Sp4nDSLKZ2Yf55YYDCWeicGENJG+E7GPr7/WpRCRFzH5+EKn1zOUeDAGE9KMJEmQdTqYfbnoERE9OKPZhzNwvACDCWlKkiTn9uMcOU9ED8BoMsNoMjOUeAEGE9KcJEkwmswwGE1al0JEHshgNPGXGy/CYEJuw9k3zDVOiCjv9AYjdzH3Mgwm5DaEEDD7+kGn12tdChF5AJ1eD5OPL9cq8TIMJuQ2XBv++foznBDRXck6Pcy+XKvEGzGYkFthOCGi3MiyLm23YIYSb8RgQm6H4YSIciLLMkOJl2MwIbeUOZxwQCwRAbJOBx//AECSGEq8GIMJua3b4cSP4YSoiJN1Ovj4BQBgKPF2DCbk1hhOiEin16eFEnbfFAUMJuT2GE6Iii6d3sDZN0UMgwl5BIYToqJHbzC49tJiKCk6JMGVaciDpL9dbZZU2G1WjashooKScUVXhpKihcGEPJbNaoHNkqp1GUSUzwxGk2tFV4aSoofBhDyWEAKKww5LSrLWpRBRPjGazNyQr4hjMCGPJoSAqihITUkC+FYm8mgmHz8YjEatyyCNMZiQxxNCQKgqUlOSIFRV63KI6B5JkgSznz9kWceuG2IwIe8ghACEQGpKElRF0bocIsojWdbB7OcPiau5UhoGE/Ia6W9lS0oyFIdd42qIKDfONUo4HZgyYzAhr8LpxESewWAyw2T24cwbyoLBhLyWw26DJSUFAN/iRO7E5OMLg9GkdRnkphhMyGsJISCECktyMlSV406ItCZJEsy+/pB1HORKOWMwIa+W/va2pqbAYbdpXA1R0aXT6WHy9eMgV8oVgwl5vfQ+bLvNCmtqitblEBU5RpMZBpMZAAe5Uu4YTKjIEEJAVRVYkpMhBNc7ISpo7Lqh+8FgQkUKpxQTFQ5OBab7xWBCRU561w43ASQqGCazDwwmM6cC031hMKEiK30pe0tqMleLJcoHkizDx9cfkiwzkNB9YzChIi397W+3WmCzWjSuhshz6Q1GmHx8AbDrhh4MgwkRMrSepHDNE6J7IUkSTD6+0BuM7LqhfMFgQpTGtZy91QI7W0+IcsVWEioIDCZEd0ifVmxNSWHrCVE2JEmGydcXer2BrSSU7xhMiLLB1hOi7BmMJhjNPgDYSkIFg8GE6C7Sx55YU1OgKA6tyyHSjKzTweTjC1nmYmlUsBhMiHJxe0l7G2yWVK4aS0WO0ezj2g2YoYQKGoMJUR5xajEVNXqDESazD8CN96gQMZgQ3SMhBIQQsFlS4LBzWXvyPjqdHkYfH+h0eg5upULHYEJ0H9JP1orDDmtqKmfvkFeQZR2MZh/oDZxtQ9phMCF6AOkfH4fNCqvVAvDjRB5IkqS0QGJ0/Z9IKwwmRPmA04vJUxlNZhhMZgAMJOQeGEyI8pHz4yRgs1hgt1m1LocoRwajCUaTmQNbye0wmBAVACEEIISzBYUBhdyI3mCE0WSGJMsA2EpC7ofBhKiAuD5aDCjkBgxGEwwmsyuIMJCQu2IwISpgtz9iAjarFXarFQA/dlTwJElyBZKMlxG5MwYTokLkWqTN5gwoXEWWCoIkyTCaTNBztVbyQAwmRBpI/9gpDjvsNisUB/fhoQcnyzoYTGboDQYADCTkmRhMiDSUvoiVqijOVhSOQ6H7oDcYoDeaoNdzYTTyfAwmRG4g48fQYbPBbrNAVdnNQzmTZNk5fsRohCTJDCTkNRhMiNxMxuXubVYrFAf346Hb9AYjDEYTdHruY0PeicGEyE2lf+kIocJhs8Nut0FVOBalKJJ1OhgMJuiNRtdlDCTkrRhMiDyAayyKqsJht8Fht0FVuHGgN5MkCXqDEXqjCTqdjq0jVGQwmBB5mIwDZh12G+x2GwTHo3gFSZadYcRggE6nd409YiChooTBhMhDZfzSUhQFDrsVDrudIcXDyLLOOavGYISc1jICMIxQ0cVgQuQFMn6ZqaoCh90OxeHgwFk3Jev0t8OILDOMEGXAYELkhW4PnBVQFQccDgcUux2qynEpWpBkGTq9s3tGb9Bzei/RXTCYEHm5jL+NC6HCYXe2pCgOO/jxLxiZgoheD4mtIkR5xmBCVMRk/E1dVVUoDgdUxQFFUTgd+T4xiBDlHwYToiIuc4uKgFBVKBmCCqclZybrdJBlHWSdDjqdDrJO73rtAAYRogfFYEJEWdwZVlRVgepQnH+rKkTa395MkiTIOr0riOj0OkiSnCmEpN+OiPIPgwkR5Ul2LQKqqkJVFQhVhap4VmiRJAmSLEOSZMiyDEnO+LfO9TzZEkJUuBhMiOiBZfflLYQKoQpn95BQ0/52dhW5/p3hcjzgqUiSJECSnIEDGf6d/idj+Ehr+biz/jufAxEVPgYTIipwd55m8vLln/OpSQACQNoxcjsWQweRZ2EwISIiIrcha10AERERUToGEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG6DwYSIiIjcBoMJERERuQ0GEyIiInIbDCZERETkNhhMiIiIyG0wmBAREZHbYDAhIiIit8FgQkRERG7j/wGMRUYf+3wkewAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "# Apply seaborn style\n", + "sns.set(style=\"white\")\n", + "\n", + "# Generate a custom color palette with a gradient effect\n", + "# Let's create a gradient from light to darker orange\n", + "palette = sns.light_palette(\"orange\", n_colors=len(top_countries_series), reverse=True)\n", + "\n", + "# Create the pie chart with matplotlib, using the custom seaborn color palette\n", + "plt.figure(figsize=(10, 6))\n", + "plt.pie(top_countries_series, labels=top_countries_series.index, autopct='%1.1f%%',\n", + " startangle=90, colors=palette)\n", + "\n", + "plt.title(\"Distribution of 'Moderate' Cases Among Top 5 Countries and Rest\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAALACAYAAABb8+17AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGqklEQVR4nOzdeXhM5///8dckRBIiatdUxdYQEomdWKMVtVOtLfEh1L7rErUUtVNF7FvVUnssRS2ltNXWUmpfaq2G2kpsIWHm94ef+YoEB2Fm4vm4rlyfOefc5z7vM3fic82r577HZLFYLAIAAAAAAMBjOdm6AAAAAAAAAEdAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAJDOLxWLrEiD7GAd7qAEAkHwIUQAASKEiIiLk4+Pz2J+wsLCXVk/nzp0VERGRaP+dO3c0evRoVaxYUUWKFFGTJk20e/fux/b1zz//PPHe5s2b96Ju5ZGuXr2qTz75RDt27Hhsu6Tq9fX1ValSpRQeHq49e/a8kPrCwsJe6pg/TmRkZKL3wN/fXyEhIRo2bJiuXLmSoH1ERISCg4MN9//XX3+pcePGT2wXFRUlHx8f/fPPP890nceZMGGCpk+fbt2+f88AAMeVytYFAACAF6N9+/Zq1KiRdXvChAk6cOCAxo0bZ92XLl26F16H2WzWkCFDtHbtWtWrVy/R8aFDh2rx4sXq0aOHvLy89PXXX6t58+ZatmyZcuXK9di+27Vrp0qVKiV5LGfOnMlR/lM5ePCgli9frvfee++JbRs0aKD333/fuh0XF6e//vpLkyZNUosWLbRmzRplyZIlWev7/PPPk7W/5LBgwQJJ957YuHnzpvbu3aupU6dq48aNmjdvnjJmzCjp3u9zs2bNDPe7Zs0a7dq164ntKlWqpAULFihr1qzPdgOPMWbMGHXs2NG6/f7776t8+fLJfh0AwMtDiAIAQAr15ptv6s0337RuZ8yYUS4uLgoICHhpNRw6dEgDBw7U3r175erqmuj42bNnNW/ePPXq1UtNmjSRJJUrV04hISGaOnWqBg4c+Nj+33zzzZd6P8kpe/bsiWovWbKkcubMqQ8//FDr1q1T06ZNk/Wa+fLlS9b+ksPD70FQUJDKli2rJk2aaNSoUdbfgQd/l5NTxowZrUHNi5Y9e3Zlz579pVwLAPBiMJ0HAIBX3JYtW9SkSRMVK1ZMpUqVUo8ePXT27Fnr8fvTHXbv3q169erJ399ftWrV0po1a57Y96effqq7d+9qwYIFypQpU6Ljv/32m+7cuaN33nnHus/FxUWVKlXS5s2bn/vebt++rWLFimnYsGEJ9t+5c0elS5dOENIsWrRINWrUUOHChVWpUiVFRkbq7t271uMRERFq3ry5lixZopCQEBUuXFh16tTRTz/9JEnaunWr9UmJZs2aPfO0mfTp00uSTCaTdd+VK1fUt29flS1bVn5+fvrggw/022+/JTjv+vXr6tu3r8qUKaPAwEB169ZNM2fOTDB95OHpPLdv39b48eNVrVo1+fn5qWrVqpoyZYrMZnOCc3r16qUpU6aoUqVK8vPzU6NGjRJMObp165b69eunChUqqHDhwqpWrVqCaSxPy9/fX1WrVtWyZcsUGxsrKfE0m3379ul///ufihUrpsDAQDVv3lx//vmnpHvTZu4/ceXj46PIyEjr63Hjxql+/fry9/fXuHHjEk3nuW/BggWqVKmS/P399b///U8HDhywHnvUtJyHryVJ48aNs75O6rzVq1erfv36CgwMVFBQkPr27auYmJgE13rnnXe0adMm1apVS4ULF1ZISIiWLVv21O8rAOD5EaIAAPAKW7ZsmcLDw5UjRw6NGjVKPXv21K5du9SwYUNdunQpQds2bdqoSpUqGjdunHLnzq2uXbs+MegYPny45s2bpwIFCiR5/NixY0qbNm2iaSu5cuXS+fPndePGjcf2bzabdefOnUQ/98OPNGnSKCQkRN9//32CBT63bNmiy5cvq06dOpKkyZMnq0+fPipTpowmTZqkpk2baurUqerTp0+C6+3bt0/Tp09X586dNX78eDk7O6tTp06KiYlRoUKF1LdvX0lS3759nzh15uHab9y4oZ07d6p///7y8PBQlSpVJN0LOv73v/9pw4YN6tatm8aNG6fs2bOrVatWCYKU9u3b6/vvv1enTp301Vdf6caNG/ryyy8feX2LxaK2bdtq2rRpev/99zVp0iRVq1ZNo0ePTlT72rVrtWHDBvXu3VujRo3SxYsX1alTJ+v7PHjwYP3000/69NNPNX36dFWpUkXDhw/XkiVLHvsePE5QUJDi4+O1d+/eRMeuX7+uVq1a6bXXXlNkZKS++uorxcbGqmXLlrp27Zref/99NWjQQNK9MOTBaVOTJk1SrVq1NHbsWIWEhCR57X///Vfjxo1T165dNWrUKMXExCgsLExnzpwxXP/9aUoNGjSwvn7YhAkT1L17dwUEBGjs2LHq0KGD1q5dq7CwMN26dcva7sKFCxowYICaNWumKVOm6I033tCnn36qY8eOGa4HAJA8mM4DAMArymw2a+TIkSpXrlyCD9tFixZV9erVNX36dH3yySfW/WFhYerQoYMkqXz58qpXr57Gjx+vihUrPvIaT1pE89q1a0muy5I2bVpJ9z4s33+dlF69eqlXr16J9ru7u1vXw6hTp46WLFmiP/74Q8WLF5ckrVq1Snny5JGfn5+uXbumCRMmqGHDhurdu7eke1OKMmTIoN69e6tFixbKnz+/td6oqCjr1BJ3d3eFhobq999/V0hIiHW6TL58+Z44dWbChAmaMGFCgn0uLi4qXry4Bg8erGzZskmSli9frkOHDmnhwoUqUqSIJKlChQoKCwvTyJEjtWTJEv3222/aunWrIiMjVbVqVWubmjVrPvKD9k8//aRff/1Vo0aNUo0aNSTdCy5cXV01ZswYNWvWzHrfd+7c0fTp061jdePGDX366ac6ePCgChcurG3btikoKMjaT6lSpeTu7p7k00dGZc6cWZJ08eLFRMeOHj2qy5cvq1mzZipatKgkKU+ePFqwYIFu3LiRYNrMw9OFihcvrhYtWli3kwpp7t69q/Hjx8vf31+SVKRIEb399tuaPXu2Pv30U0P1379uUtO2JCkmJkYTJ07UBx98YA3fJOmtt95S06ZNtWTJEut0rtjYWA0aNEhlypSRJHl7e6ty5cravHmz8ubNa6geAEDyIEQBAOAVdeLECV24cEE9evRIsP/NN99UYGCgtm3blmD/g4vCmkwmvfPOO4qMjNStW7eSXO/EiCd9/auT0+Mfmu3YsWOSC8s6OztbX5csWVKvv/66Vq1apeLFi+v27dv64Ycf1Lp1a0nSrl27dOvWLQUHB+vOnTvW8+5PHdmyZYs1TMiYMWOCtTnuf1C/P+XkaXzwwQf64IMPZLFYdOjQIY0YMULFihXTl19+mSA4+u2335QlSxYVKlQoQX2VK1fW8OHDFRMTo99//12pU6fW22+/bT3u5OSk6tWrW6eXPGzbtm1KlSqVqlWrlmB/7dq1NWbMGG3bts163/ny5UsQdt0PeO7fd6lSpTR//nz9+++/qlixoipWrGgN3F6E/PnzK2PGjGrbtq2qVaum8uXLKygoSB9//PETzy1YsOAT2+TMmdMaoEhSlixZFBAQoO3btz9X3Q/6888/FRcXp5o1aybYX7x4cXl5eWnbtm0J1sR5MIi5/3t38+bNZKsHAGAMIQoAAK+o+18he/+/+D8oc+bMCdaAkJTo20syZcoki8Wiq1evPnOIki5duiSn7Fy/fl2S5OHh8djzvby85Ofn99g2JpNJtWrV0qJFi9S7d2/9+OOPunnzpmrVqiXp/96H+6HKw86fP2997ebmlqhvSQnWEDEqa9as1tr9/f2VM2dOtWjRQl27dtWUKVOsfV+5ckUXLlxQoUKFkuznwoULunz5sjJkyJAodHrckyAxMTF67bXXEgROkqxTq65du2bd9/B937/O/fvu1auXsmfPrhUrVuiLL77QF198ocDAQPXr1++RU7me5N9//5WkJBdiTZs2rebOnauJEyfq+++/14IFC+Tq6qo6deqod+/ecnFxeWS/7u7uT7x2Un8TmTJlSrBW0PO6v+7Jo/7+Hnz/pYRjcP/9f1IICQBIfoQoAAC8ojJkyCAp6ekSFy5c0GuvvZZg35UrVxJ84Lt48aKcnZ2t/TyLPHny6Pr16/rvv/8SfEPKqVOn5OXl9czhzMPq1KmjyZMna+vWrVq9erVKlCghLy8vSf+3kOvIkSPl7e2d6NykPuS+CGXKlFGTJk00d+5cLVy4UA0bNpR0L0jy9vbWyJEjkzzvjTfeULZs2XT58mWZzeYEQcrD69o8yNPTU5cvX9bdu3cTBCn3Q6OHx/9xXFxc1K5dO7Vr105nzpzRjz/+qAkTJqhHjx5atWqV4X4e9Ouvv8rd3f2R4VGePHk0YsQI3b17V3v27NHy5cs1b948vfnmm2rVqtUzXfO+Bxd2ve/ChQvW39H7AdeD792T1u95mKenp6R7f0d58uRJdC1bfEU3AODJWFgWAIBXVO7cuZUlSxatXLkywf7Tp0/rzz//tK41cd8PP/xgfW2xWLRu3ToVK1bssf/V/0nKli0rSQm+6ScuLk6bNm1SUFDQM/f7sLx586pQoUJatWqVNm/erNq1a1uPFSlSRKlTp9a5c+fk5+dn/UmVKpVGjRqV6FtbHufhpzqeVrdu3ZQ5c2aNGjXK+oRMyZIldfbsWWXKlClBfVu2bNG0adPk7OyskiVL6s6dO9q4caO1L4vFkmDMHnb/nIe/ZWnFihWSpGLFihmq+datWwoJCdGMGTMkSa+//rqaNm2qGjVqPNVCrA86ePCgNmzYoPfee09p0qRJdHzNmjUqXbq0Lly4IGdnZ+tTL+nTp7de80lTwR7nxIkT+vvvv63bZ8+e1a5du1SqVClJsk5tuv+0jCT98ccfifp5XA1FihSRi4tLor+/HTt26MyZM4n+/gAA9oEnUQAAeEU5OTmpe/fu6tmzp3r06KHatWvr8uXLGjdunDw9PRMsvind+6ad27dvK3fu3Fq0aJGOHTumb7755rlq8PLyUr169TRkyBDdvn1b3t7e+vrrr3X16lVDTxP8/fff1q+1fZinp6dy585t3a5Tp46GDRuWaB2Q1157Ta1atdKYMWN0/fp1lSpVSufOndOYMWNkMpmeajrK/elHmzZtkqen51NPZfHw8FC3bt3Uq1cvjRkzRp9//rnq16+vOXPmqEWLFmrbtq1y5MihX3/9VVOnTlVoaKhSp06tEiVKKCgoSL169dLFixf1+uuva/HixTp8+HCCr0p+UIUKFVSqVCn17t1b586dU4ECBbRt2zZNnTpV9erVe+LCuPe5urqqUKFCGjdunFKnTi0fHx+dOHFCS5cufeS33zzo/vhZLBbduHFDe/fu1cyZM+Xt7a0uXbokeU7RokVlNpvVoUMHtW7dWmnTptX333+va9euWRfWvf+E0cqVK1WkSJGnerIjTZo0ateunbp166a7d+9qzJgxypAhg/73v/9JkipWrKghQ4aob9++atmypc6ePavx48cnWgQ5ffr02rlzp7Zv325d1Pi+DBkyqHXr1ho/frxSp06typUr659//tGYMWOUL1++BGsQAQDsByEKAACvsPr16ytt2rSaPHmyOnTooHTp0ql8+fLq3r17oq8d7tevnyZPnqzTp0/L19dXM2bMSPTB8FkMGDBA6dOn19SpU3Xz5k0VKlRIX3/9tXLlyvXEcydOnKiJEycmeaxKlSoJvv2mZs2aGj58uCpXrpxorZWuXbsqS5Ys+vbbbzVt2jR5enqqTJky6t69+xPXZXlQ/vz5VbNmTc2dO1c///xzoqcMjHjvvfe0YMECLViwQA0bNlSBAgU0d+5cffnllxoxYoSuXbsmLy8v9ejRQ+Hh4dbzvvrqKw0dOlRffvml7ty5oypVqqhx48ZatmxZktcxmUyaPHmyxo4dq5kzZ+q///7TG2+8oe7duycK0J5kwIABGj16tGbMmKELFy4oU6ZMatCgwSNDkAfdn7Yk3QtkcubMqcaNG6tVq1ZJfnOTdG89mWnTpmnMmDHq1auXYmNjlT9/fkVGRqp06dKSpKpVq2r58uWKiIhQgwYN1K9fP8P34+vrq5CQEPXr10/Xrl1TmTJl9Nlnn1mn8+TOnVvDhg3TxIkT1bp1a+XNm9e6FsyD2rZtqwkTJujDDz/U6tWrE12nU6dOypw5s+bMmaMFCxYoQ4YMqlatmrp27Wpo7RYAwMtnsrAiFQAAeIyoqCj17NlTGzZs0BtvvGHrcpCE6Oho/fnnn6pSpUqCdWQ6d+6s06dPa+nSpTasDgCAlIMnUQAAAByck5OTIiIiVKVKFTVo0EDOzs76+eeftW7dOg0ZMsTW5QEAkGIQogAAADi4HDlyaOrUqRo/fry6du2qO3fuKG/evBo5cqRq1qxp6/IAAEgxmM4DAAAAAABgAF9xDAAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAawsCzsyq5du2SxWJQ6dWpblwIAAAAAeAXEx8fLZDIpMDDwiW15EgV2xWKxWH9g/ywWi+Li4hgvB8F4ORbGy7EwXo6F8XIsjJdjYbwcC+N1z9N8BuVJFNiV1KlTKy4uTvny5ZO7u7uty8ET3Lx5UwcPHmS8HATj5VgYL8fCeDkWxsuxMF6OhfFyLIzXPXv37jXclidRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFNglk8lk6xJggMlkkpubG+PlIBgvx8J4ORbGy7EwXo6F8XIsjJdjYbyensnyqi/DC7tyf0EfPz8/G1cCAAAAAHhWZrNFTk6OEc48zedQvp0Hdmn8vC2KPh9j6zIAAAAAAE/JK6unOjQOsnUZLwQhCuxS9PkYnYy+bOsyAAAAAACwYk0UAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUVKQO3fu6JtvvlH9+vUVGBio0qVLKzw8XL///ru1jY+Pj6Kioh7ZR2RkpIKDg19GuQAAAAAAOBRClBTi9u3batasmWbOnKmwsDAtXbpUM2fOVN68edWiRQt99913hvoJDw/X4sWLX3C1AAAAAAA4nlS2LgDJY8yYMTp8+LBWrlypHDlyWPf36tVL169f18CBAw09YZI2bVqlTZv2RZYKAAAAAIBD4kmUFCA+Pl5LlixR/fr1EwQo93Xt2lVTp06Vq6urJOnEiRNq3ry5/Pz8VL58eU2ePNna9sHpPP/88498fHy0du1avf/++ypcuLCCg4O1YMECa/u4uDgNGzZMwcHBKly4sEqWLKkuXbrov//+e8F3DQAAAADAy0WIkgKcPn1aV65cUdGiRZM8ni1bNvn7+8vZ2VmSNGfOHNWtW1erV69W48aNNWrUKP3222+P7H/IkCFq27atvv/+e1WqVEn9+vXT6dOnJUnDhw/XunXrNHToUK1du1ZDhw7V77//rokTJyb/jQIAAAAAYEOEKClATEyMJMnT09NQ+yZNmqhu3brKmTOn2rdvLw8PD+3bt++R7Zs3b64qVaooZ86c6tatm8xms3bv3i1J8vPz07Bhw1SyZEl5eXkpODhYZcuW1ZEjR57/xgAAAAAAsCOsiZICZMyYUZJ05coVQ+29vb0TbKdPn163b99+ZPu8efNaX3t4eEi6N4VIkurUqaNff/1VI0eO1MmTJ3X8+HGdOHFCxYsXf4o7AAAAAADA/vEkSgqQM2dOZc6cWTt37kzy+LFjxxQeHq6//vpLkqzTeh5ksVge2b+Li8sj2/ft21fdunVTfHy8goOD9eWXX6pGjRrPchsAAAAAANg1nkRJAZycnNSgQQPNnj1bLVu2TLS47LRp07R37155eXkl63UvX76sBQsW6KuvvlL16tWt+48fPy53d/dkvRYAAAAAALZGiJJCtG3bVj///LOaNGmiLl26qGjRorpy5YrmzZunZcuW6auvvkr2YCNdunTy8PDQhg0bVKhQId26dUtz5szR/v37VaRIkWS9FgAAAAAAtkaIkkK4ublpzpw5mjFjhqZOnaozZ87I1dVVvr6+mj179gtZoyR16tQaM2aMhg4dqlq1asnT01OlSpVS9+7dNXnyZMXGxsrNzS3ZrwsAAAAAgC2YLI9bDAN4yfbu3StJmrfxtE5GX7ZxNQAAAACAp+Xt9ZoGd6n+5IZ24v7nUD8/vye2ZWFZAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAANS2boAICleWT1tXQIAAAAA4Bmk5M9zhCiwSx0aB9m6BAAAAADAMzKbLXJyMtm6jGTHdB7Ynbi4OMXGxtq6DBgQGxurAwcOMF4OgvFyLIyXY2G8HAvj5VgYL8fCeDmWFzleKTFAkQhRYKcsFoutS4ABFotFsbGxjJeDYLwcC+PlWBgvx8J4ORbGy7EwXo6F8Xp6hCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKLBLJpPJ1iXAAJPJJDc3N8bLQTBejoXxciyMl2NhvBwL4+VYGC+kdCaLxWKxdRHAfXv37pUk+fn52bgSAAAAAPbGbLbIyYmAJrncvHlTBw8eVMGCBeXu7m7rcmzmaT6HpnrRxQDPYvy8LYo+H2PrMgAAAADYCa+snurQOMjWZeAVR4gCuxR9PkYnoy/bugwAAAAAAKxYEwUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAw4JUNUcLCwhQREZHksYiICIWFhRnuKzIyUsHBwdbtv/76S5s2bXqu+h7uMyl79uxRmzZtVLJkSfn5+SkkJERffvmlrl+/bm0THx+vmTNnPtW1z5w5o1WrVj1L2QAAAAAApFivbIiSnMLDw7V48WLrdps2bbR3794Xes2//vpLYWFhypcvn2bPnq3Vq1erR48eWrlypdq3b29tt3LlSg0ZMuSp+v7000/1888/J3fJAAAAAAA4tFS2LiAlSJs2rdKmTftSrxkVFaVcuXLp448/tu7LmTOnXF1d9eGHH+rQoUMqUKCALBbLS60LAAAAAICUiidRDPDx8dHixYvVvHlz+fv7q1y5cho3bpz1+INTb4KDgxUdHa1x48ZZpwRdu3ZNffr0UenSpVWsWDE1a9Ys0ZMqCxYs0DvvvCN/f3+1bdtWMTExj63JZDIpOjpaR48eTbC/bNmyWrVqlXLnzq2oqCj17NnTeg9bt26V2WzW5MmTFRISosKFC6to0aJq1aqV/v77b0n3pjlt27ZNS5cutd5TXFycRowYofLlyyswMFAffPCBfvnlF+s17969qxEjRqhixYoqXLiwqlWrpnnz5j3LWw0AAAAAgN0iRDFo2LBhqlevnlatWqXQ0FBFRkZq+/btidotXrxY2bNnV3h4uCIjI2WxWPThhx/q9OnTmjx5shYuXKiAgAA1btxYBw4ckHRvys2AAQPUvHlzLV++XEWLFtXcuXMfW0/Dhg2VKlUq1axZU40aNdKoUaP0888/6+7du8qXL5/SpEmj6tWr67PPPpMk/fLLLwoMDNSsWbM0ffp0RUREaO3atRo/frxOnjypoUOHSroXCAUGBurdd9+1TlHq2bOntmzZopEjR2rp0qV699131bZtW+u6L99++63WrFmjr776SmvXrlVoaKj69eunHTt2JNfbDwAAAACAzRGiGFS3bl3VqVNHOXPmVNu2bZU+fXrt3LkzUbuMGTPK2dlZ7u7uypAhg37//Xf9+eefGj16tIoUKaK8efOqe/fuCggI0KxZsyRJs2fPVvXq1dW0aVPlzp1brVu3VuXKlR9bT65cubRs2TKFhYXp/Pnzmjx5slq1aqVy5cpp4cKFkiRXV1d5eHhIkrJkySIXFxe9+eabGjZsmCpXriwvLy+VKVNG1apV05EjRyRJGTJkUOrUqeXq6qqMGTPq1KlT1nVVSpUqJW9vb7Vo0UI1atTQ9OnTJUl///233N3d9cYbb8jLy0uhoaH6+uuvlTt37mR7/wEAAAAAsLVXdk2UVKlSyWw2J3nMbDYrVaqEb03evHkTbHt4eCg+Pv6J19m/f78sFkuiUCQuLk63b9+WJB05ckQ1atRIcDwwMFCHDh16bN85cuRQr1691KtXL50+fVq//vqrvv32W/Xp00fZsmVTxYoVE50THBys3bt3a8yYMTpx4oROnDiho0ePKlu2bEle4/7TMk2aNEmwPz4+XunTp5ckNW3aVD/88IMqVqyoggULKigoSDVq1FCmTJkeWz8AAAAAAI7klQ1R0qdPr6tXryZ5LCYmRp6engn2ubi4JGpnZNFWs9msdOnSKSoqKtGxB/t8ONBJnTr1Y/sdPny4ypcvrzJlyki6t6hsw4YNVa9ePb3zzjvavHlzkiHKlClTNH78eNWrV09lypRR8+bNtWHDhkd+pfH9e5w7d26ixXOdnO49yOTt7a1169Zp27Zt2rJlizZt2qSpU6dqyJAhqlev3mPvAwAAAAAAR/HKTucpVKiQ9u3bp7i4uAT74+LitGfPHvn5+SXLdd566y1dv35d8fHxypUrl/Vn6tSp2rBhgySpYMGCiaYGPekrkn/77TfNmDEj0X4XFxe5urpanwIxmUwJjk+aNEkdOnRQv3791LBhQwUEBOjkyZOPDITy588vSbpw4UKC+qOioqzB0KxZs7Ru3ToFBQXpk08+0XfffacyZcpo9erVBt4hAAAAAAAcwysbojRo0EBms1kdO3bUrl27FB0drW3btql9+/ZKlSqVGjRo8Mx9p02bVidPntTFixdVvnx5FSxYUN26ddPvv/+uU6dOaciQIYqKirJOEWrdurXWr1+vadOm6eTJk5o9e7bWrl372Gt069ZNv/76q7p06aLt27db6//kk09048YNNWzYUJLk7u4uSdq3b59u3bqlHDlyaMuWLTp69KiOHz+ur776SuvWrUsQJqVNm1bR0dH6999/lT9/flWuXFmff/65Nm7cqNOnT2vq1KmaPHmy3nzzTUnSf//9pwEDBmjDhg2Kjo7Wzz//rIMHDyowMPCZ30MAAAAAAOzNKxuiZMyYUQsWLFD69OnVqVMnhYSEqHv37sqcObMWLlyYaDrP0wgLC9OmTZsUHh4uZ2dnzZgxQ4ULF1bXrl1Vu3Ztbd++XePGjbNOxalUqZK+/PJLLVmyRLVq1dK6desUHh7+2GtUqFBBs2fPVlxcnLp06aKQkBB169ZNJpNJ8+fPV+bMmSVJpUuXVpEiRdSoUSP9+OOPGj58uG7duqX33ntPoaGhOnLkiPr3769Lly7pzJkzkqRGjRrpyJEjql27tu7evauvvvpKVatWVd++fVW9enUtW7ZMgwYNsk7V6dixoxo0aKCBAwcqJCREffv2VePGjdWmTZtnfg8BAAAAALA3JouRhT2Al+T+NKZ5G0/rZPRlG1cDAAAAwF54e72mwV2q27qMFOXmzZs6ePCgChYsaJ3F8Cq6/znUyLIer+yTKAAAAAAAAE+DEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwIJWtCwCS4pXV09YlAAAAALAjfEaAPSBEgV3q0DjI1iUAAAAAsDNms0VOTiZbl4FXGNN5YHfi4uIUGxtr6zJgQGxsrA4cOMB4OQjGy7EwXo6F8XIsjJdjYbwcy4seLwIU2BohCuySxWKxdQkwwGKxKDY2lvFyEIyXY2G8HAvj5VgYL8fCeDkWxgspHSEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCiwSyaTydYlwACTySQ3NzfGy0EwXo6F8QIAALA/qWxdAPAwFxcXubm52boMGODm5iZfX19blwGDGC/Hwni9GGazRU5OBFMAAODZEKLALo2ft0XR52NsXQYAIAXxyuqpDo2DbF0GAABwYIQosEvR52N0MvqyrcsAAAAAAMCKNVEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhR7MD169dVpEgRlS1bVvHx8cnad3x8vGbOnPnc/QQHBysyMlKSFBUVJR8fn+fuEwAAAAAAR0KIYgdWrVqlTJky6dq1a1q/fn2y9r1y5UoNGTIkWfusXr26fvnll2TtEwAAAAAAe0eIYgeWLFmi8uXLq3Tp0po/f36y9m2xWJK1P0lydXVVlixZkr1fAAAAAADsGSGKjR07dky7d+9WUFCQqlatqq1bt+rEiRPW4w9Oo0lq3927dzVixAhVrFhRhQsXVrVq1TRv3jxJ96bd9OzZU5Lk4+OjrVu3KjIyUqGhoerWrZuKFi2qL774QpK0aNEi1apVS/7+/goICFCTJk20d+/eJGt+eDrPkSNH1KZNG5UoUUKFCxdWlSpVNGPGjOR7kwAAAAAAsAOEKDa2ePFiubu7q0KFCnrnnXeUOnXqp3oa5dtvv9WaNWv01Vdfae3atQoNDVW/fv20Y8cOVa9eXZ999pkk6ZdfflFgYKAkafv27cqcObOWL1+usLAwrV+/XgMGDFCrVq30/fffa+bMmbp9+7Z69+79xOvHxsYqPDxcGTJk0Pz587Vy5UpVq1ZNw4YN08GDB5/tTQEAAAAAwA4RotjQnTt3tGLFCgUHB8vV1VUZMmRQuXLltGzZMt2+fdtQH3///bfc3d31xhtvyMvLS6Ghofr666+VO3duubq6ysPDQ5KUJUsWubi4WM/r3LmzcubMKW9vb2XIkEGDBg1SnTp15OXlpYCAADVo0EBHjhx54vVjY2PVrFkz9e3bV3nz5pW3t7c6d+4sSTp8+PAzvCsAAAAAANinVLYu4FW2efNmXbx4UTVq1LDuq1Gjhn788Ud9//33qlu37hP7aNq0qX744QdVrFhRBQsWVFBQkGrUqKFMmTI98pxMmTJZwxVJKlGihI4dO6bx48fr+PHjOnXqlA4fPiyz2fzE62fMmFFNmjTRypUrdeDAAf399986dOiQJBk6HwAAAAAAR8GTKDYUFRUlSerYsaN8fX3l6+urTz/9VJIeO6Xnzp071tfe3t5at26dpk2bptKlS2vTpk2qW7euli5d+sjzXV1dE2x/9913ql27tk6fPq2iRYvq008/VUREhKF7uHDhgmrXrq1FixYpW7ZsatKkyWOvDQAAAACAo+JJFBu5dOmSNm/erPr166tFixYJjs2cOVNLlizRkSNHlDp1al2/ft167Pr167p06ZJ1e9asWcqUKZNq1KihoKAgffLJJ2rRooVWr16tevXqyWQyPbGWKVOmqEGDBurfv79134YNGyTd+3afx/WxcuVKXblyRWvXrlXq1Kkl/d80nhfxzUAAAAAAANgKIYqNrFixQnfu3NGHH36oPHnyJDjWtm1bLV26VPPnz1dAQIBWr16tkJAQpU+fXmPHjpWzs7O17X///afx48fL1dVVBQoU0PHjx3Xw4EE1a9ZMkuTu7i5J2rdvn/Lly5dkLTly5NDOnTu1f/9+eXh4aOPGjZozZ44kKS4uTmnSpHnkfWTPnl2xsbFas2aNihUrpuPHj2vIkCHWcwEAAAAASCkIUWwkKipKZcuWTRSgSNKbb76pt99+WytWrNCqVat05coVtWjRQh4eHgoPD9fVq1etbTt27Kj4+HgNHDhQFy5cUJYsWdS4cWO1adNGklS6dGkVKVJEjRo10ogRI5KspU+fPurbt69CQ0Pl4uKiAgUKaPjw4erWrZv27t2r4sWLP/I+qlWrpv3792vo0KG6fv26vLy89P7772vDhg3au3evGjdu/JzvFAAAAAAA9sFkYc4F7MjevXslSfM2ntbJ6Ms2rgYAkJJ4e72mwV2qv5C+b968qYMHD6pgwYLWp0Bhvxgvx8J4ORbGy7EwXvfc/xzq5+f3xLYsLAsAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgQCpbFwAkxSurp61LAACkMPx/CwAAeF6EKLBLHRoH2boEAEAKZDZb5ORksnUZAADAQTGdB3YnLi5OsbGxti4DBsTGxurAgQOMl4NgvBwL4/ViEKAAAIDnQYgCu2SxWGxdAgywWCyKjY1lvBwE4+VYGC8AAAD7Q4gCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAK7ZDKZbF0CDDCZTHJzc2O8HATj5VgYLwAAAPuTytYFAA9zcXGRm5ubrcuAAW5ubvL19bV1GTCI8XIsKWm8zGaLnJwIgwAAgOMjRIFdGj9vi6LPx9i6DADAc/LK6qkOjYNsXQYAAECyIESBXYo+H6OT0ZdtXQYAAAAAAFasiQIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABggEOGKGFhYYqIiEjyWEREhMLCwgz3FRkZqeDgYOv2X3/9pU2bNj1XfQ/3+bBH1bh69Wr5+vqqT58+MpvNT30vz2Lr1q3y8fHRP//880KvAwAAAACAo0tl6wJsLTw8XE2bNrVut2nTRvXq1VOlSpVeah2rV6/Wxx9/rMaNG6t3794ymUzq1auX7t69+1LrAAAAAAAASXvlQ5S0adMqbdq0Nq1hzZo1+vjjjxM9YePh4WHDqgAAAAAAwIMccjrP0/Dx8dHixYvVvHlz+fv7q1y5cho3bpz1+INTb4KDgxUdHa1x48ZZp9Fcu3ZNffr0UenSpVWsWDE1a9ZMe/fuTXCNBQsW6J133pG/v7/atm2rmJgYw/WtXbtWPXr0UMuWLRNNUXpwOs/WrVvl6+urzZs3q2bNmipcuLCqVaumH374wdr+7t27+uqrr1SuXDkFBASoc+fOGjRoUIIpQTt27ND7778vf39/1a5dW4cOHUpwzbt372rmzJkKCQmRn5+fQkJCNG/ePOvx+3WsX79eISEh8vf3V7NmzXT27FkNHDhQxYsXV5kyZTRx4kTD7wEAAAAAAI4gxYcokjRs2DDVq1dPq1atUmhoqCIjI7V9+/ZE7RYvXqzs2bMrPDxckZGRslgs+vDDD3X69GlNnjxZCxcuVEBAgBo3bqwDBw5IklauXKkBAwaoefPmWr58uYoWLaq5c+caqmvdunXq3r27AgIC1L179ye2v3v3rkaMGKFevXpp5cqVeuutt/Tpp5/qxo0bkqSRI0dqwYIF+vzzz7VkyRJlyZJFs2fPtp5/+vRphYeHq2DBglq6dKk6dOigCRMmJLjG0KFDNWHCBHXs2FHfffedmjZtqkGDBmnmzJkJ6pg4caJGjhypb775RocOHVKdOnWUOnVqLVq0SI0aNdLo0aN1+PBhQ+8DAAAAAACO4JUIUerWras6deooZ86catu2rdKnT6+dO3cmapcxY0Y5OzvL3d1dGTJk0O+//64///xTo0ePVpEiRZQ3b15r6DFr1ixJ0uzZs1W9enU1bdpUuXPnVuvWrVW5cuUn1vTXX3+pe/fuKlWqlHbs2JHgiZLH6dq1q8qUKSNvb2+1b99e169f15EjRxQbG6tvv/1WXbt21TvvvKO8efOqd+/e8vX1tZ67cOFCZc6cWZ9//rny5s2rkJAQtWvXznr8+vXrmjdvnjp37qxatWrJ29tbzZo1U5MmTTRlyhRZLBZr2y5dusjPz0+BgYEqXbq03Nzc9Mknnyh37txq06aN9R4BAAAAAEgpHDJESZUqlcxmc5LHzGazUqVKuNRL3rx5E2x7eHgoPj7+idfZv3+/LBaLKleurMDAQOvPrl27dOzYMUnSkSNH5Ofnl+C8wMDAJ/Z9+fJlde3aVTNmzFCFChXUq1cv/fvvv088L0+ePNbX6dKlkyTFx8fr2LFjunXrlgICAqzHTSaTihUrZt0+cuSIfH195ezsbN1XtGhR6+vjx48rPj4+wTmSVLJkSV26dEmXLl2y7suVK5f1tbu7u9544w2ZTCZJkqurqyQpLi7uifcDAAAAAICjcMiFZdOnT6+rV68meSwmJkaenp4J9rm4uCRq9+BTFY9iNpuVLl06RUVFJTr2YJ8PBzqpU6d+Yt9FixZVq1atJEmDBw9WzZo19dFHH+mbb75JEHI87rr3WSwWa3D0uPsymUyJan0wcHrUuffPebDtw0GVk5ND5nEAAAAAABjmkJ98CxUqpH379iV60iEuLk579uxJ9GTIs3rrrbd0/fp1xcfHK1euXNafqVOnasOGDZKkggULJpoa9PDCs0l5MITIkiWLvvjiC23fvj3RGiVG5cqVS66urvrzzz8T7N+9e7f1dYECBRK9b/v27bO+zps3r1KnTq0//vgjQR87duxQlixZEoVTAAAAAAC8ShwyRGnQoIHMZrM6duyoXbt2KTo6Wtu2bVP79u2VKlUqNWjQ4Jn7Tps2rU6ePKmLFy+qfPnyKliwoLp166bff/9dp06d0pAhQxQVFWWdItS6dWutX79e06ZN08mTJzV79mytXbv2qa9btWpV1atXTxMnTkxy0dsncXNzU1hYmMaOHasffvhBJ06c0LBhwxKEKI0bN1ZsbKw+++wzHTt2TD/++KMiIyOtx9OlS6eGDRtq7NixWrlypU6dOqW5c+fq22+/VXh4uHW6DgAAAAAAryKHDFEyZsyoBQsWKH369OrUqZNCQkLUvXt3Zc6cWQsXLnyuJybCwsK0adMmhYeHy9nZWTNmzFDhwoXVtWtX1a5dW9u3b9e4ceNUpkwZSVKlSpX05ZdfasmSJapVq5bWrVun8PDwZ7p27969lT17dn300Ue6cuXKU5/fpUsX1a5dW71791bdunV19uxZValSxToFKFu2bPrmm2/077//ql69eho6dGiChWUlqWfPnmrWrJlGjhypGjVqaN68eerbt+8z3xMAAAAAACmFyWJkcRA4hPXr16tYsWLKmDGjdV94eLiyZ8+uwYMH27Ay4+5PhZq38bRORl+2cTUAgOfl7fWaBnepbusyXribN2/q4MGDKliwoNzd3W1dDp6A8XIsjJdjYbwcC+N1z/3PoUaWBnHIJ1GQtOnTp6tHjx46ePCgTp8+rZkzZ+r3339X7dq1bV0aAAAAAAAOjxAlBRk5cqTSpk2r5s2bq2bNmvruu+80ZswYlS5d2talAQAAAADg8BzyK46RtDfeeEPjxo2zdRkAAAAAAKRIPIkCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgQCpbFwAkxSurp61LAAAkA/49BwAAKQkhCuxSh8ZBti4BAJBMzGaLnJxMti4DAADguTGdB3YnLi5OsbGxti4DBsTGxurAgQOMl4NgvBxLShovAhQAAJBSEKLALlksFluXAAMsFotiY2MZLwfBeDkWxgsAAMD+EKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAK7ZDKZbF0CDDCZTHJzc2O8HATjBQAAADyfVLYuAHiYi4uL3NzcbF0GDHBzc5Ovr6+ty4BBr/J4mc0WOTkRHgEAAOD5EKLALo2ft0XR52NsXQaAFMArq6c6NA6ydRkAAABIAQhRYJeiz8foZPRlW5cBAAAAAIAVa6IAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiPMGKFSv0wQcfKCAgQIGBgXrvvfc0f/78ZL/O5cuXtWjRIut2WFiYIiIinrofs9msSpUqqXDhwvrvv/8SHb9y5YqaN28uPz8/NWjQIMk+oqKi5OPj89TXBgAAAAAgJUtl6wLs2eLFizVo0CD16tVLxYoVk8Vi0ZYtWzRw4EBdvHhRHTt2TLZrDR8+XP/884/ef//95+rn119/VUxMjDJlyqTFixerdevWCY6vWLFCO3bs0Lfffqts2bIl2Uf16tVVvnz556oDAAAAAICUhhDlMb799lu99957CZ7YyJMnj86dO6dZs2Yla4hisViSpZ8lS5aoWLFieuONN7Ro0SJ9+OGHMplM1uNXr15VlixZ5O/v/8g+XF1d5erqmiz1AAAAAACQUjCd5zGcnJy0a9cuxcTEJNjfunVrLViwwLp969YtjR49WlWqVJGfn5/q1KmjtWvXWo8nNT3mwX0RERFaunSptm3blqDdjRs31LNnTxUvXlzFihVTRESEbt68+ch6Y2Ji9MMPPygoKEghISH6+++/tWXLFuvxiIgIRUZG6syZM/Lx8VFUVJQiIyMVGhqqbt26qWjRovriiy8S1Xvjxg198cUXKleunAIDAxUaGqp9+/ZZjy9atEi1atWSv7+/AgIC1KRJE+3du9fo2wwAAAAAgEMgRHmMVq1a6cCBA6pQoYJat26tKVOmaM+ePfLw8FDu3Lmt7bp3765ly5apT58+WrFihd5++2116dJFP/zwg6Hr9OrVS++++64CAwP1yy+/WPevW7dOWbNmVVRUlIYPH67Vq1dr6tSpj+xn5cqVio+PV0hIiEqWLKlMmTIlWL+lV69eCg8PV/bs2fXLL7+oevXqkqTt27crc+bMWr58ucLCwhL127VrV/30008aMmSIli1bppw5cyo8PFwxMTFav369BgwYoFatWun777/XzJkzdfv2bfXu3dvQvQMAAAAA4CiYzvMY1apVU/bs2TVr1ixt2bJFmzdvliR5e3tr8ODBKlasmI4dO6YNGzZo0qRJqlSpkiSpU6dOOnTokCZNmqS33377idfx8PCQq6urUqdOrSxZslj3+/v7q1u3bpKkN998U0FBQQmeAHnYkiVLFBAQoNdff12S9O6772r+/Pk6f/68smbNKg8PD7m7u8vZ2TnBdSSpc+fO8vDwkCTt3LnTuv/48eP66aefNH36dJUrV06S1K9fP6VPn16XL19WhgwZNGjQINWuXVuS5OXlpQYNGmjAgAFPvG8AAAAAABwJIcoTBAQEKCAgQGazWYcOHdLmzZs1Z84cffjhh1q/fr0OHz4sSSpWrFiC80qUKKFRo0Y917W9vb0TbHt6eio6OjrJtocOHdL+/fsTPAFSo0YNzZkzR4sWLVKHDh0eeZ1MmTJZA5SHHTlyRNK99+G+NGnSqGfPntYajx07pvHjx+v48eM6deqUDh8+LLPZbOQWAQAAAABwGEzneYR///1X/fv317///ivp3voovr6+ateunWbOnKkbN25o+/btjzzfYrEoVapHZ1R37959Yg3Ozs6G642KipIkDR48WL6+vvL19VVoaKike98y9LhQ43GLyD7uHiTpu+++U+3atXX69GkVLVpUn3766TN9NTMAAAAAAPaOEOURXFxctGjRIq1YsSLRsfTp00uSMmfObF2A9Y8//kjQZseOHcqXL58kKXXq1JKk69evW4+fPHkyQfsHv0HnacXHx2vFihUqV66cli9frmXLlll/2rdvrzNnzlinIj2tvHnzSlKChWLv3Lmj4OBgrVmzRlOmTFGDBg00dOhQNW3aVCVKlNDp06clJd83DgEAAAAAYA+YzvMIGTNmVKtWrTRmzBjduHFD1apVU7p06XT06FFNmDBBpUqVUvHixSVJlStXVv/+/WUymZQrVy6tWrVKGzZs0OjRoyXdmwpjMpkUGRmpsLAw7d27V0uXLk1wPXd3d50/f16nT59Wzpw5n6rWH3/8UZcvX1aLFi301ltvJTj2+uuva9asWZo/f74qV6781O9D7ty5VbVqVfXv31/9+vVTtmzZNGXKFN2+fVslS5ZUVFSUdu7cqf3798vDw0MbN27UnDlzJElxcXFKkybNU18TAAAAAAB7xJMoj9G1a1cNGjRI27dvV1hYmN59910NGTJEZcuW1aRJk6ztRo0apbffflu9evVS7dq19eOPPyoyMlLVqlWTJOXMmVP9+/fX+vXr9e6772rBggX65JNPElyrbt26io2NVc2aNXXu3LmnqjMqKkq5c+dWUFBQomPp0qXT+++/r59++klnzpx5hnfh3hShEiVKqEuXLqpfv77Onj2r6dOnK2PGjOrTp48yZ86s0NBQvf/++/rxxx81fPhwSeJrjgEAAAAAKYrJwpwL2JH7wcu8jad1MvqyjasBkBJ4e72mwV2q27qMp3bz5k0dPHhQBQsWlLu7u63LwRMwXo6F8XIsjJdjYbwcC+N1z/3PoX5+fk9sy5MoAAAAAAAABhCiAAAAAAAAGPDMC8ueOHFCmzdv1s2bNxN9fa7JZFKHDh2euzgAAAAAAAB78UwhyvLlyxUREfHIr7AlRAEAAAAAACnNM4UoEyZMUNmyZTVw4EBlz55dJpMpuesCAAAAAACwK8+0JsqZM2fUqlUr5ciRgwAFAAAAAAC8Ep4pRMmdO7fOnj2b3LUAAAAAAADYrWcKUXr06KEJEyZo69atun37dnLXBAAAAAAAYHeeaU2UQYMG6dKlS2revHmSx00mkw4cOPA8dQEAAAAAANiVZwpRateundx1AAAAAAAA2LVnClE6duyY3HUAAAAAAADYtWcKUSQpLi5OS5Ys0bZt23T16lW99tprKl68uOrWrStXV9fkrBEAAAAAAMDmnilEuXr1qpo1a6ZDhw7p9ddfV5YsWXTixAmtXLlSc+fO1bfffisPD4/krhUAAAAAAMBmnunbeb788kv9+++/mjNnjjZu3KgFCxZo48aNmjNnji5duqQxY8Ykd50AAAAAAAA29UwhyoYNG9S1a1cVL148wf7ixYurc+fOWrduXbIUBwAAAAAAYC+eKUS5ceOGcubMmeSxnDlz6sqVK89TEwAAAAAAgN15phAlT548+vHHH5M89uOPPypXrlzPVRQAAAAAAIC9eaaFZVu2bKkePXro7t27qlGjhjJnzqyLFy9q5cqVWrhwoT7//PPkrhOvGK+snrYuAUAKwb8nAAAASC7PFKJUr15dJ0+e1KRJkzR//nxJksVikYuLi9q3b6+GDRsma5F49XRoHGTrEgCkIGazRU5OJluXAQAAAAf3TCGKJLVv316hoaHatWuXrl69Kk9PTxUpUkSenvwXPzyfuLg4xcbGys3Nzdal4AliY2N14sQJ5c6dm/FyAK/yeBGgAAAAIDk8c4giSenTp1fFihWTqxbAymKx2LoEGGCxWBQbG8t4OQjGCwAAAHg+hkOUggULasGCBfL391eBAgVkMj36v+qZTCYdOHAgWQoEAAAAAACwB4ZDlA4dOihbtmzW148LUQAAAAAAAFIawyFKx44dra87der0QooBAAAAAACwV8+0Jsr27dsfecxkMilt2rTKmTOn0qVL98yFAQAAAAAA2JNnClHCwsKs03keXKDwwSk+Tk5Oqlu3rgYMGCBnZ+fnLBMAAAAAAMC2nilEmThxorp27aq6deuqZs2aypQpk/777z+tXbtW8+fP18cffyxnZ2eNGTNGb7zxhtq1a5fcdQMAAAAAALxUzxSiTJ06VU2aNNGnn35q3ZcnTx4VL15c7u7uWr9+vWbPni1JmjVrFiEKAAAAAABweE7PctL+/ftVvnz5JI+VKlVKu3fvliT5+Pjo7Nmzz14dAAAAAACAnXimECVLlizaunVrkse2bt2qzJkzS5IuX76s9OnTP3t1eGXxFdqOwWQyyc3NjfFyEIwXAAAA8HyeaTpP48aN9eWXXyo2NlYhISHKlCmTLl68qB9++EFz5sxRp06d9O+//2rixIkqVapUcteMFM7FxUVubm62LgMGuLm5ydfX19ZlwKCnHS+z2SInJwIXAAAA4L5nClFatmyp2NhYTZs2zbr2icVikYeHhzp16qQ2bdpo2bJliouLU/fu3ZO1YLwaxs/boujzMbYuA3hleWX1VIfGQbYuAwAAALArzxSiSFLHjh3VsmVL/fnnn/rvv/+ULVs2FSxYUGnTppUk1apVS3Xr1k2uOvGKiT4fo5PRl21dBgAAAAAAVs+0Jsp9cXFxunnzpq5evao8efLo3LlzslgskiRnZ+dkKRAAAAAAAMAePPOTKBMnTtTkyZN169YtmUwm+fv7a/To0bp8+bJmzJjBgrIAAAAAACBFeaYnUebMmaPIyEi1aNFCCxcutD59EhoaqtOnT2vMmDHJWiQAAAAAAICtPVOIMnv2bLVu3VpdunRRoUKFrPsrVqyorl27auPGjclWIAAAAAAAgD14phDlzJkzKlmyZJLH8uTJo4sXLz5XUQAAAAAAAPbmmUKUHDlyaNeuXUke27dvn3LkyPFcRQEAAAAAANibZ1pYtkGDBoqMjJSrq6sqVaokSbp586bWrl2ryZMnq0WLFslZIwAAAAAAgM09U4jy4Ycf6p9//tHIkSM1cuRISVKzZs1ksVhUu3ZttWnTJlmLBAAAAAAAsLVnClFMJpMGDBig8PBw/f7777py5Yo8PDxUokQJ5cuXT/PmzVPTpk2Tu1YAAAAAAACbeaoQ5aefftLSpUtlMplUp04dVaxYUd7e3tbjO3bsUP369XX48GFCFAAAAAAAkKIYDlFWrFihTz75RKlTp5aLi4u+//57jR07Vu+8846uXLmigQMHatWqVXJ2dmZNFAAAAAAAkOIYDlG++eYbFSlSRNOnT5eLi4t69uyp8ePHK3/+/GrRooXOnj2r8uXL67PPPlPu3LlfZM0AAAAAAAAvneEQ5eTJk/riiy+ULl06SVLHjh1VvXp1tW/fXnFxcRozZoxCQkJeWKEAAAAAAAC2ZDhEuXnzpnLkyGHd9vLyksViUapUqbRixQplypTphRQIAAAAAABgD5yMNrRYLHJ2drZu33/drVs3AhQAAAAAAJDiGQ5RHiVr1qzJUQcAAAAAAIBde+4QxWQyJUcdAAAAAAAAds3wmiiS1K9fP+vCshaLRZLUp08fpU2bNkE7k8mkb775JplKxNNYsWKF5syZoyNHjshkMilPnjx6//331ahRo2S7RnBwsOrVq6dOnTolW58AAAAAANg7wyFKiRIlJP1fePKofUlt4+VYvHixBg0apF69eqlYsWKyWCzasmWLBg4cqIsXL6pjx47Jdp00adIkS18AAAAAADgKwyHK7NmzX2QdSAbffvut3nvvPTVo0MC6L0+ePDp37pxmzZqVbCFKxowZk6UfAAAAAAAcyXOviQL74eTkpF27dikmJibB/tatW2vBggWS7k3FmTBhglq2bCl/f3+98847WrRoUYL2ixYtUq1ateTv76+AgAA1adJEe/futR4PDg5WZGSkJCkyMlLNmzfXlClTVKFCBfn5+Sk0NFTHjh17wXcLAAAAAMDLRYiSgrRq1UoHDhxQhQoV1Lp1a02ZMkV79uyRh4eHcufObW03YcIEBQYGatmyZWratKn69u2r1atXS5LWr1+vAQMGqFWrVvr+++81c+ZM3b59W717937kdXfs2KE//vhDU6ZM0bfffqtLly6pf//+L/x+AQAAAAB4mZ5qYVnYt2rVqil79uyaNWuWtmzZos2bN0uSvL29NXjwYBUrVkySVK5cOevUnjx58mj37t365ptvVL16dWXIkEGDBg1S7dq1JUleXl5q0KCBBgwY8Mjr3rlzR8OHD5enp6ckqVGjRhoxYsSLvFUAAAAAAF46QpQUJiAgQAEBATKbzTp06JA2b96sOXPm6MMPP9T69eslSaVKlUpwTmBgoDZt2iTp3mLBx44d0/jx43X8+HGdOnVKhw8fltlsfuQ1M2fObA1QJMnDw0Px8fHJf3MAAAAAANgQ03lSiH///Vf9+/fXv//+K+ne+ii+vr5q166dZs6cqRs3bmj79u2SpFSpEmZnZrNZTk73fhW+++471a5dW6dPn1bRokX16aefKiIi4rHXdnFxeQF3BAAAAACAfeFJlBTCxcVFixYtUo4cOdS6desEx9KnTy/p3hMjkhIsEitJO3fulK+vryRpypQpatCgQYI1TTZs2CDp3ldXm0ymF3YPAAAAAADYM0KUFCJjxoxq1aqVxowZoxs3bqhatWpKly6djh49qgkTJqhUqVIqXry4JGnVqlUqUqSIgoKC9MMPP2j9+vWaNGmSJClHjhzauXOn9u/fLw8PD23cuFFz5syRJMXFxSlNmjQ2u0cAAAAAAGyJECUF6dq1q7y9vbVw4ULNnTtXt27d0uuvv653331Xbdq0sbarV6+e1q9fr6FDh8rb21ujR49WxYoVJUl9+vRR3759FRoaKhcXFxUoUEDDhw9Xt27dtHfvXmsQAwAAAADAq4YQJYWpW7eu6tat+9g22bJl08CBA5M8ljNnTn399deJ9levXt36euPGjdbXnTp1UqdOnRK0rV+/vurXr/8UVQMAAAAAYP9YWBYAAAAAAMAAQhQAAAAAAAADmM7zinlwKg4AAAAAADCOJ1EAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwIJWtCwCS4pXV09YlAK80/gYBAACAxAhRYJc6NA6ydQnAK89stsjJyWTrMgAAAAC7wXQe2J24uDjFxsbaugwYEBsbqwMHDjBeDuJpx4sABQAAAEiIEAV2yWKx2LoEGGCxWBQbG8t4OQjGCwAAAHg+hCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKLBLJpPJ1iXAAJPJJDc3N8YLAAAAwCshla0LAB7m4uIiNzc3W5cBA9zc3OTr62vrMl5JZrNFTk6EVwAAAMDLRIgCuzR+3hZFn4+xdRmAXfLK6qkOjYNsXQYAAADwyiFEgV2KPh+jk9GXbV0GAAAAAABWrIkCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECI8hyCg4Pl4+Nj/SlQoICKFi2q0NBQbd++3domMjLykX1ERUXJx8fHuu3j46OoqChJUmRkpIKDg5Ot3n/++Uc+Pj7aunVrsvUJAAAAAMCrIpWtC3B04eHhCg8PlyRZLBZduXJFo0aNUqtWrfT9998/8fzq1aurfPnyj+y7adOmyVZrjhw59Msvv8jT0zPZ+gQAAAAA4FVBiPKc3N3dlSVLFut21qxZ1b9/f1WoUEHr169/4vmurq5ydXVN8ljatGmVNm3aZKvV2dk5Qa0AAAAAAMA4pvO8AKlS3cumXFxcJEkXLlxQx44dFRAQoFKlSmnIkCG6e/eupMTTeR704HSe+1Nxli1bppo1a8rf318ffPCB/vjjD2v7iIgIde/eXQMGDFDRokVVpkwZDR06VHFxcQn6uD+dJywsTCNHjtRnn32m4sWLq2jRourRo4euX79u7fPYsWP68MMPFRgYqHLlyqlHjx66cOGC9fjJkyfVsmVLFStWTIGBgWrZsqUOHz6cXG8lAAAAAAB2gxAlmZ07d04DBgyQu7u7KlasKElavHixSpQooe+++04ff/yxZs6cqaVLlz5T/0OHDlXbtm21dOlS5cmTR+Hh4Tp9+rT1+Lp163T+/HnNnz9fAwcO1LJlyzRo0KBH9jdz5kxlzpxZixcv1ogRI7RhwwbNnDnTei9NmjRRrly5tHjxYk2aNEnXr19Xw4YNdfPmTUlS9+7dlS1bNi1ZskSLFi2Sk5OTOnbs+Ez3BgAAAACAPWM6z3OaPHmyZsyYIUm6c+eO4uLilDdvXo0ePVqvv/66JKlq1ar63//+J0nKmTOnZs2apX379qlBgwZPfb3WrVurZs2akqQvvvhCv//+uxYuXKgePXpIktKnT68RI0bIzc1Nb731ls6fP69Bgwbp448/TrK/fPnyqXv37pIkb29vBQUFadeuXZKkefPmKXv27Ordu7e1/ejRo1W6dGmtWbNG9evX199//62yZcvKy8tLqVOn1uDBg3X8+HGZzWY5OZHRAQAAAABSDkKU59SoUSOFhYVJkpycnJQhQwZ5eHgkaOPt7Z1g29PTU7dv336m65UqVcr6OnXq1CpcuLCOHDli3efv7y83NzfrdmBgoOLj43XixAm99tprifrLkydPgm0PDw9dvXpVknTgwAH99ddfCgwMTNDm9u3bOnbsmCSpW7duGjx4sL799luVLFlS5cuXV82aNQlQAAAAAAApDiHKc/L09FSuXLke28bZ2TnRPovF8kzXu7/eyn13795NEFikTp06wXGz2fzIGqT/W7clKWazWaVLl9bnn3+e6Nj9oKhp06aqVq2aNm/erN9++01jx47VxIkTtWzZMmXOnNnYTQEAAAAA4AB4XMDB7N271/o6Li5O+/fvV6FChaz79u/fb120VpJ27dolNzc35c6d+6mvlT9/fh07dkw5cuRQrly5lCtXLnl6emrw4ME6cuSILl26pAEDBig+Pl7169fXiBEjtGLFCl24cEHbtm17vhsFAAAAAMDOEKI4mNGjR2vTpk06evSoPvvsM8XGxuqDDz6wHo+Ojlb//v117NgxrVu3TmPHjlVoaGiCKT5GNWnSRNeuXdNHH32kQ4cO6dChQ+rWrZv27t2rt956S56entq0aZN69+6tgwcP6vTp05o/f751mhEAAAAAACkJ03kcTOPGjTVs2DCdOXNGRYoU0ezZs5U1a1br8YCAADk5OalBgwby8PBQs2bN1K5du2e6Vs6cOTVnzhx9+eWXaty4sZydnVW0aFHNmjVLGTNmlCRNnTpVw4YNU/PmzRUbG6uCBQtqypQpevPNN5PlfgEAAAAAsBcmy7MuzoGX6p9//lGVKlU0a9asBIvLPigiIkLR0dGaPXv2S64u+dyfrjRv42mdjL5s42oA++Tt9ZoGd6n+1OfdvHlTBw8eVMGCBeXu7v4CKkNyYrwcC+PlWBgvx8J4ORbGy7EwXvfc/xzq5+f3xLZM5wEAAAAAADCAEAUAAAAAAMAA1kRxEG+88YYOHz782DZDhw59SdUAAAAAAPDq4UkUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADEhl6wKApHhl9bR1CYDd4u8DAAAAsA1CFNilDo2DbF0CYNfMZoucnEy2LgMAAAB4pTCdB3YnLi5OsbGxti4DBsTGxurAgQOMlw0QoAAAAAAvHyEK7JLFYrF1CTDAYrEoNjaW8QIAAADwSiBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFdslkMtm6BBhgMpnk5ubGeAEAAAB4JaSydQHAw1xcXOTm5mbrMmCAm5ubfH19bV2G3TCbLXJyIlACAAAAUipCFNil8fO2KPp8jK3LAAzzyuqpDo2DbF0GAAAAgBeIEAV2Kfp8jE5GX7Z1GQAAAAAAWLEmCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGCAzUOUsLAw+fj4JPgpXLiwKlWqpAEDBig2Nval1hMVFSUfH5/HtgkODlZkZKTh9s8jLi5OnTt3lr+/v8qVKyez2ZyojY+Pj6KiohLsi4+PV8eOHVWkSBH98ssvL6w+AAAAAABeFalsXYAkvfvuu+rVq5d1++bNm/rll180ZMgQmc1m9evXz3bFPUH16tVVvnz5F9b/zz//rLVr12ry5Mny8fGRk9OTc687d+6oe/fu2rJli6ZMmaJSpUq9sPoAAAAAAHhV2EWI4urqqixZsiTYlytXLu3bt0+rV6+26xDF1dVVrq6uL6z/q1evSpIqVqwok8n0xPYPBijTpk1TsWLFXlhtAAAAAAC8Smw+nedx0qRJo1Sp/i/niYuL04gRI1S+fHkFBgbqgw8+SDBVJSoqShUqVNDChQtVrlw5BQYGqkOHDjp37py1zYNTcR63b+HChSpfvryKFCmitm3bKjo6OskaH57Oc+PGDX3xxRfW64eGhmrfvn2PvMezZ8/qo48+UlBQkAICAtSyZUsdOnRIkhQZGamIiAhJUoECBRLV+LD7Acpvv/2mr7/+OlGAcuXKFfXv318VK1aUv7+/GjVqpK1bt1qPR0ZGKjQ0VN26dVPRokX1xRdfSJJ27typpk2byt/fX5UqVVL//v11/fp163lnzpxRt27dVKZMGRUqVEgVKlTQiBEjkpx6BAAAAACAo7LLEOXOnTvatGmTli9frjp16lj39+zZU1u2bNHIkSO1dOlSvfvuu2rbtq02bdpkbfPff//pm2++0ejRo/XNN9/o7NmzatWqle7cufNUNcyePVtjxozR3LlzdfnyZXXo0EEWi+WJ53Xt2lU//fSThgwZomXLlilnzpwKDw9XTExMorbXr19X48aNde7cOU2cOFHz58+Xq6urQkNDFR0drfDwcH322WeSpF9++UXh4eGPvO7du3f10Ucfae3atfr0009VpEiRRMfDw8O1Y8cOjRgxQlFRUXrrrbfUsmVL7dmzx9pu+/btypw5s5YvX66wsDAdOnRILVq0UPny5bVixQqNHDlS+/fvV3h4uPX9aNeuna5du6avv/5aa9asUXh4uKZNm6aNGzcaeq8BAAAAAHAEdjGd57vvvtPatWut27du3dLrr7+uli1bqm3btpKkU6dOaeXKlVq2bJkKFiwoSWrRooUOHTqk6dOnq1KlSpLuLag6bNgwFS5cWJI0YsQIVa9eXb/99ttTrV0yYsQIFShQQJI0bNgwhYSE6LffflPZsmUfec7x48f1008/afr06SpXrpwkqV+/fkqfPr0uX74sT0/PBO1XrFihy5cvKyoqShkzZpQkffnll3r77bc1d+5cffLJJ/Lw8JCkRNOdHjZ27FjFx8fL19dXEyZMUEhIiPVc6V4Is3//fn333Xd66623JEn9+/fX3r17NX36dI0ZM8batnPnztZzP/74YwUFBVnHwdvb21rjtm3bVKRIEdWpU0fvvvuucuTIIUlq3ry5pk6dqsOHD+vtt99+wjsNAAAAAIBjsIsQJTg4WB999JEsFov27NmjQYMGqWzZsmrbtq11Os+BAwckSU2aNElwbnx8vNKnT2/dTps2rTVAkaS8efPK09NTR44cMRyipE2b1hqgSPeCg/t9PC5EOXLkiCQpICDAui9NmjTq2bPnI9t7e3tbAxTp3hor/v7+1r6MMpvNmj17ttKkSaM6deqoT58+Gj16dIJreXh4WAMUSTKZTCpevHiCKVGZMmVKEL4cOHBAp06dUmBgYKJrHjt2TKVKlVJoaKjWrFmjPXv26NSpUzp8+LAuXrzIdB4AAAAAQIpiFyFK2rRplStXLkn3AousWbOqRYsWcnZ2ti4qe3/qyNy5c5U2bdoE5z/4jTWpU6dO1P/du3fl7Oz8yOs/PNUnqbZms1kuLi6PvY8H128x4lHTg8xm81P31bVrV+XPn1/SvWlPffr0UdmyZfXBBx889loWiyXBtR5eJNdsNqtWrVrWJ1EelDFjRt28eVOhoaG6deuWqlWrpnr16snf319NmzZ9qvoBAAAAALB3drkmSunSpdWiRQvNmzdPP/30kyRZA4ILFy4oV65c1p+oqChFRUVZz71y5YpOnz5t3f7rr790/fp1+fr6SroXsjy4KOr169d16dKlBNe/evWq/v77b+v24cOHde3atQRPcSQlb968kqS9e/da9925c0fBwcFas2ZNovY+Pj46efJkguvfvn1b+/btU758+R57rYc9GPx88MEHqly5sgYPHqyjR49ar3Xt2rUET7hYLBb98ccfj71W/vz5dfTo0QTv+Z07dzRkyBCdPXvWOk1o1qxZ6ty5s6pXr6506dLp0qVLhtaQAQAAAADAUdhliCJJXbp0kbe3t/r166cbN24of/78qly5sj7//HNt3LhRp0+f1tSpUzV58mS9+eabCc79+OOPtW/fPv3555/65JNPFBgYqBIlSki6N9Vm9erV2rlzp44eParPPvss0ZMnTk5O6tq1q/78809rHyVLllTx4sUfW3Pu3LlVtWpV9e/fX7///rtOnDihPn366Pbt2ypZsmSi9rVq1VKGDBnUtWtX7dmzR4cOHdJHH32kmzdvqmHDhs/1/g0aNEju7u7q1q2bbt++rXLlyqlgwYLq0aOHtm3bpmPHjmnAgAE6cuSI/ve//z2yn/DwcB04cED9+/fXsWPHtGvXLvXo0UMnT56Ut7e3smfPLune+i7R0dHasWOH2rdvr/j4eMXFxT3XPQAAAAAAYE/sNkRJkyaNvvjiC505c0ZfffWVJOmrr75S1apV1bdvX1WvXl3Lli3ToEGDVK9evQTn1qpVS61bt1arVq2UP39+TZ48WSaTSZLUvXt3+fr6qkWLFmrevLkCAgJUtGjRBOdnzJhRderUUfv27dWiRQvlzZs3wcKrjzN48GCVKFFCXbp0Uf369XX27FlNnz49wbon93l4eGjOnDlKnz69mjdvriZNmujWrVuaN2+ecubM+Sxvm1WmTJk0cOBAHTlyREOGDJGzs7NmzJghX19fdezYUe+9957++usvzZw5M8EaLg8LCAjQtGnTdPDgQdWrV0/t2rVT7ty5NXPmTLm4uMjf3189e/bUrFmz9O6776pnz54qUaKEatasmeCJHAAAAAAAHJ3JkoLmXERFRalnz546fPiwrUvBM7ofvMzbeFonoy/buBrAOG+v1zS4S3Vbl/FYN2/e1MGDB1WwYEG5u7vbuhw8AePlWBgvx8J4ORbGy7EwXo6F8brn/udQPz+/J7a12ydRAAAAAAAA7AkhCgAAAAAAgAEpKkSpX78+U3kAAAAAAMALkaJCFAAAAAAAgBeFEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMCAVLYuAEiKV1ZPW5cAPBV+ZwEAAICUjxAFdqlD4yBblwA8NbPZIicnk63LAAAAAPCCMJ0HdicuLk6xsbG2LgMGxMbG6sCBA4zX/0eAAgAAAKRshCiwSxaLxdYlwACLxaLY2FjGCwAAAMArgRAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAV2yWQy2boEGGAymeTm5sZ4AQAAAHglpLJ1AcDDXFxc5ObmZusyYICbm5t8fX1tXcYLYzZb5OREQAQAAADgHkIU2KXx87Yo+nyMrcvAK8wrq6c6NA6ydRkAAAAA7AghCuxS9PkYnYy+bOsyAAAAAACwYk0UAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUVIYHx8fRUVF2boMAAAAAABSHEIUAAAAAAAAAwhRAAAAAAAADCBESaHMZrMmT56skJAQFS5cWEWLFlWrVq30999/W9v4+Pho7ty5+uCDD+Tn56datWppw4YNT93H4sWL1bx5c/n7+6tcuXIaN27cS71XAAAAAABeBkKUFGrWrFmaPn26IiIitHbtWo0fP14nT57U0KFDE7QbOXKk6tSpo+XLl6tixYrq2LGjdu7c+VR9DBs2TPXq1dOqVasUGhqqyMhIbd++/aXdKwAAAAAALwMhSgr15ptvatiwYapcubK8vLxUpkwZVatWTUeOHEnQrn79+mratKny5Mmjjz76SH5+fpozZ85T9VG3bl3VqVNHOXPmVNu2bZU+fXprEAMAAAAAQEqRytYF4MUIDg7W7t27NWbMGJ04cUInTpzQ0aNHlS1btgTtSpUqlWA7MDBQW7Zseao+8ubNm2Dbw8ND8fHxL+CuAAAAAACwHZ5EcWAXL17U4cOHrdsWi0WS5OzsrClTpqhZs2a6fPmyypQpo/79+ys8PDxRH6lSJczR7t69Kyene78WRvtwcXFJtO9+LQAAAAAApBQ8ieLApk+frp9++kmrVq2SJMXExEiSMmbMqP79+6tDhw5q3bp1gvYPhxt79+5VcHCwdXvXrl0qVKiQJGnSpEmG+gAAAAAA4FVAiOLAypYtqxkzZmjp0qUqXry4vv76a6VPn16BgYHKkSOHtmzZouDgYDk5OWn58uVat26dMmfOnKCPb775Rnny5FHhwoW1cOFCHT58WIMGDZIkw30AAAAAAPAqYDqPAytfvrwiIiIUGRmpGjVqaM+ePZo4caLSpUun4cOH69atW3rvvfcUGhqqI0eOqH///rp06ZLOnDlj7aNRo0aaOXOmateurR07dmj69OkqUKCAJBnuAwAAAACAVwFPoji4Fi1aqEWLFon2FypUSAsWLEi0v1GjRgm28+XLp08++STJvo308eCaLPdt3LjxiXUDAAAAAOBoeBIFAAAAAADAAEIUAAAAAAAAA5jO8wpLaioOAAAAAABIGk+iAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGJDK1gUASfHK6mnrEvCK43cQAAAAwMMIUWCXOjQOsnUJgMxmi5ycTLYuAwAAAICdYDoP7E5cXJxiY2NtXQYMiI2N1YEDB1LseBGgAAAAAHgQIQrsksVisXUJMMBisSg2NpbxAgAAAPBKIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAV2yWQy2boEGGAymeTm5sZ4AQAAAHglpLJ1AcDDXFxc5ObmZusyYICbm5t8fX1tXcYTmc0WOTkR9AAAAAB4PoQosEvj521R9PkYW5eBFMArq6c6NA6ydRkAAAAAUgBCFNil6PMxOhl92dZlAAAAAABgxZooAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGEKAAAAAAAAAYQogAAAAAAABhAiAIAAAAAAGAAIQoAAAAAAIABhCgAAAAAAAAGEKIAAAAAAAAYQIgCAAAAAABgACEKAAAAAACAAYQoAAAAAAAABhCiAAAAAAAAGECIAgAAAAAAYAAhCgAAAAAAgAGpbF3Aq8ZisWjp0qVaunSp/vrrL12/fl05cuRQpUqV1Lp1a2XJksXWJQIAAAAAgCTwJMpLZDab1aFDBw0dOlSVK1fW7NmztW7dOvXu3Vt79+7Ve++9p0uXLtm6TAAAAAAAkASeRHmJZs6cqc2bN2vhwoUqVKiQdf/rr7+uUqVKqUaNGpo+fbo++eQTG1YJAAAAAACSwpMoL4nFYtGcOXNUu3btBAHKfa6urpo1a5a6du0qSTp37py6deum4sWLq1SpUmrbtq1OnjxpbR8REaHOnTsrPDxcRYsW1dSpUxUZGanmzZtr3LhxKlu2rAIDA9W3b1+dPXtWbdq0UZEiRfTOO+9o06ZN1n7OnDmjbt26qUyZMipUqJAqVKigESNGyGw2S5KioqL0zjvvWP+3cOHCql+/vv744w9J0jfffKPAwEDFxsZa+zSbzapQoYLmzp2b/G8kAAAAAAA2Qojykvzzzz+Kjo5W2bJlH9nGy8tLLi4uunnzpsLCwiRJc+bM0ezZs/Xaa6/pgw8+0Llz56zt165dq7Jly2rJkiWqWbOmJGnHjh06ceKE5s6dq969e2vBggVq0KCB3n33XUVFRSlv3ryKiIiQxWKRJLVr107Xrl3T119/rTVr1ig8PFzTpk3Txo0brdc5e/as5s+frxEjRmjp0qVyc3Oz9lGrVi3Fx8dr3bp11va//vqrLl++bK0JAAAAAICUgBDlJbl48aIkKWPGjAn2t23bVoGBgdafGjVqaNWqVbp69apGjBihAgUK6K233tKgQYOULl06LVy40Hqup6enWrVqpdy5cytHjhyS7j0F0r9/f+XOnVvvvfeeXnvtNZUuXVp169ZV3rx51bhxY12+fFkXLlzQrVu3VKdOHX3xxRcqUKCAcubMqebNmytz5sw6fPiw9Trx8fHq37+/AgIClD9/frVo0UJ///23Lly4oIwZMyo4OFgrVqywtl+6dKmCg4Pl6en5It9SAAAAAABeKtZEeUlee+01SVJMTEyC/f3799etW7ckSbNnz9bGjRt14MABxcTEqESJEgna3r59W8eOHbNu58qVK9F1MmXKpHTp0lm33d3d9eabb1q3XV1dJUlxcXFydXVVaGio1qxZoz179ujUqVM6fPiwLl68aJ3Oc1/evHmtrz08PCTdC1ck6b333lO7du10/vx5ubu764cfftDYsWMNvjMAAAAAADgGQpSXJGfOnMqSJYu2bt2q6tWrW/dny5bN+vr+kxtms1m5c+fWxIkTE/Xj7u5ufX0/EHlQ6tSpE+1zckr6gaObN28qNDRUt27dUrVq1VSvXj35+/uradOmidq6uLgk2nd/SlC5cuWUOXNmrVy5UhkyZFD69OlVrly5JK8JAAAAAICjIkR5SZydndWsWTONHz9ejRs3VoECBRK1OXv2rCTprbfe0vLly+Xh4WGd/hMfH68ePXqoWrVqCUKY5/HLL79o//792rJlizJnzixJunLlii5dumQNSIxwdnZW3bp1tX79eqVPn1516tSRs7NzstQIAAAAAIC9YE2Ul6hVq1aqXLmymjRpokmTJunQoUP6559/tHHjRoWHh2vJkiUqXbq0ateuLU9PT3Xu3Fm7d+/WsWPHFBERoZ9++kk+Pj7JVk/27NklSStWrFB0dLR27Nih9u3bKz4+XnFxcU/VV/369bV79279+uuvqlevXrLVCAAAAACAveBJlJfIyclJo0eP1vfff68lS5Zo1qxZunr1qjJnzqzixYtrzpw51nVQ5syZo+HDh6tly5a6e/euChUqpBkzZiRYm+R5+fv7q2fPnpo5c6ZGjx6tbNmyqXr16sqRI4f27t37VH15e3urSJEiMpvNyVojAAAAAAD2wmR5mnkbwCNYLBa9/fbbatu2rd5///1n7ud+eDNv42mdjL6cXOXhFebt9ZoGd0meKXCO7ubNmzp48KAKFiyYYH0l2CfGy7EwXo6F8XIsjJdjYbwcC+N1z/3PoX5+fk9sy5MoeC7x8fHauHGjfv/9d928eVM1atSwdUkAAAAAALwQhCh4LqlTp9bAgQMlSSNGjHil00sAAAAAQMpGiILn9vPPP9u6BAAAAAAAXji+nQcAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADUtm6ACApXlk9bV0CUgh+lwAAAAAkF0IU2KUOjYNsXQJSELPZIicnk63LAAAAAODgmM4DuxMXF6fY2FhblwEDYmNjdeDAAbsfLwIUAAAAAMmBEAV2yWKx2LoEGGCxWBQbG8t4AQAAAHglEKIAAAAAAAAYQIgCAAAAAABggMnCc/iwIzt37pTFYlHq1KllMrGOhb2zWCyKj49nvBwE4+VYGC/Hwng5FsbLsTBejoXxciyM1z1xcXEymUwqWrToE9vy7TywK/f/cF/lP2BHYjKZ5OLiYusyYBDj5VgYL8fCeDkWxsuxMF6OhfFyLIzXPSaTyfBnUJ5EAQAAAAAAMIA1UQAAAAAAAAwgRAEAAAAAADCAEAUAAAAAAMAAQhQAAAAAAAADCFEAAAAAAAAMIEQBAAAAAAAwgBAFAAAAAADAAEIUAAAAAAAAAwhRAAAAAAAADCBEAQAAAAAAMIAQBQAAAAAAwABCFAAAAAAAAAMIUWA3zGazxo4dq/LlyysgIEAffvihTp8+beuyXnmTJ09WWFhYgn0HDx5UaGioAgICFBwcrFmzZiU4zli+XFeuXFHfvn1VoUIFFS1aVI0bN9aOHTusx3/77TfVr19fRYoUUbVq1bRq1aoE59++fVv9+/dXmTJlFBgYqB49eui///572bfxyrh06ZI+/vhjlS5dWoGBgWrdurWOHTtmPc7fl/06ceKEAgMDFRUVZd3HeNmXc+fOycfHJ9HP/TFjvOzPsmXLVL16dfn5+alGjRr6/vvvrcf++ecftWnTRkWLFlW5cuU0evRo3b17N8H5c+fOVZUqVeTv768mTZrowIEDL/sWXglbt25N8m/Lx8dHVapUkcR42Zs7d+5ozJgxqly5sgIDA9W0aVP9+eef1uP8e/gcLICdiIyMtJQqVcry448/Wg4ePGgJDw+3VK1a1XL79m1bl/bKmjNnjqVAgQKW0NBQ677//vvPUqpUKUvPnj0tR48etSxevNji5+dnWbx4sbUNY/lytWjRwlKzZk3L9u3bLcePH7f079/f4u/vbzl27Jjl6NGjFj8/P8uoUaMsR48etUybNs3i6+tr+fXXX63nR0REWN5++23L9u3bLbt377bUrVvX0rRpUxveUcrWsGFDy/vvv2/ZvXu35ejRo5ZOnTpZypUrZ7l58yZ/X3YsLi7OUr9+fctbb71lWbJkicVi4d9De7Rp0yaLn5+f5dy5c5bz589bf2JjYxkvO7Rs2TKLr6+vZc6cOZZTp05ZJkyYYClQoIBl586dlri4OEvVqlUtrVu3thw+fNiyfv16S8mSJS1jxoyxnh8VFWXx9/e3LF++3PLXX39ZPv74Y0vJkiUtly5dsuFdpUy3b99O8Dd1/vx5y7p16yw+Pj6WxYsXM152aOzYsZagoCDLzz//bDl58qSlV69elmLFilnOnTvHv4fPiRAFduH/tXfvQVFe5x/AvyCigNwkCo4NjSPlIuzCIiCKyqUMowYYLzWaWgMRxQvGxpVwqVGZNoSogBfAUMRoDVhJlWgpmWqsVDsVFDAlEZBLBIwGuUiAxCDCcn5/MLzjCqbwU2Gt388MM77nnN1z3vPMu7gP57xvZ2enUCgUIjMzUypra2sTcrlc5OTkjODIXkx37twRa9euFU5OTmLevHlqSZTU1FQxe/Zs0dXVJZUlJCQIPz8/IQRjOdxqa2uFtbW1KCoqksp6enqEr6+v2Lt3r9i2bZv41a9+pfYapVIpVq1aJYTojbWtra345z//KdXfuHFDWFtbi6tXrw7PSbxAWltbhVKpFBUVFVJZeXm5sLa2FiUlJby+NFhCQoJ444031JIojJfmSUtLEwEBAQPWMV6apaenR3h7e4sPPvhArXzVqlUiNTVV5OTkCAcHB9Ha2irVHT9+XDg7O0tf4vz8/MSuXbuk+q6uLuHp6SlSU1OH5yReYPfu3RPe3t4iKipKCCEYLw0UGBgo4uLipOPvv/9eWFtbizNnzvDz8AlxOw9phOvXr+PevXuYOXOmVGZkZIRp06ahsLBwBEf2YiotLcXo0aPx17/+FY6Ojmp1RUVFcHNzg46OjlTm7u6O2tpaNDc3M5bDzNTUFGlpaZDJZFKZlpYWtLS00N7ejqKiIrVYAL3xKi4uhhACxcXFUlmfKVOmwNzcnPF6BoyNjZGQkABra2sAQEtLC44cOQILCwtYWVnx+tJQhYWFyMrKwgcffKBWznhpnoqKCkydOnXAOsZLs9TU1OD27dsICAhQKz906BDWrl2LoqIi2Nvbw9jYWKpzd3fHDz/8gPLycty9exe1tbVq8dLR0YGLiwvjNQxSU1PR0dGByMhIAGC8NJCZmRny8vJw69YtqFQqZGVlQVdXF7a2tvw8fEJMopBGuHPnDgBg0qRJauUTJ06U6mj4+Pj4ICkpCS+//HK/ujt37sDCwkKtbOLEiQCA+vp6xnKYGRkZwdPTE7q6ulLZmTNnUFdXhzlz5jw2Xh0dHfjuu+/Q0NAAU1NTjBkzpl8bxuvZ2rZtG2bOnInc3FzExsZCX1+f15cGam9vR0REBN59991+8854aZ7Kykq0tLRgxYoVmDVrFl5//XVcvHgRAOOlaWpqagAAP/74I0JCQjBz5kwsXboU58+fB8B4abK+PwCsW7cOJiYmABgvTbR161aMHj0av/zlLyGTybBnzx7s378flpaWjNcTYhKFNEJHRwcAqH0RBIAxY8ags7NzJIZEj3H//v0B4wT03qCUsRxZV69eRXR0NPz8/ODl5TVgvPqOHzx4gI6Ojn71AOM1HIKCgnDy5En4+/sjLCwMpaWlvL40UExMDBQKRb+/lgP8PNQ03d3duHHjBtra2vDWW28hLS0NTk5OCA0NRX5+PuOlYX744QcAQGRkJPz9/fHRRx/Bw8MDGzZsYLw03LFjx2BoaIhly5ZJZYyX5qmuroahoSFSUlKQlZWFxYsXIzw8HOXl5YzXE9L5702Inr2xY8cC6P1S1/dvoPci1tPTG6lh0QDGjh2LBw8eqJX1fZjq6+szliPo3LlzCA8Ph7OzM+Lj4wH0/rJ7NF59x3p6egPGE2C8hoOVlRUAIDY2FiUlJcjIyOD1pWFOnTqFoqIi5OTkDFjPeGkWHR0dXL58GaNGjZLm28HBAVVVVTh06BDjpWFGjx4NAAgJCcGiRYsAAHZ2digrK8Phw4eHFK9H2zBez9apU6ewcOFCteuE8dIs9fX12LJlC44cOQIXFxcAgEwmQ3V1NZKSkvh5+IS4EoU0Qt9SscbGRrXyxsZGmJubj8SQ6DEsLCwGjBMAmJubM5YjJCMjA2+99Ra8vb2Rmpoq/TVh0qRJA8ZCX18fhoaGsLCwQGtra79fpIzXs9HS0oLc3Fx0d3dLZdra2rCyskJjYyOvLw1z8uRJ3L17F15eXlAoFFAoFACAHTt2YPXq1YyXBjIwMFD7Dz8A/OIXv0BDQwPjpWH65rTvHlF9rKyscOvWLcZLQ12/fh3ffPNNv9V5jJdmKSkpQVdXl9o98wDA0dERdXV1jNcTYhKFNIKtrS3GjRuHy5cvS2Xt7e0oKyuDq6vrCI6MHuXq6ori4mKoVCqprKCgAFOmTIGZmRljOQKOHTuGP/zhD1ixYgUSExPVll66uLjgypUrau0LCgrg7OwMbW1tTJ8+HT09PdINZoHefeoNDQ2M1zPQ3NwMpVKJ/Px8qayrqwtlZWWYOnUqry8NEx8fj88++wynTp2SfgBg06ZNiI2NZbw0TFVVFZydndXmGwCuXbsGKysrxkvD2Nvbw8DAACUlJWrllZWVsLS0hKurK8rKyqRtP0BvvAwMDGBrawszMzNMmTJFLV7d3d0oKipivJ6hoqIi6Xp5GOOlWfrud1JRUaFWXllZiVdeeYWfh09qpB8PRNQnMTFRuLm5iXPnzqk9i/zBgwcjPbQXWmRkpNojjpubm4Wrq6uIjIwUVVVV4uTJk0Imk4ns7GypDWM5fG7cuCHs7e1FWFiYaGxsVPtpb28XlZWVwt7eXuzevVtUV1eLQ4cOiWnTpolLly5J76FUKoWPj48oKCgQJSUlYuHChWoxp6dr9erVws/PT1y5ckVUVFQIpVIpXF1dxe3bt3l9PQcefsQx46VZVCqVWLJkiViwYIEoLCwU1dXV4v333xcODg6ioqKC8dJAKSkpQqFQiJycHFFXVycOHDggbG1tRUFBgbh//77w9fUVISEhory8XHz++efCzc1NJCUlSa/PysoScrlcZGdni6qqKvHOO++IGTNmiLt3747gWf1vi46OFsHBwf3KGS/NolKpxOuvvy7mzZsn8vPzRU1NjdizZ4+ws7MT//nPf/h5+ISYRCGN0d3dLXbt2iXc3d2Fk5OTWLNmjfjmm29GelgvvEeTKEIIUVJSIl577TXh4OAgvL29xccff6xWz1gOnw8//FBYW1sP+BMZGSmEEOLChQvC399fODg4iHnz5onc3Fy197h3757YunWrcHFxES4uLkKpVIqWlpaROJ0XQnt7u9ixY4fw8PAQcrlcrFq1SlRWVkr1vL4028NJFCEYL03T1NQkoqKihIeHh5DJZGLZsmWisLBQqme8NM9HH30kfHx8hL29vQgMDBSff/65VFdbWyvefPNNIZPJxOzZs8XevXuFSqVSe316erqYO3eukMvl4te//rUoKysb7lN4oaxevVq8/fbbA9YxXpqltbVVxMTECC8vL6FQKMSyZcvE5cuXpXp+Hv7/aQkhxEivhiEiIiIiIiIi0nS8JwoRERERERER0SAwiUJERERERERENAhMohARERERERERDQKTKEREREREREREg8AkChERERERERHRIDCJQkREREREREQ0CEyiEBEREdH/BCHESA+BiIj+xzGJQkRERM+FlStXYtq0afjqq68GrPfx8UFUVNSwjCUqKgo+Pj7D0tdQdHd3IyoqCgqFAs7OzigoKBiwnY2NDZKSkp5q39nZ2bCxscGtW7ce2+bWrVuwsbFBdnb2U+0bAIqLixEaGvrU35eIiOhhTKIQERHRc0OlUiE6OhoPHjwY6aFopH/961/49NNPERwcjD/+8Y+QyWTD1reXlxeysrIwceLEYevzYX/5y1/w9ddfj0jfRET04mAShYiIiJ4bhoaGqKqqQkpKykgPRSO1trYCABYvXgxXV1cYGBgMW9/jx4+Hk5MTdHV1h61PIiKi4cYkChERET037OzssHDhQqSnp+PatWs/2XagLStJSUmwsbGRjqOiohASEoKsrCz4+vpCLpdj+fLlqKmpQV5eHgICAuDo6IilS5eivLy8Xx9ZWVnw8vKCXC5HUFAQysrK1Oq//fZbKJVKuLm5wdHRsV+bvu0thw8fxrx58+Do6IiTJ08OeD4qlQqZmZkICAiAXC6Hl5cX4uPj0dnZKZ1L33YmX19frFy58ifn52E+Pj7Yv38/du7ciVmzZkEulyMkJAS1tbVq7S5cuIDly5fDyckJs2fPxvbt29He3g5g4O08Z8+eRWBgIORyORYtWoTr16/367u1tRXbt2/HrFmzIJPJ8NprryE/P1+tjY2NDTIzM7F161a4ublBoVDgt7/9LZqbm6Vz//TTT3H79m217UJ/+9vfpP7d3d0RHh6OhoaGQc8LERHRo5hEISIioufK7373O5iamj61bT1ffPEFMjIyEBUVhbi4OHz99dcIDQ1FXFwc1q5di8TERNTX1yM8PFztdXfu3EFycjLefvttJCYmoq2tDStXrsS3334LAGhpacHy5ctRWlqKbdu2ISEhAT09PVixYkW/bSdJSUlYs2YNdu3aBQ8PjwHHuX37dsTFxcHX1xcffvghVqxYgYyMDGzYsAFCCGzYsAHr168HACQnJ2PHjh1DmoejR4/ixo0biIuLw3vvvYdr164hMjJSqs/Ly8PatWthZmaGvXv3Ijw8HOfOncPmzZsHfL/z589j06ZNsLGxQUpKCubPn4933nlHrU1nZyeCgoLwj3/8A5s3b0ZycjIsLCywevXqfomUPXv2oKenB4mJiYiIiEBeXh7ef/99AMCGDRvg6emJCRMmSImt4uJiREREwM/PDwcPHkR0dDQKCgqwZcuWIc0LERHRw3RGegBEREREQ2FsbIzf//73WL9+PVJSUh77JX6w7t27h71792Lq1KkAgCtXruD48eM4cuQIZs6cCQCoq6vDzp070d7eDiMjIwC9K0NSUlIgl8sBAI6OjvD19cXHH3+MyMhI/OlPf0Jrayv+/Oc/Y/LkyQCAuXPnYsGCBdi3bx/2798vjWH+/PlYsmTJY8dYXV2NEydOYMuWLdLNUz08PDBx4kRERETg4sWL8PT0hKWlJYDeFTs/+9nPhjQPRkZGOHDgAEaNGgUAuHnzJpKSkvDdd9/B1NQUSUlJsLOzQ3JyMrS0tAAAurq62Ldvn7Qi5GF9c7N7924AwJw5cwAACQkJUpvTp0/j+vXr+OSTT+Do6CjN0cqVKxEfH6+2Ksfa2hpxcXHS8Zdffom///3vAABLS0uMHz8eurq6cHJyAgCcOHECY8eORWhoqLTFyMTEBF999RWEENI5EBERDQVXohAREdFzx8fHB4GBgUhPT0dpaekTvZexsbGUQAGAl156CQCkL/VA75dvANLWFQB4+eWXpQQKAEyYMAFOTk4oLCwEAOTn58POzg7m5ubo7u5Gd3c3tLW1MXfuXFy6dEltDHZ2dj85xitXrgAAXn31VbXyV199FaNGjcLly5cHe7qPJZPJpAQKAFhYWAAAOjo6cP/+fZSVlcHX11ct+bBgwQKcOXNGmrM+9+/fR2lpKby9vdXK58+fr3acn5+PCRMmwN7eXpojlUoFb29vXLt2DW1tbVLbvuTIw+Pr6Oh47Pm4urqio6MD/v7+SEhIQFFREWbPno2NGzcygUJERP9vXIlCREREz6V3330X+fn5iI6Ofux9RAZj3LhxA5br6+v/5OseTRwAgJmZGerr6wH03uujrq4O9vb2A77+4QTAf+urL5kwYcIEtXIdHR2Ympri+++//8nXD4aenp7asbZ279/aenp60NbWBiEEzMzMBvVefe1NTU3Vyh99ck9rayuampoeO0dNTU0wNjZ+7PiEEI8dg0KhQFpaGo4cOYLDhw8jLS0NL730EtatWzek+8UQERE9jEkUIiIiei4ZGxsjJiYGYWFhOHDgwIBtVCqV2vGPP/741Pp/eJVEn6amJowfPx5A75OE3NzcEBERMeDrh/IUm75EQlNTk7Q1CAC6urqk7TbP0rhx46ClpYWWlha18s7OThQUFKit2gF6V+5oa2v32+bT9/SgPoaGhnjllVcQHx8/YL9D3ZL0qDlz5mDOnDno6OhAQUEBjh49ivfeew+Ojo5qq4iIiIgGi9t5iIiI6Lnl6+sLf39/pKWl9fuCP27cuH5PYrl69epT67umpgY3b96Ujuvr6/HFF19gxowZAAA3NzfU1NRgypQpkMlk0s/p06dx4sQJta0z/42bmxsAIDc3V608NzcXKpUK06dPfwpn9HgGBgaws7NDXl6eWvnFixcRGhqKxsZGtfIxY8ZAoVDg7NmzaqtFzp8/r9bOzc0N9fX1MDMzU5ujf//730hPTx/SHPWtnOmzc+dOLFmyBEII6OnpwdvbW7pRbt/Nf4mIiIaKK1GIiIjoubZt2zYUFBT0W/Xg5eWF3NxcODo64uc//zmys7NRV1f31PodM2YM1q9fj82bN0OlUmHfvn0wMTFBUFAQACA4OBinT59GcHAwVq1aBVNTU3z22Wf45JNPEB0dPaS+rKyssGjRIuzfvx8dHR1wdXVFeXk5kpOTMWPGDOmmrc/Spk2bsH79eiiVSixcuBDNzc1ITEyEr68vrK2t+z1yWqlUIigoCBs3bsSyZctQU1OD1NRUtTaLFy9GRkYG3nzzTaxbtw6TJk3CpUuXcPDgQfzmN7/B6NGjBz0+IyMjNDc348KFC7Czs4O7uzsOHz6MqKgoBAYGoqurC+np6TAxMYG7u/tTmRMiInrxcCUKERERPddMTEwQExPTrzw6Ohre3t7YuXMnNm3aBH19/af6eNtp06Zh6dKliImJQUREBCwtLXHs2DFpO4+5uTmOHz+OyZMnIyYmBuvWrcOXX36J2NhYBAcHD7m/2NhYhIWFIScnB6GhocjMzMQbb7yBgwcP9luF8Sx4e3sjNTUVN2/eRFhYGPbt24eAgADp6TuPcnFxwcGDB9HQ0ICNGzciKytLeiRxH319fWRmZmL69OnYvXs31qxZg7Nnz2LLli1DTjQtXrwYkydPRlhYGE6dOgVPT0/Ex8ejqqoKGzduhFKphJ6eHo4ePSrdKJiIiGiotMRP3ZGLiIiIiIiIiIgAcCUKEREREREREdGgMIlCRERERERERDQITKIQEREREREREQ0CkyhERERERERERIPAJAoRERERERER0SAwiUJERERERERENAhMohARERERERERDQKTKEREREREREREg8AkChERERERERHRIDCJQkREREREREQ0CEyiEBERERERERENApMoRERERERERESD8H/gf956SaFu9wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# top 10 regions with the most number of cases\n", + "top_regions = data['Region'].value_counts().nlargest(10).index\n", + "\n", + "# Filter the DataFrame to include only the top 10 categories\n", + "data_top_regions = data[data[\"Region\"].isin(top_regions)]\n", + "\n", + "# Plot\n", + "plt.figure(figsize=(12, 8)) # Adjust size as needed\n", + "sns.countplot(\n", + " y=\"Region\",\n", + " data=data_top_regions,\n", + " order=data_top_regions[\"Region\"].value_counts().index,\n", + ")\n", + "plt.title(\"Top 10 Event Regions Distribution\")\n", + "plt.xlabel(\"Number of Incidents\")\n", + "plt.ylabel(\"Region\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Count the occurrences of each category and select the top 10\n", + "top_categories = data[\"Category\"].value_counts().nlargest(10).index\n", + "\n", + "# Filter the DataFrame to include only the top 10 categories\n", + "data_top_categories = data[data[\"Category\"].isin(top_categories)]\n", + "\n", + "# Plot\n", + "plt.figure(figsize=(12, 8)) # Adjust size as needed\n", + "sns.countplot(\n", + " y=\"Category\",\n", + " data=data_top_categories,\n", + " order=data_top_categories[\"Category\"].value_counts().index,\n", + ")\n", + "plt.title(\"Top 10 Event Categories Distribution\")\n", + "plt.xlabel(\"Number of Incidents\")\n", + "plt.ylabel(\"Category\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGsAAALACAYAAAAkIv+KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACiZUlEQVR4nOzdeXhN17/H8c9JJJUQMUVLkBBEEMRMtAh+SM1VQwyt0FJjDa0oqlTNQ4h5bqWlhkhjqqJV0sGsNUXatGpqjTGHhJz7hyfnOk1MkcrmvF/Pk+c6e6+913efld+9N5/fWmubzGazWQAAAAAAADAEu8wuAAAAAAAAAP+PsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAMyGw221S/tsII368RagAAPBhhDQAAuK+QkBB5e3s/8Kdjx45PrZ4+ffooJCQk1fHbt28rNDRUtWrVUrly5RQUFKRffvnlgfc6efLkQ59t6dKl/9Wj3NeVK1f0/vvva/fu3Y/UfuPGjerSpYtq1Kih8uXLq3Hjxpo5c6auXbv22H1v2bJFgwYNeuzr/msBAQFpjvt/0c+94+/j46NKlSqpXbt2ioyMTNXe29tbYWFhj3z/FStWaNy4cQ9t17FjR6v/XD1uP/fzzz//6O2339apU6csx57WdwsAeDxZMrsAAABgXD169FDbtm0tn2fOnKnDhw9r+vTplmPZs2f/z+tITk7WmDFjtHHjRrVo0SLV+bFjx2rlypUaMGCA3N3dtWjRIr355puKjIyUh4fHA+/9zjvvqHbt2mmeK1SoUEaU/1iOHDmir776Sq+99toD2yUnJ+u9997T119/rddee03t2rVTtmzZtH//fi1YsECbN2/W4sWLlSNHjkfue/HixU9Y/X9j+vTpT+X3TJJq1aqlHj16SLobAsbHx2vDhg0aNGiQjhw5osGDB1vafvnll3rppZce+d6zZs1SlSpVHtpu+PDhj1/4I/jxxx/1/fffWx17mt8tAODREdYAAID7Kly4sAoXLmz5nDt3bjk6Oqp8+fJPrYaYmBiNGjVKBw4cUNasWVOd//vvv7V06VINGTJEQUFBkqSaNWuqQYMGmjdvnkaNGvXA+xcuXPipPk9GmT9/vtauXavp06erfv36luPVq1dXlSpV1L59e82YMcMqXHhWlSpV6qn1lTt37lS/D/Xr15ebm5sWL16s//3vf6pYsaIk/We/N8WKFftP7puWp/ndAgAeHcugAADAE/vhhx8UFBSkihUrqmrVqhowYID+/vtvy/mIiAh5e3vrl19+UYsWLVS2bFk1adJEX3/99UPvPWjQIN25c0dffvml8uTJk+r8Tz/9pNu3b1sFFo6Ojqpdu3aqWQTpcevWLVWsWDHV8pXbt2+rWrVqVmHQihUr9Oqrr6pMmTKqXbu2wsLCdOfOHcv5kJAQvfnmm1q1apUaNGigMmXKqFmzZtq2bZskaceOHerUqZMkqVOnTvddYpaUlKSFCxfqlVdesXruFBUrVlSfPn2s/ug/efKk3n//fdWsWVOlS5dW9erV9f777ys+Pl7S3aU3O3fu1M6dO+Xt7a0dO3ZIki5duqQPP/xQNWrUkK+vr1q3bq2ffvrJqr9r167pww8/VPXq1eXn56d+/fpp8eLF8vb2tmq3fv16tWzZUn5+fvL399eHH36oy5cvW86HhYWpfv36mj59uqpUqaKaNWvq8uXLqZbq3Lp1S+PHj1etWrVUpkwZNWnSROvXr7fq6+DBg3rjjTdUsWJF+fn56c0339T+/fvT/D4fRa9evfTCCy9o2bJllmP/Xp706aefqmHDhvL19dXLL7+sjz76yLIcLSAgQKdOndLq1avl7e2tkydPKiIiQqVKldKKFSvk7++vKlWq6Pfff0+1DCrlOx44cKD8/PxUvXp1jRo1SgkJCZbzaS1nSvnPXUpfKcFd3bp1LW3/fd3Vq1c1ZswY1atXT76+vmrcuLFWrlxpdd+AgABNmzZN48aNU40aNVS2bFl16dJFx44dS/f3CwCwRlgDAACeSGRkpIKDg5U/f35NnjxZgwcP1r59+9SmTRtduHDBqm23bt1Ut25dTZ8+XUWKFNG777770EBl/PjxWrp0qUqWLJnm+bi4OGXLlk1ubm5Wxz08PHT27Fldv379gfdPTk7W7du3U/2khCwvvPCCGjRooA0bNlhtzPrDDz8oPj5ezZo1kyTNmTNHw4YNU/Xq1TV79my1b99e8+bN07Bhw6z6O3jwoBYsWKA+ffpoxowZsre3V+/evXX58mWVLl1aH374oSTpww8/vO9ymEOHDik+Pl516tS573P16NFDr7/+uiQpISFBnTp1UlxcnIYPH64FCxaoU6dOWrdunaZMmSLp7tKbUqVKqVSpUvryyy9VunRp3bp1S2+88Ya2bNmifv36afr06XrppZfUtWtXq8CmR48e2rBhg3r37q0pU6bo+vXrmjRpklU9M2fOVP/+/VW+fHlNmzZNPXv21MaNG9WxY0fdvHnT0u706dP6/vvvNWXKFA0ePFiurq5W9zGbzerZs6eWLVumzp07a9asWZaAKGVfmWvXrqlr167KlSuXwsLCNGXKFCUkJKhLly66evXqfb+zB3FxcVHZsmW1Z8+eNM+vXbtWEyZMUPv27bVgwQL17NlTX331lT7++GNJd5cbubm5qVatWvryyy+VL18+SdKdO3e0cOFCffLJJxo8eLC8vLzSvP+SJUt0/fp1hYaGqlu3blqxYoUGDhz4yPXXrl1b77zzjqWWlKVe97p586aCgoK0Zs0ade3aVTNnzlTFihU1ZMgQzZ4926rtZ599pj/++ENjxozRqFGjdPDgQUPudwQAzyqWQQEAgHRLTk7WxIkTVbNmTas/zitUqKDAwEAtWLBA77//vuV4x44d1bNnT0nSyy+/rBYtWmjGjBmqVavWffv49+yMf7t69Wqae25ky5ZN0t0/3FP+nZYhQ4ZoyJAhqY47Oztr3759kqRmzZpp1apV2rNnjypVqiRJWrdunYoWLSpfX19dvXpVM2fOVJs2bTR06FBJd5di5cyZU0OHDlXnzp1VvHhxS70RERGW5WXOzs7q0KGDfv75ZzVo0MAyG6ZYsWL3XQ6TMmupYMGCD/xuUhw7dkwvvfSSxo0bZ9mHp1q1avrll1+0c+dOS38p32PK8p7ly5crJiZGy5cvV7ly5SRJr7zyijp27KiJEydq1apV+umnn7Rjxw6FhYXpf//7n6VN48aNFRcXJ0m6fPmyZs2apdatW1vCKEkqUaKE2rdvr1WrVql9+/aS7s5YGjRokOV7/rcff/xR27dv15QpUxQYGCjp7u9SQkKCJk6cqMaNG+v3339XfHy8OnXqpAoVKkiSihYtqi+//FLXr1+Xi4vLI31v/5Y3b179+uuvaZ7buXOnChYsqPbt28vOzk5VqlSRs7OzZeZQqVKl5OjomOYyq+7du99336QUXl5emjFjhuzs7FSrVi2ZTCaNHj1asbGxKlGixENrz507t+V3zsfHJ83fnYiICMXGxmrZsmXy8/OTdPe7vX37tmbOnKm2bdsqZ86ckqQcOXJo5syZsre3lyQdP35cYWFhio+PV65cuR5aDwDgwZhZAwAA0u3PP//UuXPn1LhxY6vjhQsXlp+fnyUISHHv5sAmk0n169fXr7/+ajWz4nE97DXEdnYP/n93evXqpZUrV6b6+fzzzy1tqlSpogIFCmjdunWS7i7D2bx5s2VWzb59+3Tz5k0FBARYzc4JCAiQdHcWTop7/2iWZNmg9t4lLQ+TJcvd/74tOTn5kdr7+Pjoiy++kLu7u44dO6bvv/9eCxYs0B9//KHExMT7XvfTTz/Jzc1NpUuXtppxVKdOHR08eFCXL1/Wzz//LAcHB9WrV89ynZ2dnSVIkaT9+/crMTEx1e9JpUqV5O7unur3xMfH54E1mUwm1apVK9V3fe7cOf32228qXry4cufOre7du+vDDz/Upk2blDdvXr333nuPtSHwv5nNZplMpjTPVatWTX/++adatmyp6dOn68CBA2rSpMkjvS3tQc+bomHDhla/yynB2K5dux6x+ofbuXOn3N3dLUFNiqZNm+rWrVtWb1jz9fW1BDVS+n6PAQD3x8waAACQbpcuXZJ0d8bBv+XNm1eHDx+2Opay9CNFnjx5ZDabdeXKlTQ3D34U2bNnT3OpU8peIQ+bReHu7i5fX98HtjGZTGrSpIlWrFihoUOH6rvvvtONGzfUpEkTSf//Pbz99ttpXn/27FnLv52cnFLdW3r04EWSChQoIElWr2D+t4sXLyp79uxydHSUJC1atEizZ8/WpUuXlDdvXpUpU0ZOTk4PXBZ06dIlnTt3TqVLl07z/Llz5xQfH6+cOXOmCsXu3V8oZXbJ/X5P/l3Dg2ZCXbp0SWaz2TJj5t/Onj0rHx8fff7555o1a5Y2bNigL7/8UlmzZlWzZs00dOhQy3fyuM6cOXPfsCcwMFDJycn64osvNHPmTIWFhcnd3V0DBw60Cq7S4uzs/NC+/73ML+X7vXLlyiNW/3CXL19O1Y/0/+N2b1///j1OGf/H+T0GANwfYQ0AAEi3lCUR58+fT3Xu3LlzqZZDpAQFKc6fPy97e3vLfdKjaNGiunbtmi5evKjcuXNbjv/1119yd3dPdwj0b82aNdOcOXO0Y8cOrV+/XpUrV5a7u7skWV6PPXHiRHl6eqa6Nq2Q4kn4+Pgob9682rZtm2X50L8NHTpU+/fv19atW7Vx40aNHTtW7733nlq2bGn5nvr27asDBw7ctx8XFxd5enpq4sSJaZ4vWLCgXnzxRcXHxys5OdkqsLl3v6KUfWfOnz+vokWLWt3j3Llzj/WKdBcXFzk7O+uzzz5L83zKq9qLFi2qCRMm6M6dO/r111/11VdfaenSpSpcuLC6du36yP2luHz5sg4dOmSZTZWWxo0bq3Hjxrp69aqio6M1b948vffee6pYsaJefPHFx+7zXimBYIpz585Jsg7F7t3MWpJu3LjxWH24urrqr7/+SnU8pS+WNwHA08MyKAAAkG5FihSRm5ub1q5da3X8xIkT2r9/f6rZD5s3b7b822w265tvvlHFihXTPdNBkmrUqCFJVm+WSkxM1NatW+Xv75/u+/6bl5eXSpcurXXr1un7779X06ZNLefKlSsnBwcHnTlzRr6+vpafLFmyaPLkyTp58uQj93Pv0pL7sbOz05tvvqmtW7fq22+/TXX+559/1vfff6+GDRvK0dFRe/bsUY4cOdS1a1dLUHP9+nXt2bPHaibEv2fHVKlSRX///bfy5Mlj9Vw//PCD5s+fL3t7e1WpUkW3b9+2qsNsNluNdbly5eTo6Jjq92T37t06ffr0fWfJpKVKlSq6ceOGzGazVU2xsbGaMWOGbt++ra+//lrVqlXTuXPnZG9vLz8/P3300UfKkSOHTp8+/ch93Wv27NlKSkpSmzZt0jz/7rvvWvZjcnFxUaNGjdSjRw/dvn3bMrPqYUvyHiTljWEp1q1bJ5PJpCpVqki6O8Psn3/+sWrz782QH9Z/5cqVderUKcteTSmioqLk4OCgsmXLprd8AMBjYmYNAABINzs7O/Xv31+DBw/WgAED1LRpU8XHx2v69OlydXVV586drdqPHz9et27dUpEiRbRixQrFxcXp008/faIa3N3d1aJFC40ZM0a3bt2Sp6enFi1apCtXrjzSDIrjx4/f95XOrq6uKlKkiOVzs2bNNG7cOGXJkkUNGza0HM+VK5e6du2qqVOn6tq1a6patarOnDmjqVOnymQy3fdNVmlJWba1detWubq63vfaN998U7t27VLv3r3VunVr1apVS3Z2dtq1a5eWLFkiHx8fDRgwQJJUtmxZLV26VGPHjlWdOnV09uxZLViwQOfPn7d621KOHDm0b98+/fTTTypVqpRatmyp8PBwde7cWd27d1f+/Pn1448/at68eerQoYMcHBxUuXJl+fv7a8iQITp//rwKFCiglStX6ujRo5YlXjlz5tTbb7+tGTNmyMHBQXXq1NHJkyc1depUFStWzGovo4epVauWKleurB49eqhHjx7y8vLSr7/+qmnTpunll19W7ty5VaFCBSUnJ6tnz556++23lS1bNm3YsEFXr1617PVyPxcvXrT8Pty5c0cXLlzQxo0btXbtWnXv3v2+S+aqVaum4cOHa9y4cXrllVd05coVTZ8+XZ6enpYxzJEjhw4fPqydO3c+dvBx4MABDRkyRI0bN9aBAwc0bdo0tWrVyjKTq06dOpozZ47mzJmjcuXK6dtvv9XPP/9sdY+UGWCbNm3SK6+8kurNUy1bttQXX3yhnj17qk+fPipYsKC+/fZbrVq1Sr169bJcDwD47xHWAACAJ9KyZUtly5ZNc+bMUc+ePZU9e3a9/PLL6t+/f6r9Lz766CPNmTNHJ06cUKlSpbRw4cL7vvXncYwcOVI5cuTQvHnzdOPGDZUuXVqLFi2yLIl5kFmzZmnWrFlpnqtbt65mzpxp+dy4cWONHz9ederUSbUXzrvvvis3Nzd98cUXmj9/vlxdXVW9enX179//sd4+VLx4cTVu3Fiff/65tm/fnmo2SgoHBwfNnDlTX375pb766iutX79eiYmJKlSokHr06KEOHTpY9kJp0aKFTp48qVWrVumLL77Qiy++qFq1aikoKEjDhg1TXFycvLy81L59ex08eFBvvfWWxowZoyZNmujzzz/XpEmTNGHCBF29elXu7u4aMGCAgoODLbVMmTJFY8eO1aRJk3T79m3VrVtX7dq1s7xKW5J69+6tvHnzKjw8XF9++aVy5syphg0b6t13332kPVtS2NnZae7cuZo6darmzJmjCxcu6MUXX1Tnzp0tM1vy5cun+fPna+rUqRoyZIgSEhJUvHhxhYWFqVq1ag+8//fff295nbzJZFKOHDlUqlQpTZs2TQ0aNLjvdW3btlVSUpKWLVumL774QlmzZlX16tX13nvvycHBQZIUHBys0aNHq0uXLlq0aNEjP7Mk9ezZUwcPHlT37t3l4uKirl27qlevXpbz3bp108WLF7VgwQIlJSWpdu3a+uSTTyyv65akqlWrqkaNGpo0aZJ++uknzZ0716oPJycnLVmyRJMmTbIEj0WLFtUnn3yiVq1aPVa9AIAnYzI/7BUKAAAATygiIkKDBw/Wli1bHvl103g2nDp1Svv371fdunWt9gfq06ePTpw4odWrV2didQAAPJuYWQMAAIB0s7OzU0hIiOrWratWrVrJ3t5e27dv1zfffKMxY8ZkdnkAADyTCGsAAACQbvnz59e8efM0Y8YMvfvuu7p9+7a8vLw0ceJENW7cOLPLAwDgmcQyKAAAAAAAAAPh1d0AAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABsIGw7BZ+/btk9lsloODQ2aXAgAAAACwAUlJSTKZTPLz83tgO2bWwGaZzWbLD2yD2WxWYmIiY24jGG/bw5jbHsbc9jDmtoXxtj22MOaP+jcoM2tgsxwcHJSYmKhixYrJ2dk5s8vBU3Djxg0dOXKEMbcRjLftYcxtD2Nuexhz28J42x5bGPMDBw48Ujtm1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENbJ7JZMrsEvCUmEwmOTk5MeY2gvG2PYy57WHMbQ9jblsYb9vDmP8/k/l53mYZeICUjZ18fX0zuRIAAAAAQHolJ5tlZ/dsBDyP+ncob4OCzZux9AedOns5s8sAAAAAADwm93yu6tnOP7PLyHCENbB5p85e1rFT8ZldBgAAAAAAktizBgAAAAAAwFAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhr7iMgIEDe3t6Wn5IlS6pChQrq0KGDdu3a9cT337Nnj3bv3v3QdqtXr1ZQUJAqVaqkSpUqqV27dtq4ceMT958ZfvvtN23dutXy2dvbWxEREZlXEAAAAAAABkRY8wDBwcGKjo5WdHS0tm3bpmXLlil79uzq2rWrTp8+/UT3DgoK0vHjx+973mw2q2/fvho7dqwCAwO1bNkyffnll3rllVfUr18/zZ0794n6zwzdunXTgQMHLJ+jo6MVGBiYiRUBAAAAAGA8WTK7ACNzdnaWm5ub5XO+fPk0YsQIvfLKK9q0aZPeeOON/6zvL774Qps2bdKKFStUunRpy/F33nlHd+7c0bRp09S4cWMVKFDgP6vhv3bvdwsAAAAAAO5iZs1jypLlbr7l6OgoSbp586ZCQ0NVt25d+fr6qlmzZlbLlCIiIlS/fn2NGjVKFStWVI8ePeTt7S1JGjx4sEJCQtLsZ9myZapdu7ZVUJPijTfe0OLFi5U3b97HqiHlf5YpU0YtW7bUnj17LG0SEhI0fPhwVa1aVRUqVNCQIUM0YMAAq/r27t2r9u3bq2zZsqpdu7ZGjBiha9euWc7/+uuvCgoKkp+fnypXrqzevXtbZiAFBATo1KlTmj59ujp27Cgp9TKoyMhINW3aVGXLllVAQIBmzpypO3fuSJJOnjwpb29vbdy4Ua+//rrKlCmjgIAAffnllw8dMwAAAAAAniWENY/hzJkzGjlypJydnVWrVi1JUv/+/RUZGalhw4YpKipK9erVU9++fbV582bLdcePH9fZs2cVGRmpfv36KTo6WpL0wQcfaMiQIan6uXXrlmJjY1WhQoU063BxcVGlSpUsgdGj1PD3339r2bJlmjBhglavXi0nJyeFhITIbDZLkgYNGqQffvhBU6ZM0bJly3T16lWtW7fOcn1MTIw6d+6sl19+WVFRUZo4caIOHTqk4OBgmc1m3blzR926dVPlypUVFRWlxYsX6/Tp0/rggw8kSStXrtRLL72k4OBghYWFpXqmxYsXa9iwYWrTpo2ioqLUt29fLViwQGPHjrVqN2bMGHXv3l0bNmxQ7dq19dFHH+nEiRMPHzwAAAAAAJ4RLIN6gDlz5mjhwoWSpNu3bysxMVFeXl4KDQ1VgQIFFBcXpy1btmj27NmqXbu2JKl3796KiYnR7NmzVa9ePcu9evTooUKFClnd38XFRS4uLqn6vXz5siTJ1dX1oTU+ag1JSUkaMWKEfHx8JEmdO3dWz549de7cOd26dUsbN27U/PnzVaNGDUnShAkTtHfvXks/CxYskL+/v7p37y5J8vT01KRJk1SvXj3t3LlTJUuWVHx8vPLlyyd3d3cVKlRIoaGhunDhgiQpd+7csre3l7Ozs3LmzGn1DGazWfPmzVOHDh3Uvn17y/0vXbqkCRMmqE+fPpa2b775purWrStJ6tevnz7//HP98ssvqb5bAAAAAACeVYQ1D9C2bVvLkh07OzvlzJnTKlw5evSoJKlixYpW11WuXFmTJ0+2Oubp6fnI/ebMmVMmk0nx8fEPbfs4NXh5eVn+nfIcSUlJOnz4sCTJz8/Pcv6FF15Q2bJlLZ8PHz6sv/76y6pNiri4OFWtWlVdu3bVxx9/rGnTpqlatWqqVauWGjVq9NBnuHjxos6fP5/qGapUqaKkpCT98ccfypMnzwOfAQAAAACA5wVhzQO4urrKw8Pjsa8zm82WvW1SZM2a9ZGvd3R0VJkyZaxmttzrypUr6tWrl3r16vVYNaQsm/p3O3t7e0lScnLyfe+XnJysJk2aWGbW3Ct37tySpIEDByooKEjff/+9fvrpJ3388ceaP3++IiMj0+z73hru16ckq+e43zMAAAAAAPC8YM+aJ5CyUfC9G/VK0u7du1WsWLEnunfr1q21bds2HTp0KNW5zz77TLt371bBggUzpAZvb2+ZTCbt37/fciwxMdGq7+LFi+v333+Xh4eH5ef27dsaM2aM/v77b/3xxx8aPny48uTJo3bt2mnatGmaP3++4uLiFBMT88D+8+bNq7x586b5DA4ODipcuPAjPQcAAAAAAM8DZtY8AS8vL9WpU0cjRoyQyWSSh4eH1q1bpy1btig0NPSB1zo7OysuLk7x8fHKlStXqvOtWrXSli1b1LlzZ/Xt21f+/v66efOmoqKitGjRIg0aNMjy2u701pCiUKFCatSokT7++GONHDlSbm5umjNnjv755x+ZTCZJUnBwsNq3b68RI0aoQ4cOunLlikaMGKGbN2/K09NT169f17p163Tz5k29/fbbsrOz0+rVq+Xq6qqiRYtKkrJly6Zjx47p/PnzljdZpejSpYumTJmiQoUKyd/fX7/++qumT5+uNm3ayMXFxbKPDwAAAAAAzzvCmic0efJkTZ48WUOGDNGVK1dUokQJhYWFqX79+g+8Ljg42DLzZPbs2anO29nZacaMGQoPD9eKFSs0adIkZcmSRcWLF9f06dMtm+w+SQ33+vjjjzVq1Cj17t1bZrNZTZo0kZ+fnxwcHCRJ5cuX1/z58zV16lS1aNFCzs7Oql69ugYNGiRHR0c5Ojpq3rx5mjRpklq3bq07d+6ofPnyWrRokbJnzy5J6tixo8aNG6fffvtNUVFRqb4PR0dHffrppxo9erReeuklvfXWW+rSpcsjPwMAAAAAAM8Dk5kNP2zerVu3tH37dlWrVs0SrEhSgwYN1LRpU/Xs2TMTq/vvHDhwQJK09NsTOnbq4Zs5AwAAAACMxdM9l0b3DczsMh5Zyt+hvr6+D2zHzBrI0dFRI0aMUJUqVdSjRw/Z29tr5cqVOn36tBo2bJjZ5QEAAAAAYFPYYBgymUyaO3eu4uPj1aZNG7Vo0UL79u3TwoULrV6VDQAAAAAA/nvMrIEkycfHRwsXLszsMgAAAAAAsHnMrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADyZLZBQCZzT2fa2aXAAAAAABIh+f17znCGti8nu38M7sEAAAAAEA6JSebZWdnyuwyMhTLoGDTEhMTlZCQkNll4ClJSEjQ4cOHGXMbwXjbHsbc9jDmtocxty2Mt+1J75g/b0GNRFgDyGw2Z3YJeErMZrMSEhIYcxvBeNsextz2MOa2hzG3LYy37WHM/x9hDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ1snslkyuwS8JSYTCY5OTkx5jaC8bY9jLntYcxtD2MOwFZkyewCgMzk6OgoJyenzC4DT4mTk5NKlSqV2WXgKWG8bQ9jbnsYc9uT3jFPTjbLzo6AB8Czg7AGNm/G0h906uzlzC4DAAAA/wH3fK7q2c4/s8sAgMdCWAObd+rsZR07FZ/ZZQAAAAAAIIk9awAAAAAAAAyFsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrnkBAQIC8vb0tPyVLllSFChXUoUMH7dq164nvv2fPHu3evfu+5zt27GjVf+nSpVWzZk0NHDhQJ0+eTFVrWFjYE9f0JJKSkrR48WLL57CwMAUEBGReQQAAAAAAGBBhzRMKDg5WdHS0oqOjtW3bNi1btkzZs2dX165ddfr06Se6d1BQkI4fP/7ANo0aNbL0v3HjRk2YMEHHjx9X27ZtrfpfuXKlgoODn6ieJ7V27VqNGTPG8jk4OFgrV67MxIoAAAAAADAewpon5OzsLDc3N7m5uSlfvnwqUaKERowYoZs3b2rTpk3/ef9Zs2a19F+wYEFVr15dCxYskL29vSZPnmxplzt3bmXLlu0/r+dBzGaz1eds2bIpd+7cmVQNAAAAAADGRFjzH8iSJYskydHRUZJ08+ZNhYaGqm7duvL19VWzZs20ceNGS/uIiAjVr19fo0aNUsWKFdWjRw95e3tLkgYPHqyQkJDH6t/FxUUtW7bUpk2blJiYKMl6GVRCQoKGDBkif39/+fr6qnnz5vrmm28s13fs2FHDhg3T66+/rkqVKikqKkohISHq2LGjVT/3Hjt58qS8vb0VGRmpxo0bq2zZsmrdurX27NljecbBgwdLkry9vbVjx45Uy6D+/vtvDRw4UP7+/ipfvry6dOmimJgYq/5CQkI0btw4Va9eXeXKlVO3bt105syZx/p+AAAAAAAwMsKaDHbmzBmNHDlSzs7OqlWrliSpf//+ioyM1LBhwxQVFaV69eqpb9++2rx5s+W648eP6+zZs4qMjFS/fv0UHR0tSfrggw80ZMiQx66jRIkSunnzpo4dO5bq3NSpU3X06FHNnTtX69ev1yuvvKJ+/fpZ7XOzYsUKderUSV988YVefvnlR+537Nix6t69u1avXq2iRYsqODhYJ06cUGBgoD744ANJUnR0tPz8/Kyuu3btmtq1a6czZ85o1qxZWrZsmbJmzaoOHTro1KlTlnZr167VpUuXFB4ernnz5unQoUMKDQ19vC8HAAAAAAADy5LZBTzr5syZo4ULF0qSbt++rcTERHl5eSk0NFQFChRQXFyctmzZotmzZ6t27dqSpN69eysmJkazZ89WvXr1LPfq0aOHChUqZHV/FxcXubi4PHZdOXLkkCRdvXo11bnjx48rW7ZsKlSokHLkyKG+ffuqcuXKcnV1tbTx8fFRkyZNHrvft99+W40bN5Ykffzxx/r555+1fPlyDRgwwPIcbm5uqa6LiopSfHy8IiIiLEujJk2apHr16unzzz/X+++/L+nu9zFy5Eg5ODjIy8tLgYGB+v777x+7TgAAAAAAjIqw5gm1bdvWshTIzs5OOXPmtApXjh49KkmqWLGi1XWVK1e22lNGkjw9PTOsrpSQJiW0uddbb72l7t27q3r16ipbtqz8/f3VpEkTq7o9PDzS1W/VqlUt/3ZwcFCZMmUUGxv70OtiY2Pl6elptYdN1qxZVbZsWavrCxcuLAcHB8tnFxcXJSUlpatWAAAAAACMiGVQT8jV1VUeHh7y8PBQoUKFHnkWjNlstuxtkyJr1qwZVtehQ4fk7OycZgDk5+en77//XtOmTVPp0qUVGRmpwMBA/fTTT49Vy+3bt1Md+/cz3blzR3Z2D/81+/fmwymSk5Ot7pmyDxAAAAAAAM8rwpr/WMpGwSkb7abYvXu3ihUr9p/0ee3aNUVGRqphw4ZWs1BSTJs2TXv27FHdunU1dOhQbdy4UYUKFbLa9PjfHBwcdO3aNatjf/31V6p2Bw4csPw7MTFRhw4dUunSpSVJJpPpvvf39vbWsWPHdOHCBcuxW7du6eDBg//Z9wQAAAAAgBER1vzHvLy8VKdOHY0YMUJbt27Vn3/+qenTp2vLli0KDg5+4LXOzs6Ki4tTfHz8fdvcvHlT586d07lz53T69GlFR0fr7bffltls1rvvvpvmNSdOnNDw4cP1008/6dSpU9q4caNOnz6datPfe5UvX14xMTGKiorSiRMnNGPGjDSXN4WGhmrr1q36/fff9cEHHyghIUGtW7e2PI8kHTx4UDdv3rS6rkmTJsqZM6feffdd/frrr4qJidHAgQN148YNtWnT5oHfEwAAAAAAzxP2rHkKJk+erMmTJ2vIkCG6cuWKSpQoobCwMNWvX/+B1wUHB2v+/PmKi4vT7Nmz02yzYcMGbdiwQdLdJUhubm6qV6+eJk+erBdffDHNa4YPH65x48bpvffe06VLl+Tu7q6BAweqWbNm962ladOmOnLkiEaNGqXbt2+rUaNGeuONN7Rv3z6rdu3atdO4ceN0+vRplStXTkuWLFG+fPkkSdWqVVO5cuXUtm1bTZgwweo6FxcXhYeHa+zYsXrzzTcl3d3nZ+nSpak2XQYAAAAA4HlmMt9vsxDgMZw8eVJ169bVZ599ZrXJsJGlLNla+u0JHTt1/9lLAAAAeHZ5uufS6L6BmV0G0uHGjRs6cuSIfHx8LLP08XyzhTFP+TvU19f3ge1YBgUAAAAAAGAghDUAAAAAAAAGwp41yBAFCxbU0aNHM7sMAAAAAACeecysAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAPJktkFAJnNPZ9rZpcAAACA/wj/vx6AZxFhDWxez3b+mV0CAAAA/kPJyWbZ2ZkyuwwAeGQsg4JNS0xMVEJCQmaXgackISFBhw8fZsxtBONtexhz28OY2570jjlBDYBnDWENbJ7ZbM7sEvCUmM1mJSQkMOY2gvG2PYy57WHMbQ9jDsBWENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDWyeyWTK7BLwlJhMJjk5OTHmNoLxtj2MOQAAeF5kyewCgMzk6OgoJyenzC4DT4mTk5NKlSqV2WXgKWG8bY/Rxzw52Sw7O4IkAADwcIQ1sHkzlv6gU2cvZ3YZAIDnmHs+V/Vs55/ZZQAAgGcEYQ1s3qmzl3XsVHxmlwEAAAAAgCT2rAEAAAAAADAUwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAA8mS2QXYsoCAAJ06dcry2WQyydnZWaVKlVLfvn1VuXLlJ7r/nj17ZDabValSpQe2W716tVasWKHY2FhJUvHixfXmm2+qQYMGVrW2aNFCvXv3fqKaAAAAAADAgzGzJpMFBwcrOjpa0dHR2rZtm5YtW6bs2bOra9euOn369BPdOygoSMePH7/vebPZrL59+2rs2LEKDAzUsmXL9OWXX+qVV15Rv379NHfu3CfqHwAAAAAAPD5m1mQyZ2dnubm5WT7ny5dPI0aM0CuvvKJNmzbpjTfe+M/6/uKLL7Rp0yatWLFCpUuXthx/5513dOfOHU2bNk2NGzdWgQIF/rMaAAAAAACANWbWGFCWLHczNEdHR0nSzZs3FRoaqrp168rX11fNmjXTxo0bLe0jIiJUv359jRo1ShUrVlSPHj3k7e0tSRo8eLBCQkLS7GfZsmWqXbu2VVCT4o033tDixYuVN2/eNK/dt2+fOnXqpIoVK6pq1aoaPHiw4uPjLed//fVXBQUFyc/PT5UrV1bv3r0tM4VOnjwpb29v7dixw9L+38dCQkLUp08fBQcHq0KFCpo3b54k6bvvvlPLli1VtmxZ1a9fX6GhoUpMTHy0LxYAAAAAgGcAYY3BnDlzRiNHjpSzs7Nq1aolSerfv78iIyM1bNgwRUVFqV69eurbt682b95sue748eM6e/asIiMj1a9fP0VHR0uSPvjgAw0ZMiRVP7du3VJsbKwqVKiQZh0uLi6qVKmSJTC616+//qqOHTuqePHiWr58uaZOnapffvlFXbp00Z07d3Tnzh1169ZNlStXVlRUlBYvXqzTp0/rgw8+eKzvYuPGjapRo4ZWrVqlxo0ba9u2bXr33XfVunVrrV27VsOHD9eGDRv03nvvPdZ9AQAAAAAwMpZBZbI5c+Zo4cKFkqTbt28rMTFRXl5eCg0NVYECBRQXF6ctW7Zo9uzZql27tiSpd+/eiomJ0ezZs1WvXj3LvXr06KFChQpZ3d/FxUUuLi6p+r18+bIkydXV9bFrXrhwoby9vTVs2DBJkpeXlyZPnqxmzZopOjpa5cuXV3x8vPLlyyd3d3cVKlRIoaGhunDhwmP14+rqqq5du1o+DxgwQK1bt1bbtm0lSYULF9aIESP0xhtv6OTJkypYsOBjPwsAAAAAAEZDWJPJ2rZtq44dO0qS7OzslDNnTqtw5ejRo5KkihUrWl1XuXJlTZ482eqYp6fnI/ebM2dOmUwmq6VLjyo2Nlb+/v5Wx0qWLCkXFxcdPXpUtWrVUteuXfXxxx9r2rRpqlatmmrVqqVGjRo9Vj8eHh5Wnw8fPqxff/1VK1eutBwzm82SpLi4OMIaAAAAAMBzgbAmk7m6uqYKJR6F2Wy27G2TImvWrI98vaOjo8qUKaO9e/emef7KlSvq1auXevXqpSpVqqTq+341OTg4SJIGDhyooKAgff/99/rpp5/08ccfa/78+YqMjEzz2jt37qQ69u/nSU5OVteuXdWiRYtUbe/dpBkAAAAAgGcZe9YYXMpGwXv27LE6vnv3bhUrVuyJ7t26dWtt27ZNhw4dSnXus88+0+7du9OcreLt7Z2qnpiYGF27dk1eXl76448/NHz4cOXJk0ft2rXTtGnTNH/+fMXFxSkmJsYS6Fy7ds1y/bFjxx5ab/HixfXnn3/Kw8PD8vPPP/9o/Pjxun79+mM+PQAAAAAAxsTMGoPz8vJSnTp1NGLECJlMJnl4eGjdunXasmWLQkNDH3its7Oz4uLiFB8fr1y5cqU636pVK23ZskWdO3dW37595e/vr5s3byoqKkqLFi3SoEGD0nxtd+fOnRUUFKSPP/5YQUFBOn/+vD7++GOVKlVK1atX17Vr17Ru3TrdvHlTb7/9tuzs7LR69Wq5urqqaNGiypYtm9zd3fXpp5/K09NTly5d0tSpU2UymR74PG+99ZbeffddTZ8+Xa+++qr++ecfDRkyRAULFmRmDQAAAADguUFY8wyYPHmyJk+erCFDhujKlSsqUaKEwsLCVL9+/QdeFxwcbJnRMnv27FTn7ezsNGPGDIWHh2vFihWaNGmSsmTJouLFi2v69OmqW7dumvctV66c5s+fr9DQUDVv3lzZs2dXvXr1NGDAADk4OChXrlyaN2+eJk2apNatW+vOnTsqX768Fi1apOzZs0uSxo8fr9GjR6tZs2by8PDQ4MGD9fbbbz/weRo2bKgpU6Zozpw5mj17tnLmzKmAgAANHDjwEb9JAAAAAACMz2S+3wYkwHPuwIEDkqSl357QsVOPv9EyAACPytM9l0b3DczsMp47N27c0JEjR+Tj4yNnZ+fMLgdPAWNuWxhv22MLY57yd6ivr+8D27FnDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgWTJ7AKAzOaezzWzSwAAPOf4vzUAAOBxENbA5vVs55/ZJQAAbEBysll2dqbMLgMAADwDWAYFm5aYmKiEhITMLgNPSUJCgg4fPsyY2wjG2/YYfcwJagAAwKMirIHNM5vNmV0CnhKz2ayEhATG3EYw3raHMQcAAM8LwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIa2DyTyZTZJeApMZlMcnJyYsxtBOMNAACAZ1WWzC4AyEyOjo5ycnLK7DLwlDg5OalUqVKZXQaeEsY7cyQnm2VnR0AGAADwJAhrYPNmLP1Bp85ezuwyAOCZ557PVT3b+Wd2GQAAAM88whrYvFNnL+vYqfjMLgMAAAAAAEnsWQMAAAAAAGAohDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCA2FdYEBATI29tbixYtSvP8hx9+KG9vb4WFhT1RPx07dlRISIjl83fffafff/9dkrRjxw55e3vr5MmTT9RHeixfvlze3t4aPXr0I7V/nFpPnjwpb29v7dix40nLBAAAAADAptlUWCNJDg4O2rhxY6rjt2/f1jfffCOTyfTEfYSFhWnIkCGSpFOnTql79+66cOGCJMnPz0/R0dHKnz//E/fzuCIiIlSkSBFFRkbq1q1bGXrv/PnzKzo6Wn5+fhl6XwAAAAAAbI3NhTXVq1fX/v379c8//1gd//nnn+Xs7JwhIUrOnDnl4uIiSTKbzVbnHB0d5ebmJnt7+yfu53HExcVp3759GjhwoK5cuaINGzZk6P3t7e3l5uYmR0fHDL0vAAAAAAC2xubCmrJly6pAgQL6+uuvrY6vX79ejRo1SjWzZsWKFWrSpInKli2r8uXLKygoSAcOHLCcDwgI0Lhx4xQYGKiqVatq586dlmVQJ0+eVN26dSVJnTp1UlhYWKqlRQEBAZo7d67efvttlStXTgEBAdq8ebM2b96sBg0aqHz58urSpYtlZo50N3h566235Ofnp5o1a2rAgAE6d+7cA587IiJCrq6uqlOnjipUqKBly5alarN79269/vrrKlu2rJo2baqYmBir6319fXXlyhWra+rVq6cpU6akWgZ17NgxdenSRRUrVpSfn5+6dOmio0ePWq67dOmSRowYoVq1aqls2bJq27at1RKqsLAwdejQQf369VOFChU0fPhwVa9eXdOnT7fqf9myZapZs6Zu3779wOcHAAAAAOBZYXNhjSQ1atTIKqxJTEzU5s2b9eqrr1q127Rpk0aOHKmuXbtqw4YNWrx4sW7duqWhQ4datQsPD9fQoUM1f/58lS9f3nI8f/78WrFihaS74UNwcHCa9cycOVOBgYFas2aNSpYsqffff1+zZ8/WhAkTNHv2bB04cEDz5s2TJJ05c0ZBQUHy8PDQypUrNXv2bF27dk1t2rTRjRs30rz/nTt39NVXX6levXqyt7dXYGCg9u3bZxXGnDhxQsHBwfLx8dHq1avVs2dPzZw503K+YcOGypIli9USsr179+rEiRNq2bJlqj779++vF198UatWrdKKFStkZ2enXr16WeoJDg7W7t27NWHCBEVERKhEiRLq0qWLfv31V8s9du3apbx58+qrr75S586d1bRpU0VFRVn1ExkZqaZNmypLlixpPjsAAAAAAM8amw1r9u/frzNnzkiSfvjhB+XOnVulSpWyapczZ0598sknatasmdzd3VW+fHm1atVKsbGxVu1q1aqlGjVqyNfX12oZkL29vXLnzi1JcnV1VbZs2dKsp3bt2mrevLkKFy6s1q1b6/r16+rXr5/Kli2ratWqqUaNGvrtt98kSUuXLtVLL72koUOHysvLS2XKlFFoaKguXLiQarZQim3btuncuXOWMKphw4ayt7fXl19+aWmzfPly5c2bV8OHD5eXl5caNGigd955x3Le2dlZDRs21Jo1ayzH1qxZowoVKsjDwyNVn8ePH1fu3Lnl7u6uYsWKafTo0Ro1apSSk5MVHR2tQ4cOadKkSapSpYqKFSumESNGqHjx4lqwYIHVffr06aNChQrJ09NTr732mv766y/t27dPkvTnn39q3759aYZFAAAAAAA8q2wyrClTpowKFSpkmSWyfv36VLNqJKly5coqXbq0ZsyYoQEDBqhVq1YaPXq0kpOTrdqlFVY8jnuvd3JykiQVLlzYcixr1qxKTEyUJB0+fFi//fab/Pz8LD81atTQrVu3FBcXl+b9V61apTx58qhatWqSpLx586patWqKioqyzMaJjY1VqVKlrPbSqVChgtV9WrZsqV27dunMmTNKSkrShg0b7huU9OvXT4sWLVLVqlXVvXt3ffPNNypZsqTs7OwUGxsrFxcXlShRwtLeZDKpUqVKVkFYnjx5LHv/SFKJEiXk6+uryMhISXdn1ZQtW1bFihW7zzcLAAAAAMCzx2bXjqQshWrTpo22bNliWa50rzVr1igkJERNmjRRhQoV1LZtW8XGxmrkyJFW7bJmzfpEtaS1hOd+b6VKTk5WtWrVNHz48FTn7g02Uly8eFFbt25VUlKSfH19re5jNpu1du1atW7dWiaTKVUI9e+6KlWqJHd3d61du1ZFixbVzZs31ahRozTrbN++vRo2bKjvv/9eP/30k6ZNm6ZZs2YpMjIy1abLKcxms1WfaX2vr732mqZMmaIhQ4ZozZo16tq1a5r3AgAAAADgWWWTM2uku2HN3r17tWrVKhUqVEheXl6p2sydO1etWrXS2LFj1b59e1WuXFknTpyQlPotT/eTEa8Cv1fx4sUVFxen/Pnzy8PDQx4eHnJ1ddXo0aNTLc+SpKioKCUlJWnGjBmKjIy0+smdO7dlo+GSJUvq4MGDlhk8knTw4MFUz9KiRQt98803WrdunerVq6fs2bOn6vPChQsaOXKkkpKS1LJlS02YMEFRUVE6d+6cdu7cKW9vb129etWqXrPZrD179jx0lkzjxo1169YtLVq0SOfPn1fjxo0f6/sDAAAAAMDobDas8fHxkYeHhyZNmpTmEijp7gbBe/fu1aFDh3T8+HEtXrxY4eHhkmQVajyIs7OzpLvLjK5evfrEdQcFBenq1asaOHCgYmJiFBMTo379+unAgQNWy4pSrFq1Sn5+fqpXr55KlChh+SlZsqSCgoJ06NAhHThwQO3atVNCQoI++OADxcXF6bvvvlNYWFiq+7Vo0UIHDhzQli1b7rsEytXVVVu3btXQoUN15MgRnThxQsuWLZODg4PKlCmjmjVrysfHRwMGDNDOnTsVFxenkSNHKjY2Vm+88cYDn9/FxUX169fXzJkzVbduXeXIkSN9XyQAAAAAAAZls2GNdHd2zbVr1xQYGJjm+WHDhilv3rzq0KGDXn/9dX333XcaP368JFm9vvtBcuXKpddee03jx4/X1KlTn7jmQoUKKTw8XNevX1e7du3UoUMHOTg46LPPPrNsZpzi4MGDio2NVfv27dO8V1BQkF544QUtW7ZML774oj799FP9888/atGihcaOHWu1wXCKAgUKqEqVKnJ1dbXsgfNvWbJk0bx582RnZ6c333xTr776qn788UfNnTtXhQsXlr29vRYuXKhSpUqpV69eeu211/Tbb79p8eLFVm/Tup+WLVvq5s2bbCwMAAAAAHgumcyPup4HMIiIiAiFhYVpy5YtsrNLf96YErgt/faEjp2Kz6jyAMBmebrn0ui+af8XIE/DjRs3dOTIEfn4+FhmtuL5xpjbHsbctjDetscWxjzl79B795RNi81uMIxnz6FDh/THH39o2rRp6tChwxMFNQAAAAAAGBV/7eKZsX//fg0dOlTlypV76N42AAAAAAA8q5hZg2dG+/bt77v/DgAAAAAAzwtm1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABhIlswuAMhs7vlcM7sEAHgu8L9PAQAAMgZhDWxez3b+mV0CADw3kpPNsrMzZXYZAAAAzzSWQcGmJSYmKiEhIbPLwFOSkJCgw4cPM+Y2gvHOHAQ1AAAAT46wBjbPbDZndgl4SsxmsxISEhhzG8F4AwAA4FlFWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1sHkmkymzS8BTYjKZ5OTkxJjbCMYbAAAAz6osmV0AkJkcHR3l5OSU2WXgKXFyclKpUqUyuww8JYz3/SUnm2VnR4gFAABgVIQ1sHkzlv6gU2cvZ3YZAPBUuOdzVc92/pldBgAAAB6AsAY279TZyzp2Kj6zywAAAAAAQBJ71gAAAAAAABgKYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgdhcWBMQECBvb28tWrQozfMffvihvL29FRYW9kT9dOzYUSEhIZbP3333nX7//XdJ0o4dO+Tt7a2TJ08+UR/psXz5cnl7e2v06NEZfm9vb29FRETc93xISIg6duyYoX3+9ttv2rp1a4beEwAAAACAzGRzYY0kOTg4aOPGjamO3759W998841MJtMT9xEWFqYhQ4ZIkk6dOqXu3bvrwoULkiQ/Pz9FR0crf/78T9zP44qIiFCRIkUUGRmpW7duZei9o6OjFRgYmKH3fJhu3brpwIEDT7VPAAAAAAD+SzYZ1lSvXl379+/XP//8Y3X8559/lrOzc4aEKDlz5pSLi4skyWw2W51zdHSUm5ub7O3tn7ifxxEXF6d9+/Zp4MCBunLlijZs2JCh93dzc1PWrFkz9J4AAAAAANgamwxrypYtqwIFCujrr7+2Or5+/Xo1atQo1cyaFStWqEmTJipbtqzKly+voKAgq9kcAQEBGjdunAIDA1W1alXt3LnTsgzq5MmTqlu3riSpU6dOCgsLS7UMKiAgQHPnztXbb7+tcuXKKSAgQJs3b9bmzZvVoEEDlS9fXl26dLHMzJHuBi9vvfWW/Pz8VLNmTQ0YMEDnzp174HNHRETI1dVVderUUYUKFbRs2bJUbf766y+98847qlixoqpWrar+/ftb9RsVFaWmTZuqbNmyqlu3rj799FPLuXuXQZnNZs2cOVOvvPKKypcvr8GDB6eayXPmzBn169dPlSpVUtWqVdW9e3cdO3bMcj4kJEQhISEaN26cqlevrnLlyqlbt246c+aM5Xs7deqUpk+fnuHLqwAAAAAAyCzpCmv27duX0XU8dY0aNbIKaxITE7V582a9+uqrVu02bdqkkSNHqmvXrtqwYYMWL16sW7duaejQoVbtwsPDNXToUM2fP1/ly5e3HM+fP79WrFgh6e7SqODg4DTrmTlzpgIDA7VmzRqVLFlS77//vmbPnq0JEyZo9uzZOnDggObNmyfpbsgRFBQkDw8PrVy5UrNnz9a1a9fUpk0b3bhxI83737lzR1999ZXq1asne3t7BQYGat++fYqJibG0uXLlitq3b6/ExER9+umnWrRokY4fP653331X0t0wa9CgQWrWrJmioqLUv39/TZw4Mc19aubOnav58+fr/fffV0REhHLkyKH169dbzt+4ccMSsISHh2vJkiXKlSuXWrdubQljJGnt2rW6dOmSwsPDNW/ePB06dEihoaGSpJUrV+qll15ScHDwE+8xBAAAAACAUaQrrGnXrp0aNmyoefPm6ezZsxld01PRqFEj7d+/3xIM/PDDD8qdO7dKlSpl1S5nzpz65JNP1KxZM7m7u6t8+fJq1aqVYmNjrdrVqlVLNWrUkK+vrxwdHS3H7e3tlTt3bkmSq6ursmXLlmY9tWvXVvPmzVW4cGG1bt1a169fV79+/VS2bFlVq1ZNNWrU0G+//SZJWrp0qV566SUNHTpUXl5eKlOmjEJDQ3XhwoVUs4VSbNu2TefOnbOEUQ0bNpS9vb2+/PJLS5v169fr+vXrmjx5ssqUKaNSpUpp1KhRKl++vCXACQwMVJcuXeTp6alXX31Vw4YNS7X0yWw2a8mSJerUqZMaN26sokWLavDgwfLx8bG0Wbduna5cuaIJEyaoZMmSKlGihD755BNlz55dy5cvt7RzcXHRyJEj5eXlpSpVqigwMFB79+6VJOXOnVv29vZydnZWzpw503xuAAAAAACeNVnSc1F4eLgiIyM1Z84chYaGqkaNGnrttddUt25dOTg4ZHSN/4kyZcqoUKFC2rhxozp16qT169enmlUjSZUrV1ZcXJxmzJihP/74Q3/99ZeOHj2q5ORkq3YeHh5PVM+91zs5OUmSChcubDmWNWtWy3Kkw4cP67fffpOfn5/VPW7duqW4uLg0779q1SrlyZNH1apVkyTlzZtX1apVU1RUlN577z05OzsrNjZWnp6ecnV1tVxXsmRJlSxZUpIUGxub6jtq3bp1qr7i4+N17tw5+fr6Wh0vX768pb7Dhw/r8uXLqly58gOfoXDhwla/Uy4uLkpKSkrzGQEAAAAAeB6kK6ypVKmSKlWqpGHDhumbb75RZGSkBgwYoOzZs6tx48Zq2bKlSpcundG1ZriUpVBt2rTRli1bLMuV7rVmzRqFhISoSZMmqlChgtq2bavY2FiNHDnSqt2TbqybJUvqobjfW6mSk5NVrVo1DR8+PNW5lE2N73Xx4kVt3bpVSUlJVgFKcnKyzGaz1q5dq9atW6dZw8NqTEtK3f/eWPne65OTk1WkSBHNmjUr1fXOzs6Wf987SwkAAAAAAFvwRBsMv/DCC2rSpIkWLFigNWvWqESJEvr888/VqlUrtWzZ0mqPEiNq1KiR9u7dq1WrVqlQoULy8vJK1Wbu3Llq1aqVxo4dq/bt26ty5co6ceKEpNRhxP1kxKvA71W8eHHFxcUpf/788vDwkIeHh1xdXTV69OhUy7Oku5sCJyUlacaMGYqMjLT6yZ07t2Wj4WLFiunYsWO6evWq5dpDhw6pevXq+ueff+Tl5ZXqNdljxoxRnz59rI7lypVL+fPn1549e6yOHzx40PLvEiVK6PTp03JxcbE8Q4ECBTRp0iTt2rXrib8jAAAAAACeVU8U1iQkJOirr75ScHCwmjZtqiNHjqhNmzaaOXOmfH199d5772n8+PEZVWuG8/HxkYeHhyZNmpTmEijp7gbBe/fu1aFDh3T8+HEtXrxY4eHhku5uSvwoUmaKxMbGWgUh6RUUFKSrV69q4MCBiomJUUxMjPr166cDBw6oRIkSqdqvWrVKfn5+qlevnkqUKGH5KVmypIKCgnTo0CEdOHBATZo0kaurq9577z3FxMTo4MGDGj58uEqUKKGXXnpJb7/9ttavX68lS5bo+PHjWrNmjZYuXaqAgIBUfb711lv6/PPPtWLFCv35558KDQ3Vr7/+ajnftGlTubq6qk+fPvrll18UFxenkJAQbdu2Td7e3o/8XWTLlk3Hjh3T+fPn0/dlAgAAAABgMOkKa3788UcNGjRI/v7+GjRokJKSkjRq1ChFR0drxIgRqlOnjkaMGKHXX389zddDG0mjRo107do1BQYGpnl+2LBhyps3rzp06KDXX39d3333nSWA+vcsk/vJlSuXXnvtNY0fP15Tp0594poLFSqk8PBwXb9+Xe3atVOHDh3k4OCgzz77zLKZcYqDBw8qNjZW7du3T/NeQUFBeuGFF7Rs2TI5OTlpwYIFun37ttq2bauuXbuqWLFilrcvBQQEaOTIkfr8888VGBio6dOna/DgwWrevHmq+7Zv317vvfeeZs2apWbNmum3335Tq1atLOddXFwUHh6uXLlyqUuXLmrVqpXOnDmjhQsXpjnD6X46duyorVu33vctWwAAAAAAPGtM5kddy3OPkiVLKl++fGrRooVee+01q41w77VkyRLt2rVL06ZNe+JCgYyWErYt/faEjp2Kz+RqAODp8HTPpdF90/4vKJ51N27c0JEjR+Tj42O1/xmeX4y57WHMbQvjbXtsYcxT/g799wt5/i1dGwzPmDFDNWrUsLy16H46duyojh07pqcLAAAAAAAAm5SuZVCDBg3Spk2bMroWAAAAAAAAm5eusCZHjhxP/KpqAAAAAAAApJauZVDdunXTqFGj9Oeff6pkyZJpriWrXLnyExcHAAAAAABga9IV1gwfPlySNGXKFEmSyWSynDObzTKZTDpy5EgGlAcAAAAAAGBb0hXWfPbZZxldBwAAAAAAAJTOsKZKlSoZXQcAAAAAAACUzrBGkv78809NmzZNO3fu1JUrV5QrVy5VqlRJPXv2lJeXV0bWCAAAAAAAYDPSFdb8/vvvatu2rezt7RUQEKC8efPq3Llz+u6777R161atWLGCwAYAAAAAACAd0hXWTJw4UQULFtSSJUvk4uJiOX716lW98cYbmjJliqZPn55hRQIAAAAAANgKu/RctGvXLnXv3t0qqJEkFxcXvf3229q1a1eGFAcAAAAAAGBr0hXWZMmSRS+88EKa5xwdHZWYmPhERQEAAAAAANiqdIU1vr6++uKLL2Q2m62Om81mff755ypTpkyGFAcAAAAAAGBr0rVnTd++fdWuXTs1bdpUDRs2lJubm86dO6evv/5af/75pxYtWpTRdQIAAAAAANiEdIU1vr6+mj9/viZNmqTp06fLbDbLZDKpTJkymjdvnipXrpzRdQIAAAAAANiEdIU1klStWjWtWLFCCQkJunLlinLkyCEnJ6eMrA0AAAAAAMDmpCusedDbnkwmk7Jly6ZChQope/bs6S4MAAAAAADAFqUrrOnYsaNMJpMkWW0ynHJMkuzs7NS8eXONHDlS9vb2T1gm8N9xz+ea2SUAwFPD/84DAAAwvnSFNbNmzdK7776r5s2bq3HjxsqTJ48uXryojRs3atmyZXrvvfdkb2+vqVOnqmDBgnrnnXcyum4gw/Rs55/ZJQDAU5WcbJadnenhDQEAAJAp0hXWzJs3T0FBQRo0aJDlWNGiRVWpUiU5Oztr06ZNWrJkiSTps88+I6yBYSUmJiohIYH9lmxEQkKC/vzzTxUpUoQxtwGM9/0R1AAAABibXXouOnTokF5++eU0z1WtWlW//PKLJMnb21t///13+qsDnoJ7l/Lh+WY2m5WQkMCY2wjGGwAAAM+qdIU1bm5u2rFjR5rnduzYobx580qS4uPjlSNHjvRXBwAAAAAAYGPStQyqXbt2mjRpkhISEtSgQQPlyZNH58+f1+bNmxUeHq7evXvrn3/+0axZs1S1atWMrhkAAAAAAOC5la6wpkuXLkpISND8+fMte9OYzWa5uLiod+/e6tatmyIjI5WYmKj+/ftnaMEAAAAAAADPs3SFNZLUq1cvdenSRfv379fFixf14osvysfHR9myZZMkNWnSRM2bN8+oOgEAAAAAAGxCuvasSZGYmKgbN27oypUrKlq0qM6cOWPZyNHe3j5DCgQAAAAAALAl6Z5ZM2vWLM2ZM0c3b96UyWRS2bJlFRoaqvj4eC1cuJCNhQEAAAAAANIhXTNrwsPDFRYWps6dO2v58uWW2TQdOnTQiRMnNHXq1AwtEgAAAAAAwFakK6xZsmSJ3n77bfXt21elS5e2HK9Vq5beffddffvttxlWIAAAAAAAgC1JV1hz+vRpValSJc1zRYsW1fnz55+oKOBpMplMmV0CnhKTySQnJyfGHAAAAIChpSusyZ8/v/bt25fmuYMHDyp//vxPVBTwtDg6OsrJySmzy8BT4uTkpFKlSjHm/6HkZHNmlwAAAAA889K1wXCrVq0UFhamrFmzqnbt2pKkGzduaOPGjZozZ446d+6ckTUC/6kZS3/QqbOXM7sM4Jnnns9VPdv5Z3YZAAAAwDMvXWHNW2+9pZMnT2rixImaOHGiJKlTp06SpCZNmqhbt24ZVyHwHzt19rKOnYrP7DIAAAAAAJCUzrDGZDJp5MiRCg4O1s8//6xLly7JxcVFlStXVokSJTK6RgAAAAAAAJuRrrBm+vTpev311+Xp6SlPT0+rcydPntTChQv14YcfZkR9AAAAAAAANiVdGwzPmDFDZ86cSfPcL7/8ohUrVjxRUQAAAAAAALbqkWfWtG3bVr/88oskyWw2q02bNvdt6+vr++SVAQAAAAAA2KBHDmtGjRqlr7/+WmazWTNmzNBrr72ml156yaqNnZ2dcuTIof/9738ZXigAAAAAAIAteOSwplixYurVq5ekuxsMv/7663rxxRf/s8IAAAAAAABsUbo2GE4JbS5cuKDExESZzWZJUnJyshISErR79261a9cu46oEAAAAAACwEekKa2JiYjRw4EDFxcWled5kMhHWAAAAAAAApEO6wprx48fr8uXLGjRokL777js5OjqqTp062rZtm7Zt26bPPvsso+sEAAAAAACwCel6dfcvv/yivn376s0331RgYKASEhIUFBSk2bNnq169elqyZElG1wkAAAAAAGAT0hXWJCYmytPTU5Lk6empmJgYy7mWLVtq//79GVEbAAAAAACAzUlXWFOgQAGdOHFC0t2w5tq1azp58qQkydHRUZcvX864CgEAAAAAAGxIusKa//3vf5o0aZI2btyoF198UUWLFlVoaKiOHj2qhQsXqlChQhldJwAAAAAAgE1IV1jTq1cvVahQQStXrpQkDR48WJs2bVLz5s31888/q3fv3hlaJAAAAAAAgK1I19ugzGazpk2bpqSkJEnSyy+/rC+++ELHjx9X6dKlVbhw4QwtEgAAAAAAwFY81syao0eP6rXXXtOiRYskSQ4ODpKkK1eu6PXXX9fs2bN1586djK8SAAAAAADARjxyWHPy5El16tRJ58+fV5EiRazOOTg46P3339elS5cUFBSkM2fOZHihAAAAAAAAtuCRw5q5c+cqZ86cWr16tRo2bGh1zsnJSW+++aZWrlypF154QXPmzMnwQp8XAQEB8vb2tvyULFlSFSpUUIcOHbRr164nvv+ePXu0e/fuDKj0rvj4eK1YseKh7ebMmaPhw4enea5jx45Wz+zt7a0yZcqodu3aGjlypBISEixtAwICFBYW9sj1nT59WuvWrXvk9gAAAAAAGN0jhzU//fSTunbtqty5c9+3jZubm4KDg/XDDz9kSHHPq+DgYEVHRys6Olrbtm3TsmXLlD17dnXt2lWnT59+onsHBQXp+PHjGVSpNH78eEVFRT203ffff69atWrd93yjRo0szxwdHa1169bprbfe0vLlyzVu3DhLu5UrVyo4OPiR6xs0aJC2b9/+yO0BAAAAADC6Rw5rzp49K09Pz4e2K1GihP75558nqem55+zsLDc3N7m5uSlfvnwqUaKERowYoZs3b2rTpk2ZXZ4Vs9n80DZXrlzRkSNHVK1atfu2yZo1q+WZ3dzc5OHhofbt26tJkyZav369pV3u3LmVLVu2DKkdAAAAAIBn0SOHNblz59bZs2cf2i4+Pl6urq5PVJQtypLl7ou5HB0dJd1dDjRu3DgFBgaqatWq2rlzp+7cuaPFixerQYMG8vX1VYMGDbR06VLLPby9vSXdfZV6SEiIJOnMmTPq16+fKlWqpKpVq6p79+46duyY5ZoLFy6oT58+qlq1qsqWLau2bdtq586dkqSQkBCtXr1aO3futNw7LdHR0fLz85Ozs/NjP/cLL7xgefaU5753GdTWrVvVunVr+fn5qWbNmhozZoxu3rwp6e7yqp07d2r16tUKCAh47L4BAAAAADCiRw5rKleurIiIiIe2i4yMVKlSpZ6oKFtz5swZjRw5Us7OzlZLicLDwzV06FDNnz9f5cuX19ixYzVz5kz16tVLa9asUfv27fXJJ59o8eLFku6GJpL0wQcfaMiQIbpx44Y6duxoudeSJUuUK1cutW7d2rIJ9EcffaRbt24pPDxca9asUZEiRdSjRw/duHFDQ4YMUaNGjeTn52e5d1q+//57vfLKK4/1zLdv39bWrVv11VdfqVmzZmm22bRpk9555x3Vrl1bERERGjFihNavX6/+/ftLksLCwuTn56dGjRpp5cqVj9U/AAAAAABGleXhTe7q2LGj2rVrp7Fjx6pfv3564YUXrM4nJiYqNDRU27Zt09y5czO80OfJnDlztHDhQkl3Q4vExER5eXkpNDRUBQoUsLSrVauWatSoIUm6du2ali5dqpCQEDVp0kSS5OnpqZMnT2ru3Ll644035ObmJklycXGRi4uLVqxYoStXrmjChAmW2SuffPKJduzYoeXLl6t37946fvy4SpQooUKFCilr1qwaMmSImjRpInt7ezk7Oytr1qxycHCw3PvfzGazoqOj1a1btwc+85o1a7Rx40bL55s3b6pAgQLq0qWLunfvnuY1c+fOVf369dWjRw9JUpEiRWQ2m9WzZ0/9/vvvKlasmBwcHJQ1a9YH7qUEAAAAAMCz5JHDGl9fXw0ePFijR4/WV199perVq6tgwYK6c+eOTp8+rR07dig+Pl59+/bVyy+//F/W/Mxr27atZcaLnZ2dcubMKRcXl1TtPDw8LP/+448/lJSUpIoVK1q1qVKlij799FNduHBBefPmtTp3+PBhXb58WZUrV7Y6fuvWLcXFxUmSevXqpffee08bN25UxYoVVbNmTTVu3DhVGHc/Bw8eVNasWVW0aNEHtgsICNDAgQNlNpv166+/6pNPPlGNGjXUvXt3q2VQ94qNjdWrr76a6nlTzhUrVuyRagQAAAAA4FnyyGGNJLVv314lS5bUggULtGXLFt26dUuSlC1bNtWsWVPBwcEqV67cf1Lo88TV1dUqiLmfrFmzWv59v41+k5OTJSnNwCM5OVlFihTRrFmzUp1L2V+mfv362r59u7Zv364ff/xRixYt0vTp07V8+XIVL178oTU+7C1QKbJly2Z5Zk9PT+XLl0+dO3eWvb29PvroozSvSeuZH/S8AAAAAAA8Dx77L96KFStaZndcvHhRWbJkUY4cOTK8MFjz8vKSg4OD9uzZIx8fH8vx3bt3y83NLc1NnUuUKKGvvvpKLi4ulmVCSUlJGjBggBo2bKh69epp0qRJatasmQIDAxUYGKibN2/K399fW7duVfHixWUymR5Y17Zt2yzLlB5HtWrV1LlzZy1YsEABAQFp7nnj7e2tvXv36s0337R63pTvAwAAAACA59EjbzCclty5cxPUPCXZs2dXmzZtNG3aNK1du1Z//fWXPv/8c33xxRcKDg62hCrOzs6Ki4tTfHy8mjZtKldXV/Xp00e//PKL4uLiFBISom3btsnb21uOjo46cOCAhg0bpv379+vkyZOKiIjQjRs35OfnZ7nf2bNndeLEiVQ1Xbx4UbGxsQ98ZfeD9O3bV56envroo490/fr1VOe7du2qb775RjNnztSff/6p7777Th9//LHq1KljCWuyZcumU6dO8bp4AAAAAMBz44nCGjxdgwcPVqdOnTRx4kS9+uqrWrp0qT788EMFBwdb2gQHBys8PFyDBw+Wi4uLwsPDlStXLnXp0kWtWrXSmTNntHDhQkvYMWXKFBUqVEjvvPOOGjZsqGXLlmnixImqVKmSJKl58+ZKSEhQ48aNLW+QShEdHa2KFStaLdd6HC+88II+/vhjnT59WlOmTEl1vkGDBpo8ebI2bNigJk2aaPjw4Xr11VcVGhpqadO2bVvFxsaqadOmunPnTrrqAAAAAADASEzm+22GAjznDhw4IEla+u0JHTsVn8nVAM8+T/dcGt03MLPLsLhx44aOHDkiHx8fyz5deL4x5raHMbc9jLltYbxtjy2Mecrfob6+vg9sx8waAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADIawBAAAAAAAwEMIaAAAAAAAAAyGsAQAAAAAAMBDCGgAAAAAAAAMhrAEAAAAAADAQwhoAAAAAAAADyZLZBQCZzT2fa2aXADwX+M8SAAAAkDEIa2Dzerbzz+wSgOdGcrJZdnamzC4DAAAAeKaxDAo2LTExUQkJCZldBp6ShIQEHT58mDH/DxHUAAAAAE+OsAY2z2w2Z3YJeErMZrMSEhIYcwAAAACGRlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYA5tnMpkyuwQ8JSaTSU5OTow5AAAAAEPLktkFAJnJ0dFRTk5OmV0GnhInJyeVKlUqs8u4r+Rks+zsCJIAAAAAW0dYA5s3Y+kPOnX2cmaXARvnns9VPdv5Z3YZAAAAAAyAsAY279TZyzp2Kj6zywAAAAAAQBJ71gAAAAAAABgKYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgdhUWNOrVy+9/vrrqY63bt1a3t7e2rlzp9XxqKgolSxZUhcuXMiQ/uPj47VixQrL544dOyokJCRD7v0ofvjhB3l7e6tnz56P1P7kyZPy9vbWjh07Hqm9t7e3IiIinqREAAAAAABsnk2FNdWrV9eRI0d08+ZNy7FLly7pwIEDyp8/v7Zv327Vfvfu3SpZsqTy5MmTIf2PHz9eUVFRGXKv9IiIiFCRIkW0detWnTlzJsPvHx0drcDAwAy/LwAAAAAAtsSmwppq1aopKSlJBw4csBz78ccflSdPHr322mtphjU1atTIsP7NZnOG3etxXblyRZs2bVL37t3l5ORkNcMno7i5uSlr1qwZfl8AAAAAAGyJTYU1Xl5eevHFF7V3717Lse3bt6tmzZqqWbOmYmJidP78eUnSxYsXFRcXp5o1a0qSEhMTNWHCBL388svy8/NT69atFR0dbXX/FStWqEmTJipbtqzKly+voKAgSzAUEhKi1atXa+fOnfL29rZcc/36dQ0ePFiVKlVSxYoVFRISohs3bljOx8XF6a233pKfn59q1qypAQMG6Ny5c5bzHTt21LBhw/T666+rUqVK9525s3btWiUlJemVV15RnTp1tHLlSt25c8eqTWxsrDp16qTy5curfv36+umnnyznduzYIW9vb8XFxVld06lTJw0cOFCS9TKoCxcuqE+fPqpatarKli2rtm3bWi0zu3nzpkJDQ1W3bl35+vqqWbNm2rhxo+V8RESE6tevr1GjRqlixYrq0aOHmjdvrsGDB1v1v337dvn6+urSpUtpPjcAAAAAAM8amwprpLtLofbt22f5HB0dLX9/f5UtW1YuLi6WAGbPnj3KmjWrKlasKEkaPHiwfvjhB02cOFGrV69Wo0aN1L17d23dulWStGnTJo0cOVJdu3bVhg0btHjxYt26dUtDhw6VJA0ZMkSNGjWSn5+fVcjzzTffKF++fIqIiND48eO1fv16zZs3T5J05swZBQUFycPDQytXrtTs2bN17do1tWnTxirQWbFihTp16qQvvvhCL7/8cprPvWrVKlWpUkW5c+dWYGCg/v77b0vtknT16lW9+eabcnFx0YoVK/TRRx9p1qxZlvNVqlRRwYIFtWbNGsuxf/75R7t27VLLli1T9ffRRx/p1q1bCg8P15o1a1SkSBH16NHDUnf//v0VGRmpYcOGKSoqSvXq1VPfvn21efNmyz2OHz+us2fPKjIyUv369VPLli21ceNGq2VskZGRCggIUM6cOdN8bgAAAAAAnjU2G9aYzWbFxMTo3Llz8vf3l729vapXr25ZCrVr1y5VqlRJL7zwgv766y+tXbtWY8aMUdWqVeXp6anOnTvr1Vdf1YIFCyRJOXPm1CeffKJmzZrJ3d1d5cuXV6tWrRQbGytJcnFxUdasWeXg4CA3NzdLPWXLllW/fv1UuHBh1a1bV/7+/jp48KAkaenSpXrppZc0dOhQeXl5qUyZMgoNDdWFCxf09ddfW+7h4+OjJk2aqESJEsqVK1eqZ46NjdXBgwf16quvSpJq1qypnDlz6ssvv7S0WbdunRISEjR27FgVL15c/v7++uCDDyznTSaTWrRoobVr11qOrV27Vi+++KKqVauWqs/jx48rR44cKlSokDw8PDRkyBBNmzZN9vb2iouL05YtWzR8+HDVrl1bRYoUUe/evVW3bl3Nnj3b6j49evRQoUKFVLx4cTVp0kSJiYmWQOfatWvavHlzmmERAAAAAADPqiyZXcDTVr16dV26dEl//PGHoqOjVapUKeXOnVuS5O/vr+nTp0u6u19NSrhx+PBhSVJQUJDVvZKSkpQjRw5JUuXKlRUXF6cZM2bojz/+0F9//aWjR48qOTn5gfV4enpafXZ1ddWpU6cs/f7222/y8/OzanPr1i2r5UgeHh4P7GPVqlVycHDQ//73P0my/HvlypU6deqU3N3dFRsbK09PT7m4uFiu+3e/zZs31/Tp07Vv3z75+fkpKipKzZo1k51d6syvV69eeu+997Rx40ZVrFhRNWvWVOPGjfXCCy/o6NGjkmSZtZSicuXKmjx58n2/n1y5cqlu3bqKjIxU48aNtWHDBrm4uFiWqgEAAAAA8DywubDmxRdfVJEiRbRv3z798MMPVn/o16xZUx9++KEOHTqkmJgYjR49WtL/bwz8+eefK1u2bFb3Swkq1qxZo5CQEDVp0kQVKlRQ27ZtFRsbq5EjRz6wHnt7+/ueS05OVrVq1TR8+PBU5+4NVR60qW9SUpKioqKUlJRktVmy2WxWcnKyli9frn79+slkMqUKlrJksf71KFiwoKpUqaI1a9YoW7ZsOnr0qMLCwtLst379+tq+fbu2b9+uH3/8UYsWLdL06dO1fPny+9ZqNptT9fnvZ3vttdfUvXt3XbhwwRIWPeg7BAAAAADgWWNzy6AkqUaNGtq7d6/27dsnf39/y3F3d3d5enrq888/V+7cuS0bARcvXlySdO7cOXl4eFh+IiIiLBvqzp07V61atdLYsWPVvn17Va5cWSdOnJD0/2GPyWR6rDqLFy+uuLg45c+f39Knq6urRo8ebVle9TBbt27VxYsXNXz4cEVGRlp+vvrqK5UoUUKrVq3S7du3VbJkSR07dkwXL160XJuyHOteLVu21DfffKN169apQoUKac7qSUxM1JgxY3TixAkFBgZq1KhR2rx5s+zs7LR161bL97pnzx6r63bv3q1ixYo98Hlq1qwpNzc3LV++XLt372YJFAAAAADguWOTYU316tW1YcMGmUwmVahQwercyy+/rA0bNqh69eqWcKV48eKqU6eOhg8frm+//VYnTpzQvHnzNGfOHBUuXFiSlD9/fu3du1eHDh3S8ePHtXjxYoWHh0u6G15IkrOzs86ePWsJcR4mKChIV69e1cCBAxUTE6OYmBj169dPBw4cUIkSJR7pHqtWrVL+/PnVpk0blShRwuqnc+fOOnfunDZv3qxXX31VefLk0YABAxQTE6OdO3fqk08+SXW/Bg0a6MaNG1qyZMl9gxJHR0cdOHBAw4YN0/79+3Xy5ElFREToxo0b8vPzk5eXl+rUqaMRI0Zo69at+vPPPzV9+nRt2bJFwcHBD3weOzs7NW/eXLNnz5avr6+8vLwe6XsAAAAAAOBZYZNhTdWqVXXz5k1VrVpVDg4OVudq1qypGzduWM24kaQpU6bof//7nz788EMFBgYqMjJSn3zyiVq0aCFJGjZsmPLmzasOHTro9ddf13fffafx48dLkuX13c2bN1dCQoIaN26sM2fOPLTOQoUKKTw8XNevX1e7du3UoUMHOTg46LPPPrPss/Mg58+f1/bt29W2bds0lwo1btxYbm5uWrZsmZydnfXpp5/KwcFB7dq10/vvv6+uXbumusbJyUmNGjVScnKyGjVqdN++p0yZokKFCumdd95Rw4YNtWzZMk2cOFGVKlWSJE2ePFn16tXTkCFD1LRpU3333XcKCwtTw4YNH/pcLVu21M2bN5lVAwAAAAB4LpnMKWt0gGfEjh071K1bN23fvt1q757HlRKiLf32hI6dis+o8oB08XTPpdF9AzO7jOfKjRs3dOTIEfn4+MjZ2Tmzy8FTwJjbHsbc9jDmtoXxtj22MOYpf4f6+vo+sJ3NbTCMZ1dcXJxiY2M1e/ZstWjR4omCGgAAAAAAjMoml0Hh2fTXX39p8ODBypkzp/r165fZ5QAAAAAA8J9gZg2eGQEBAdq/f39mlwEAAAAAwH+KmTUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIIQ1AAAAAAAABkJYAwAAAAAAYCCENQAAAAAAAAZCWAMAAAAAAGAghDUAAAAAAAAGQlgDAAAAAABgIFkyuwAgs7nnc83sEgB+DwEAAABYENbA5vVs55/ZJQCSpORks+zsTJldBgAAAIBMxjIo2LTExEQlJCRkdhl4ShISEnT48GHDjjlBDQAAAACJsAaQ2WzO7BLwlJjNZiUkJDDmAAAAAAyNsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrYPNMJlNml4CnxGQyycnJiTEHAAAAYGhZMrsAIDM5OjrKyckps8vAU+Lk5KRSpUpldhmpJCebZWdHgAQAAADgLsIa2LwZS3/QqbOXM7sM2Cj3fK7q2c4/s8sAAAAAYCCENbB5p85e1rFT8ZldBgAAAAAAktizBgAAAAAAwFAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLDmPxQSEqKOHTs+0T0iIiLk7e2dQRVJSUlJWrx4cYb2GRYWpoCAgAee9/b2TvOnZcuWj3QPAAAAAABsRZbMLgBP19q1azVmzBi9+eab920TGBiol19+OUP7femll7Ry5cpUx7NkufsrGBwcrPbt22donwAAAAAAPIsIa2yM2Wx+aJusWbMqa9asGdqvvb293Nzc7ns+W7ZsypYtW4b2CQAAAADAs4hlUE9RQECAFixYoN69e8vPz09Vq1bVqFGjdPv2bUubTZs2qUmTJvL19VVQUJBOnz6d6h5hYWH3PXbnzh1NmDBBtWrVUpkyZdSwYUMtXbpU0t3lTYMHD5YkeXt7a8eOHQoLC1OHDh3Ur18/VahQQR9//HGqZVCxsbHq1q2bKleurDJlyqhu3bpauHBhhn439y6DOnnypLy9vTVnzhz5+/urbt26unbtmq5evaphw4apWrVqqlixojp16qQDBw5kaB0AAAAAAGQ2wpqnbOrUqapcubKioqL0/vvvKzw8XGvXrpUk7d27V71791aDBg0UFRWlFi1aaO7cuY91/y+++EJff/21pkyZoo0bN6pDhw766KOPtHv3bgUGBuqDDz6QJEVHR8vPz0+StGvXLuXNm1dfffVVqj12EhISFBwcrJw5c2rZsmVau3atGjZsqHHjxunIkSMZ8I3c3+rVq/Xpp58qNDRU2bJl01tvvaUTJ05ozpw5Wr58ucqXL6927drp8OHD/2kdAAAAAAA8TSyDespq1qypTp06SZIKFSqkJUuWaO/evWrevLnCw8NVoUIF9erVS5JUpEgRxcbG6rPPPnvk+x8/flzOzs4qWLCg8uXLpw4dOqho0aIqUqSIsmbNKhcXF0lKtSSpT58+lnN79+61HE9ISFCnTp3Uvn17yzKlPn36aP78+Tp69Kh8fHweqa7Tp09bwqF77du3777XBAUFqVixYpKkn376Sfv379fPP/+snDlzSpL69++vvXv36rPPPtPYsWMfqQ4AAAAAAIyOsOYp8/Lysvrs4uKipKQkSXeXG/n7+1ud9/Pze6ywpn379tq8ebNq1aolHx8f+fv769VXX1WePHnue02ePHksQc2/5c6dW0FBQVq7dq0OHz6s48ePKyYmRpKUnJz8yHXly5dPS5YseeT2kuTh4WH596FDh2Q2m1WnTh2rNomJibp169Zj3RcAAAAAACMjrHnKHB0dUx1L2fTXZDKlCkAcHBwees9797zx9PTUN998o507d+qHH37Q1q1bNW/ePI0ZM0YtWrRI8/oHbSZ87tw5tWnTRrlz51ZAQIBq1qwpX19f1apV66F13StLlixW4cujuLeu5ORkZc+eXREREanapfWdAgAAAADwrCKsMZCSJUumWhZ08OBBq88ODg66du2a5fO1a9d04cIFy+fPPvtMefLk0auvvip/f3+9//776ty5s9avX68WLVrIZDI9Vk1r167VpUuXtHHjRktwdPToUUmP9mapjFKiRAldu3ZNSUlJlqVRkjR06FCVLFlSHTp0eGq1AAAAAADwX2KDYQMJDg5WTEyMxo0bpz///FNRUVEKDw+3alO+fHmtX79ee/fu1e+//64PPvhA9vb2lvMXL17UyJEjtWXLFp06dUrbt2/XkSNHLPvFODs7S7obAt28efOhNb300ktKSEjQ119/rdOnTys6Olr9+/eXdHcJ0tPy8ssvy8fHR/369dPPP/+sv/76S2PGjFFERESqpWUAAAAAADzLmFljID4+Ppo3b54mTJig8PBwFS9eXN27d9fEiRMtbfr3769Lly6pc+fOcnFxUXBwsK5cuWI536tXLyUlJWnUqFE6d+6c3Nzc1K5dO3Xr1k2SVK1aNZUrV05t27bVhAkTHlpTw4YNdejQIY0dO1bXrl2Tu7u7Xn/9dW3ZskUHDhxQu3btMv6LSIO9vb0WLlyoCRMm6N1331VCQoK8vLw0ffp0Va9e/anUAAAAAADA02AyP821LICBHDhwQJK09NsTOnYqPpOrga3ydM+l0X0DM7uM59KNGzd05MgR+fj4WGYV4vnGmNsextz2MOa2hfG2PbYw5il/h/r6+j6wHcugAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMJEtmFwBkNvd8rpldAmwYv38AAAAA/o2wBjavZzv/zC4BNi452Sw7O1NmlwEAAADAIFgGBZuWmJiohISEzC4DT0lCQoIOHz5suDEnqAEAAABwL8Ia2Dyz2ZzZJeApMZvNSkhIYMwBAAAAGBphDQAAAAAAgIEQ1gAAAAAAABgIYQ0AAAAAAICBENYAAAAAAAAYCGENAAAAAACAgRDWAAAAAAAAGAhhDQAAAAAAgIEQ1gAAAAAAABgIYQ1snslkyuwS8JSYTCY5OTkx5gAAAAAMLUtmFwBkJkdHRzk5OWV2GXhKnJycVKpUqafaZ3KyWXZ2hEMAAAAAHh1hDWzejKU/6NTZy5ldBp5D7vlc1bOdf2aXAQAAAOAZQ1gDm3fq7GUdOxWf2WUAAAAAACCJPWsAAAAAAAAMhbAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAyEsAYAAAAAAMBACGsAAAAAAAAMhLAGAAAAAADAQAhrAAAAAAAADISwBgAAAAAAwEAIawAAAAAAAAwk08OagIAAeXt7a9GiRWme//DDD+Xt7a2wsDBJUkREhLy9vZ9KbSdPnpS3t7d27NghSQoJCVHHjh2fSt+ZKeU7vt/PggULnlot8fHxWrFixVPrDwAAAACAzJYlswuQJAcHB23cuFGdO3e2On779m198803MplM/9fenYfXdO5tHL8TY0LEPFRNJySCJBISc0UaXlGUOIYW5STmqZUakqPG1kyKpBpTlYZDS6Smc6hWzUE4r6oYgxAlphIlkkjW+4cr+7UrlA6yJd/Pde2r9rOmZ63f3tHcnmctU1ubNm3UrFmzF93FPGn37t3ZthctWvSF9WHGjBlKTExU586dX9gxAQAAAADISRYR1jRq1Ei7du3SlStXVL58eVN7TEyMbG1tZWNjY2orXLiwChcunBPdzHPKlCmT012QYRg53QUAAAAAAF6oHJ8GJUmurq565ZVX9J///MesffPmzfLz8zMbWfPraVA7duyQv7+/3Nzc1KhRIwUHB+v27dum5QkJCRo4cKDq1aunBg0aKCgoSDdu3DAtX7t2rfz8/OTq6io/Pz8tW7ZMmZmZz9Tv2NhYvfPOO/Lw8FCdOnXk5+enr7/+2rQ8ODhYwcHBmj59uho1aiQ3Nzf1799fSUlJpnWSkpI0fPhw1a9fXw0aNNCAAQN0/vx5s+NER0erffv2cnV1lY+Pj+bPn6+MjAxJj0/Vyq7txo0bGjZsmBo0aCBXV1d169ZNBw4ceKZzfJKLFy+qZs2a2rFjh1l7SEiI3nrrLUlSWlqaZs6cqWbNmsnd3V1dunQxG60TFRWlli1bmv5bp04d+fv769ChQ6brt27dOh04cMBU8/PnzyswMFD16tWTu7u7AgMDdfLkyT90LgAAAAAAWBKLCGskyc/PzyysSUtL07Zt2/TGG288cZubN29qyJAh6tSpkzZv3qzw8HAdPHhQM2bMkCQlJyere/fuSktL07Jly7R06VJduHBB7733niRp9erVmjFjhoYMGaJNmzbpvffe06JFizRr1qzf7G9SUpICAwPl4uKidevWKTo6Wq6urhozZoyuX79uWm/jxo26deuWIiMjtWjRIh07dkxz5syRJN27d890D5zIyEh98cUXKlGihLp06WIKdD7//HONHTtWXbt21fr16/Xuu+9qyZIlmjZt2jNf2wkTJig1NVWRkZHasGGDqlWrpkGDBunevXvPvI9fq1Spkjw9PbVx40ZTW2pqqrZu3Sp/f39JD4ObPXv2aNasWVq3bp38/Pw0YMAAff/996ZtLl++rFWrVmnmzJlat26dbGxsFBwcLMMwNGbMGPn5+cnd3d0U8gQFBalcuXJau3atvvrqK1lbW2vIkCG/+zwAAAAAALA0FjENSnoY1ixZskRJSUkqV66c9uzZo5IlS6pWrVpP3CYpKUlpaWl65ZVXVLFiRVWsWFERERGmUSebN2/W3bt3FRoaKnt7e0nSRx99pE2bNiktLU3z58/XwIEDTYFQpUqV9Msvv2jixIl69913n9rf1NRUDR06VIGBgaaRP/369VN0dLTOnz+v0qVLS5Ls7Ow0adIkFShQQA4ODmrTpo1pNMqmTZuUnJysmTNnKn/+h6WYPHmy9u/fry+//FJDhgzRokWL1KNHD3Xv3l2SVLVqVd26dUszZ87UsGHDnunaXrhwQY6OjqpUqZIKFy6sMWPGqF27dsqXL99Tt3N3d8+2fc+ePbK1tZW/v78mTZqklJQU2djY6LvvvlNGRob8/PyUkJCgjRs3Kjo6Ws7OzpKkf/zjHzpx4oSWLFkib29vSVJ6eromTpxots7gwYN17do1lS1bVoULF1aBAgVMU7IuXLigxo0bq2LFiipQoICmTJmis2fPKjMzU9bWFpM9AgAAAADwu1lMWFOnTh1VqlRJW7Zs0TvvvKPNmzc/dVSNJDk7O6tt27YaMGCAypQpoyZNmsjb21stW7aUJJ06dUpVq1Y1BTWSVLNmTdWsWVM3b97UlStXFBoaqrlz55qWZ2ZmKjU1VYmJiSpUqNATj125cmX5+/tr+fLlOnXqlC5cuKATJ05IkiksylqvQIECpvd2dnZKT0+XJMXFxen27dvy9PQ023dqaqri4+N18+ZNXb9+XfXq1TNb7uXlpfT0dJ09e1alSpV66jWSpCFDhmjkyJHasmWL6tWrp6ZNm6pt27ZPPT/p4fSr7GTdQ+h//ud/NGnSJH377bdq27at1q9fL19fXxUtWlS7du2SJL399ttm26anp6tYsWJmbQ4ODqY/29nZmdbLzvDhwzVlyhStXLlSXl5eatasmdq2bUtQAwAAAADINSwmrJH+fypU165d9e233z7TI5tnz56twYMHa+fOndq7d69GjhypevXqadmyZabRKtnJui9NSEiIGjdu/NjyChUq6OrVq0/c/syZM3r77bdVu3ZtNW7cWK1atVKJEiUee2pRwYIFn9qHatWq6dNPP31sma2t7RNvrpvV9yed36NhkSS1bNlSu3bt0q5du7R3714tXbpU4eHh+vLLL1WjRo0n9q9KlSpPXJbVx9atW2vDhg1q2rSpdu3apYULF0r6/xsDr1ixQkWKFDHb7tfBSnbX6Enn3r17d7Vu3Vo7duzQvn37NG/ePH366aeKjo42jWYCAAAAAOBlZlHDEfz8/HT48GGtXbtWlSpVMhtxkZ0jR45oypQp+tvf/qbevXtr4cKFmjJlimJiYnTjxg1Vr15d58+f1507d0zbHDt2TI0aNVJ6erpKliypixcvqkqVKqbXo/eUeZpVq1apVKlSWrp0qfr27avmzZub7lXzrE8wcnR01E8//SQ7OzvT8V955RXNnj1bBw8eVOnSpVW6dGnTDXezxMbGqkCBAmajdn755RfT8kdvUJyWlqapU6fq4sWLatOmjT766CNt27ZN1tbWZveO+b06deqkPXv2mMKShg0bSpIpBLp27ZrZ9Y2KilJUVNQz7//Rm0vfuHFDkyZNUnp6uvz9/TVz5kytX79e165d+8M3TAYAAAAAwFJYVFjj7OysKlWqaPbs2b85BUqSihYtqpUrV2rmzJlKSEjQqVOntHnzZlWtWlUlSpRQu3btZG9vr5EjR+rEiRP68ccfNX78eDk6OqpChQrq27evvvjiC0VGRurChQv65ptvNGHCBBUuXPipI2IkqXz58rpy5Yp27NihS5cuaevWrZowYYKkhwHJs2jfvr3s7e01bNgwHTlyRPHx8QoODtbOnTtNTz8KDAxUZGSkVq5cqYSEBG3YsEHh4eHq2rWr7OzsVLZsWVWsWFHLli1TfHy8Dh06pLlz55pCjoIFC+ro0aMaO3as/vd//1eJiYmKiorSvXv3nnhPmizXrl3L9pWcnGxap379+qpQoYLmzZunN9980zRqpkaNGmrRooXGjx+v7777ThcvXtSiRYu0YMECVa5c+Zmuj/Rw9M7Vq1d18eJF2dvb6/vvv9cHH3yg48eP6+LFi1q1apUKFCigOnXqPPM+AQAAAACwZBY1DUp6OLrm008/VZs2bX5zXQcHB4WFhSk8PFwrV66UtbW1GjZsqEWLFsna2lo2NjZasmSJpk6dqm7duqlw4cLy9vbW6NGjJUkBAQEqVKiQvvjiC02bNk2lS5dWly5dnunGve+8847Onj2rUaNGKS0tTVWrVlVQUJDmzZuno0eP6rXXXvvNfdjZ2SkyMlIzZsxQYGCgMjIyVLt2bX322WemUUUBAQEqWLCgli1bpilTpqh8+fLq27evAgMDJT0ceTJjxgxNmTJFb775pqpUqaKQkBD169fPdJyPP/5YU6dO1cCBA3Xnzh397W9/06xZs1S/fv2n9q9p06bZtnt7e2vBggWm9x07dtTcuXNNT4F69Lgff/yxxo0bp9u3b6ty5cqaPHmyOnbs+JvXJkuHDh30zTffqG3bttq6dasWLVqk6dOnq3fv3kpJSZGzs7MWLlz4XAEQAAAAAACWzMp41jk7QC5z9OhRSdK/vruo85d+zuHeIDeqWrGEprz728Ez/hr37t3T8ePH5ezsLFtb25zuDl4Aap73UPO8h5rnLdQ778kLNc/6PdTFxeWp61nUNCgAAAAAAIC8jrAGAAAAAADAghDWAAAAAAAAWBDCGgAAAAAAAAtCWAMAAAAAAGBBCGsAAAAAAAAsCGENAAAAAACABSGsAQAAAAAAsCCENQAAAAAAABaEsAYAAAAAAMCCENYAAAAAAABYEMIaAAAAAAAAC0JYAwAAAAAAYEEIawAAAAAAACwIYQ0AAAAAAIAFIawBAAAAAACwIPlzugNATqtY1j6nu4Bcis8WAAAAgN+DsAZ53uC3muR0F5CLZWYasra2yuluAAAAAHiJMA0KeVpaWppSUlJyuht4QVJSUhQXF/dCa05QAwAAAOB5EdYgzzMMI6e7gBfEMAylpKRQcwAAAAAWjbAGAAAAAADAghDWAAAAAAAAWBDCGgAAAAAAAAtCWAMAAAAAAGBBCGsAAAAAAAAsCGENAAAAAACABSGsAQAAAAAAsCCENQAAAAAAABaEsAYAAAAAAMCCENYgz7OyssrpLuAFsbKyko2NDTUHAAAAYNHy53QHgJxUsGBB2djY5HQ38ILY2NioVq1aL/SYmZmGrK0JhwAAAAA8O8Ia5Hmf/GuPLl29ndPdQC5Usay9Br/VJKe7AQAAAOAlQ1iDPO/S1ds6f+nnnO4GAAAAAACSuGcNAAAAAACARSGsAQAAAAAAsCCENQAAAAAAABaEsAYAAAAAAMCCENYAAAAAAABYEMIaAAAAAAAAC0JYAwAAAAAAYEEIawAAAAAAACwIYQ0AAAAAAIAFIawBAAAAAACwIIQ1AAAAAAAAFoSwBgAAAAAAwIIQ1gAAAAAAAFgQwhoAAAAAAAALQlgDAAAAAABgQQhrAAAAAAAALAhhzUvIx8dHTk5OplfNmjXl4eGhHj166ODBg394/4cOHVJsbOxT19m1a5d69uwpDw8Pubm5qV27dlq4cKHS09NN69y7d08rVqx46n7CwsLk4+MjSUpMTJSTk5P279//h88BAAAAAICXFWHNSyogIEC7d+/W7t27tXPnTq1atUpFixZVnz599NNPP/2hfb/99tu6cOHCE5fv2bNHAwcOlLe3t7766iutX79eAQEBWrx4scaNG2da77PPPtOSJUt+8zzWrFnzh/oLAAAAAEBuQljzkrK1tVWZMmVUpkwZlS1bVo6Ojpo4caLu37+vb7755i899urVq9WsWTMFBgbKwcFBVapUUceOHTV8+HBFR0crOTlZkmQYxm/uq0iRIipZsuRf2l8AAAAAAF4mhDW5SP78+SVJBQsWlCTdv39fc+bM0euvvy4XFxe9+eab2rJli2n9qKgotWzZUh999JHq1aunQYMGycnJSZIUEhKi4ODgbI9jZWWlEydOKCkpyay9Q4cO2rhxo2xtbRUWFqbw8HBdunRJTk5OSkxMVHBwsIYNG6aAgAB5eHho0aJFZtOgfi0+Pl5NmjTRqFGjlJGRIUnavn27/P395erqqpYtW2rOnDlKS0v7YxcOAAAAAAALQliTSyQlJWnSpEmytbVV8+bNJUlBQUGKjo7W2LFjtX79evn6+urdd9/Vtm3bTNtduHBBV69eVXR0tIYPH67du3dLkv75z39qzJgx2R6rV69eunHjhnx8fNSrVy+Fh4frwIEDKlCggBwcHJQ/f34FBAQoICBA5cuX1+7du1WhQgVJ0pYtW9S4cWOtXbtWbdu2feL5JCQkqHfv3nrttdc0bdo05cuXTzt37tR7772nLl26aOPGjRo/frz+/e9/a+TIkX/WZQQAAAAAIMflz+kO4PdZsGCBPvvsM0nSgwcPlJaWJgcHB82ZM0evvPKK4uPj9e233yoiIkLe3t6SpKFDh+rEiROKiIiQr6+vaV+DBg1SpUqVzPZvZ2cnOzu7bI/t4eGhqKgoLV26VDt27FBMTIwkqWzZsho/frx8fX1VpEgR2draKl++fCpTpoxpW3t7e/Xp0+ep55aYmKhRo0apefPm+vDDD2VlZSVJioiIUJcuXdStWzdJUuXKlTVx4kT16tVLiYmJevXVV5/jCgIAAAAAYJkIa15S3bp1U8+ePSVJ1tbWKl68uFm4cvLkSUlSvXr1zLbz9PRUaGioWVvVqlWf+/jVq1fX5MmTJT2crrRr1y5FRkbq3XffVVRUlGk61a9VqVLlN/c9YcIEpaenq0KFCqagRpLi4uL0ww8/mN2QOOu+OPHx8YQ1AAAAAIBcgbDmJWVvb/9MwcevGYZhurdNlsKFCz/z9vfu3VNoaKg6deokZ2dnSZKDg4McHBzUvn17tWjRQrt3735iWPMsx+rYsaMcHR01bdo0tWzZUo6OjpKkzMxM9enTRx07dnxsm0dH7wAAAAAA8DLjnjW5VFZYcujQIbP22NhYVa9e/Xfvt3DhwtqwYYNWrVr12LIiRYooX758KlWqlCSZjYp5Hm+88Ybefvtt1alTRyEhIaabC9eoUUPnzp1TlSpVTK8rV65oxowZunv37u8+JwAAAAAALAlhTS7l4OCgFi1aaOLEifr+++917tw5hYeH69tvv1VAQMBTt7W1tVV8fLx+/vnnx5ZZW1trxIgRWrVqlcaPH68ffvhBiYmJ2rt3rwYPHqwKFSqodevWpv3cvn1b586dU3p6+nP139raWh9++KFOnjypxYsXS5L69u2rLVu2KDw8XOfOndO+ffsUEhKiO3fuMLIGAAAAAJBrMA0qFwsNDVVoaKjGjBmj5ORkOTo6KiwsTC1btnzqdgEBAVq8eLHi4+MVERHx2PLOnTurTJkyWrZsmfr27au7d++qdOnSev311zVjxgzTVKdWrVrpyy+/VPv27RUZGfnc/a9Ro4b69u2r8PBwvf7662rdurU+/vhjLViwQBERESpevLh8fHw0YsSI5943AAAAAACWysrIukMrkMccPXpUkvSv7y7q/KXHRxEBf1TViiU05d02Od2NPOvevXs6fvy4nJ2dZWtrm9PdwQtAzfMeap73UPO8hXrnPXmh5lm/h7q4uDx1PaZBAQAAAAAAWBDCGgAAAAAAAAtCWAMAAAAAAGBBCGsAAAAAAAAsCGENAAAAAACABSGsAQAAAAAAsCCENQAAAAAAABaEsAYAAAAAAMCCENYAAAAAAABYEMIaAAAAAAAAC0JYAwAAAAAAYEEIawAAAAAAACwIYQ0AAAAAAIAFIawBAAAAAACwIIQ1AAAAAAAAFoSwBgAAAAAAwIIQ1gAAAAAAAFiQ/DndASCnVSxrn9NdQC7FZwsAAADA70FYgzxv8FtNcroLyMUyMw1ZW1vldDcAAAAAvESYBoU8LS0tTSkpKTndDbwgKSkpiouLe6E1J6gBAAAA8LwIa5DnGYaR013AC2IYhlJSUqg5AAAAAItGWAMAAAAAAGBBCGsAAAAAAAAsiJXBfADkUYcPH5ZhGCpQoICsrLivSF5gGIbS09OpeR5BvfMeap73UPO8h5rnLdQ778kLNU9LS5OVlZU8PDyeuh5Pg0KelfXlz60/BPA4KysrFSxYMKe7gReEeuc91DzvoeZ5DzXPW6h33pMXam5lZfVMv4MysgYAAAAAAMCCcM8aAAAAAAAAC0JYAwAAAAAAYEEIawAAAAAAACwIYQ0AAAAAAIAFIawBAAAAAACwIIQ1AAAAAAAAFoSwBgAAAAAAwIIQ1gAAAAAAAFgQwhoAAAAAAAALQlgDAAAAAABgQQhrAAAAAAAALAhhDQAAAAAAgAUhrEGek5mZqXnz5qlZs2aqW7eu+vbtq4sXL+Z0t/AnWbBggXr27GnWdvz4cfXo0UN169aVj4+Pli9fbracz8TL5datWxo3bpxee+01eXh46K233lJsbKxp+b59++Tv7y83Nze1bt1amzZtMts+NTVVEydOVKNGjeTu7q73339fN2/efNGngedw48YNjRw5Ug0bNpS7u7v69eun+Ph403K+47nXuXPn5O7urqioKFMb9c6dkpKS5OTk9Ngrq/bUPfeJjo5WmzZt5OLiojfeeEP//ve/TcsSExPVv39/eXh4qGnTppozZ44yMjLMtl+xYoVef/11ubq66u2331ZcXNyLPgU8o/3792f7/XZyctLrr78uiZpnywDymLCwMKNBgwbG9u3bjePHjxsBAQFGq1atjNTU1JzuGv6gyMhIo2bNmkaPHj1MbTdv3jQaNGhghISEGGfOnDHWrFljuLi4GGvWrDGtw2fi5fKPf/zDaNu2rXHw4EHj7NmzxsSJEw1XV1cjPj7eOHPmjOHi4mKEhoYaZ86cMRYvXmzUqlXL2Lt3r2n74OBgw9fX1zh48KBx5MgRo0OHDkb37t1z8IzwW7p27Wp07tzZOHLkiHHmzBlj6NChRtOmTY179+7xHc/F0tLSDH9/f8PR0dFYu3atYRj8TM/Nvv/+e8PFxcVISkoyrl69anqlpKRQ91woOjraqFWrlhEZGWkkJCQY8+fPN2rWrGkcPnzYSEtLM1q1amX069fPOHnypPHNN98YXl5exty5c03bR0VFGa6ursbXX39tnD592hg5cqTh5eVl3LhxIwfPCk+Smppq9r2+evWqsXXrVsPJyclYs2YNNX8CwhrkKampqYa7u7uxYsUKU9vt27cNV1dXY8OGDTnYM/wRV65cMfr372/UrVvXaN26tVlYExERYTRt2tRIT083tc2ePdto1aqVYRh8Jl4258+fNxwdHY3Y2FhTW2ZmpuHr62vMmTPHGDt2rPH3v//dbJugoCAjICDAMIyHn5WaNWsa33//vWn52bNnDUdHR+Pw4cMv5iTwXG7dumUEBQUZJ0+eNLUdP37ccHR0NI4cOcJ3PBebPXu28c4775iFNdQ791q4cKHRrl27bJdR99wlMzPTaNGihTFt2jSz9oCAACMiIsLYsGGDUadOHePWrVumZatWrTI8PDxM4VurVq2MGTNmmJanp6cbzZs3NyIiIl7MSeAPuXv3rtGiRQsjODjYMAyDmj8B06CQp5w4cUJ3795Vo0aNTG3FihVTrVq1dPDgwRzsGf6IY8eOqUCBAlq/fr3c3NzMlsXGxsrLy0v58+c3tTVs2FDnz5/X9evX+Uy8ZEqUKKGFCxfKxcXF1GZlZSUrKyslJycrNjbWrJbSw3ofOnRIhmHo0KFDprYs1apVU7ly5ai3hbK3t9fs2bPl6OgoSbp586Y+//xzlS9fXtWrV+c7nksdPHhQq1ev1rRp08zaqXfudfLkSTk4OGS7jLrnLufOndOlS5fUrl07s/YlS5aof//+io2NVe3atWVvb29a1rBhQ/3yyy86fvy4bty4ofPnz5vVO3/+/Kpfvz71fklEREQoJSVFo0ePliRq/gSENchTrly5IkmqUKGCWXvZsmVNy/Dy8fHxUVhYmCpVqvTYsitXrqh8+fJmbWXLlpUkXb58mc/ES6ZYsWJq3ry5ChYsaGrbsmWLEhIS1KxZsyfWOyUlRT///LOSkpJUokQJFSpU6LF1qLflGzt2rBo1aqRNmzZp8uTJsrW15TueCyUnJ2vUqFH64IMPHqsb9c69Tp06pZs3b6p79+5q3Lix3nrrLe3cuVMSdc9tzp07J0m6d++eAgMD1ahRI3Xu3FnfffedJOqd22X9o8uAAQNUvHhxSdT8SQhrkKekpKRIktkvepJUqFAhpaam5kSX8Be7f/9+tvWWHt5ols/Ey+3w4cMKCQlRq1at5O3tnW29s96npaUpJSXlseUS9X5Z9OrVS2vXrlXbtm01ePBgHTt2jO94LjRhwgS5u7s/9q/uEj/Tc6sHDx7o7Nmzun37toYOHaqFCxeqbt266tevn/bt20fdc5lffvlFkjR69Gi1bdtWn332mZo0aaJBgwZR7zxg5cqVsrOzU9euXU1t1Dx7+X97FSD3KFy4sKSHv7Rl/Vl6+EPAxsYmp7qFv1DhwoWVlpZm1pb1Q93W1pbPxEts27ZtGjFihDw8PDRr1ixJD//S/nW9s97b2Nhk+3mQqPfLonr16pKkyZMn68iRI4qMjOQ7nstER0crNjZWGzZsyHY59c6d8ufPr/379ytfvnymutWpU0enT5/WkiVLqHsuU6BAAUlSYGCgOnbsKElydnZWXFycli5d+lz1/vU61NvyRUdHq0OHDmbfVWqePUbWIE/JGjp39epVs/arV6+qXLlyOdEl/MXKly+fbb0lqVy5cnwmXlKRkZEaOnSoWrRooYiICNO/vlSoUCHbWtra2srOzk7ly5fXrVu3HvvLnnpbrps3b2rTpk168OCBqc3a2lrVq1fX1atX+Y7nMmvXrtWNGzfk7e0td3d3ubu7S5LGjx+vPn36UO9crEiRIma/vElSjRo1lJSURN1zmayaZN2LLEv16tWVmJhIvXOxEydO6OLFi4+NnKTm2SOsQZ5Ss2ZNFS1aVPv37ze1JScnKy4uTp6enjnYM/xVPD09dejQIWVkZJjaYmJiVK1aNZUqVYrPxEto5cqV+vDDD9W9e3eFhoaaDYmtX7++Dhw4YLZ+TEyMPDw8ZG1trXr16ikzM9N0o2Hp4dz5pKQk6m2hrl+/rqCgIO3bt8/Ulp6erri4ODk4OPAdz2VmzZqlzZs3Kzo62vSSpGHDhmny5MnUO5c6ffq0PDw8zOomST/++KOqV69O3XOZ2rVrq0iRIjpy5IhZ+6lTp1S5cmV5enoqLi7ONF1KeljvIkWKqGbNmipVqpSqVatmVu8HDx4oNjaWelu42NhY03f2UdT8CXL6cVTAixYaGmp4eXkZ27ZtM44fP24EBAQYrVq1MtLS0nK6a/gTjB492uzR3devXzc8PT2N0aNHG6dPnzbWrl1ruLi4GFFRUaZ1+Ey8PM6ePWvUrl3bGDx4sHH16lWzV3JysnHq1Cmjdu3axsyZM40zZ84YS5YsMWrVqmXs3bvXtI+goCDDx8fHiImJMY4cOWJ06NDB7DMDy9OnTx+jVatWxoEDB4yTJ08aQUFBhqenp3Hp0iW+43nAo4/upt65U0ZGhtGpUyejTZs2xsGDB40zZ84YU6ZMMerUqWOcPHmSuudCn3zyieHu7m5s2LDBSEhIMObPn2/UrFnTiImJMe7fv2/4+voagYGBxvHjx41vvvnG8PLyMsLCwkzbr1692nB1dTWioqKM06dPGyNHjjQaNGhg3LhxIwfPCr8lJCTE6N2792Pt1Dx7VoZhGDkdGAEvUkZGhkJDQxUVFaX79+/L09NT48aN06uvvprTXcOfIDg4WJcuXdIXX3xhavvhhx80efJkxcXFqUyZMgoICFCPHj1My/lMvDwiIiL08ccfZ7usY8eOmjZtmnbu3KmZM2fq/PnzevXVVzV06FC1adPGtN69e/c0ZcoUbdmyRZL02muv6YMPPlCJEiVeyDng+d25c0ezZ8/Wtm3bdOfOHdWvX1/BwcGqUaOGJL7juZ2Tk5OmTp0qf39/SdQ7t7p+/bpmz56tXbt2KTk5WbVq1dKIESNUv359SdQ9N1q6dKkiIyOVlJQkBwcHDR06VL6+vpKkhIQETZw4UbGxsbK3t9ff//53DR06VNbW/z8xZMmSJVq+fLlu3bqlOnXq6IMPPpCzs3NOnQ6eQd++fVW0aNFs/1+Omj+OsAYAAAAAAMCCcM8aAAAAAAAAC0JYAwAAAAAAYEEIawAAAAAAACwIYQ0AAAAAAIAFIawBAAAAAACwIIQ1AAAAAAAAFoSwBgAAAHgOhmHkdBcAALkcYQ0AAMAjevbsqVq1auno0aPZLvfx8VFwcPAL6UtwcLB8fHxeyLGex4MHDxQcHCx3d3d5eHgoJiYm2/WcnJwUFhb2px47KipKTk5OSkxMfOI6iYmJcnJyUlRU1J96bEk6dOiQ+vXr96fvFwCARxHWAAAA/EpGRoZCQkKUlpaW012xSLt27dK6devUu3dvLViwQC4uLi/s2N7e3lq9erXKli37wo75qK+++krx8fE5cmwAQN5BWAMAAPArdnZ2On36tD755JOc7opFunXrliTJ399fnp6eKlKkyAs7dsmSJVW3bl0VLFjwhR0TAIAXjbAGAADgV5ydndWhQwctXrxYP/7441PXzW6qT1hYmJycnEzvg4ODFRgYqNWrV8vX11eurq7q1q2bzp07p+3bt6tdu3Zyc3NT586ddfz48ceOsXr1anl7e8vV1VW9evVSXFyc2fKffvpJQUFB8vLykpub22PrZE0LWrp0qVq3bi03NzetXbs22/PJyMjQihUr1K5dO7m6usrb21uzZs1Samqq6VyypoH5+vqqZ8+eT70+j/Lx8dG8efM0ffp0NW7cWK6urgoMDNT58+fN1tuxY4e6deumunXrqmnTpho3bpySk5MlZT8NauvWrWrfvr1cXV3VsWNHnThx4rFj37p1S+PGjVPjxo3l4uKiLl26aN++fWbrODk5acWKFRozZoy8vLzk7u6ud999V9evXzed+7p163Tp0iWzaVYbN240Hb9hw4YaMWKEkpKSnvm6AADwa4Q1AAAA2fjnP/+pEiVK/GnTof773/8qMjJSwcHBmjp1quLj49WvXz9NnTpV/fv3V2hoqC5fvqwRI0aYbXflyhWFh4frvffeU2hoqG7fvq2ePXvqp59+kiTdvHlT3bp107FjxzR27FjNnj1bmZmZ6t69+2PTdcLCwtS3b1/NmDFDTZo0ybaf48aN09SpU+Xr66tPP/1U3bt3V2RkpAYNGiTDMDRo0CANHDhQkhQeHq7x48c/13VYvny5zp49q6lTp+qjjz7Sjz/+qNGjR5uWb9++Xf3791epUqU0Z84cjRgxQtu2bdPw4cOz3d93332nYcOGycnJSZ988on8/Pw0cuRIs3VSU1PVq1cvffvttxo+fLjCw8NVvnx59enT57HA5uOPP1ZmZqZCQ0M1atQobd++XVOmTJEkDRo0SM2bN1eZMmVMAdqhQ4c0atQotWrVSosWLVJISIhiYmL0/vvvP9d1AQDgUflzugMAAACWyN7eXpMmTdLAgQP1ySefPDEseFZ3797VnDlz5ODgIEk6cOCAVq1apc8//1yNGjWSJCUkJGj69OlKTk5WsWLFJD0c6fLJJ5/I1dVVkuTm5iZfX1998cUXGj16tJYtW6Zbt27pX//6lypWrChJeu2119SmTRvNnTtX8+bNM/XBz89PnTp1emIfz5w5ozVr1uj999833US3SZMmKlu2rEaNGqWdO3eqefPmqly5sqSHI5BeffXV57oOxYoV0/z585UvXz5J0oULFxQWFqaff/5ZJUqUUFhYmJydnRUeHi4rKytJUsGCBTV37lzTCJdHZV2bmTNnSpKaNWsmSZo9e7Zpna+//lonTpzQl19+KTc3N9M16tmzp2bNmmU2ysjR0VFTp041vf/hhx/0n//8R5JUuXJllSxZUgULFlTdunUlSWvWrFHhwoXVr18/09Ss4sWL6+jRozIMw3QOAAA8D0bWAAAAPIGPj4/at2+vxYsX69ixY39oX/b29qagRpJKly4tSabwQHr4S74k05QfSapUqZIpqJGkMmXKqG7dujp48KAkad++fXJ2dla5cuX04MEDPXjwQNbW1nrttde0d+9esz44Ozs/tY8HDhyQJL3xxhtm7W+88Yby5cun/fv3P+vpPpGLi4spqJGk8uXLS5JSUlJ0//59xcXFydfX1yzkaNOmjbZs2WK6Zlnu37+vY8eOqUWLFmbtfn5+Zu/37dunMmXKqHbt2qZrlJGRoRYtWujHH3/U7du3TetmhTCP9i8lJeWJ5+Pp6amUlBS1bdtWs2fPVmxsrJo2baohQ4YQ1AAAfjdG1gAAADzFBx98oH379ikkJOSJ93l5FkWLFs223dbW9qnb/TqgkKRSpUrp8uXLkh7eiyUhIUG1a9fOdvtHg4bfOlZWaFGmTBmz9vz586tEiRK6c+fOU7d/FjY2Nmbvra0f/tthZmambt++LcMwVKpUqWfaV9b6JUqUMGv/9ZOibt26pWvXrj3xGl27dk329vZP7J9hGE/sg7u7uxYuXKjPP/9cS5cu1cKFC1W6dGkNGDDgue7nAwDAowhrAAAAnsLe3l4TJkzQ4MGDNX/+/GzXycjIMHt/7969P+34j476yHLt2jWVLFlS0sMnV3l5eWnUqFHZbv88T03KCiyuXbtmmlIlSenp6aZpSn+lokWLysrKSjdv3jRrT01NVUxMjNkoJOnhSCRra+vHpkdlPa0qi52dnapWrapZs2Zle9znncr1a82aNVOzZs2UkpKimJgYLV++XB999JHc3NzMRkUBAPCsmAYFAADwG3x9fdW2bVstXLjwsSChaNGijz355/Dhw3/asc+dO6cLFy6Y3l++fFn//e9/1aBBA0mSl5eXzp07p2rVqsnFxcX0+vrrr7VmzRqzKUe/xcvLS5K0adMms/ZNmzYpIyND9erV+xPO6MmKFCkiZ2dnbd++3ax9586d6tevn65evWrWXqhQIbm7u2vr1q1mo1++++47s/W8vLx0+fJllSpVyuwa7dmzR4sXL36ua5Q1EijL9OnT1alTJxmGIRsbG7Vo0cJ0w+Ssm0ADAPC8GFkDAADwDMaOHauYmJjHRnF4e3tr06ZNcnNzU5UqVRQVFaWEhIQ/7biFChXSwIEDNXz4cGVkZGju3LkqXry4evXqJUnq3bu3vv76a/Xu3VsBAQEqUaKENm/erC+//FIhISHPdazq1aurY8eOmjdvnlJSUuTp6anjx48rPDxcDRo0MN289680bNgwDRw4UEFBQerQoYOuX7+u0NBQ+fr6ytHR8bFHqQcFBalXr14aMmSIunbtqnPnzikiIsJsHX9/f0VGRuof//iHBgwYoAoVKmjv3r1atGiRevTooQIFCjxz/4oVK6br169rx44dcnZ2VsOGDbV06VIFBwerffv2Sk9P1+LFi1W8eHE1bNjwT7kmAIC8h5E1AAAAz6B48eKaMGHCY+0hISFq0aKFpk+frmHDhsnW1vZPfWxzrVq11LlzZ02YMEGjRo1S5cqVtXLlStM0qHLlymnVqlWqWLGiJkyYoAEDBuiHH37Q5MmT1bt37+c+3uTJkzV48GBt2LBB/fr104oVK/TOO+9o0aJFj40q+Su0aNFCERERunDhggYPHqy5c+eqXbt2pqc9/Vr9+vW1aNEiJSUlaciQIVq9erXpUdtZbG1ttWLFCtWrV08zZ85U3759tXXrVr3//vvPHWj5+/urYsWKGjx4sKKjo9W8eXPNmjVLp0+f1pAhQxQUFCQbGxstX77cdMNoAACel5XxtDumAQAAAAAA4IViZA0AAAAAAIAFIawBAAAAAACwIIQ1AAAAAAAAFoSwBgAAAAAAwIIQ1gAAAAAAAFgQwhoAAAAAAAALQlgDAAAAAABgQQhrAAAAAAAALAhhDQAAAAAAgAUhrAEAAAAAALAghDUAAAAAAAAWhLAGAAAAAADAgvwfWqoxyeRtXb8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Count the occurrences of each category and select the top 10\n", + "top_categories = data['Category'].value_counts().nlargest(10).index\n", + "\n", + "# Filter the DataFrame to include only the top 10 categories\n", + "data_top_categories = data[data['Category'].isin(top_categories)]\n", + "\n", + "# Plot\n", + "plt.figure(figsize=(12, 8)) # Adjust size as needed\n", + "sns.countplot(y='Category', data=data_top_categories, order=data_top_categories['Category'].value_counts().index)\n", + "plt.title('Top 10 Event Categories Distribution')\n", + "plt.xlabel(\"Number of Incidents\")\n", + "plt.ylabel('Category')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### zoom into countries" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "# Filter data for China and United States\n", + "china_cases = data[data['Region'] == 'China']\n", + "us_cases = data[data['Region'] == 'United States']\n", + "\n", + "# Get top 5 event categories for China\n", + "china_top_5 = china_cases['Category'].value_counts().nlargest(5)\n", + "\n", + "# Get top 5 event categories for United States\n", + "us_top_5 = us_cases['Category'].value_counts().nlargest(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "# Convert Series to DataFrame\n", + "china_plot_data = china_top_5.reset_index().rename(columns={'index': 'Category', 'Category': 'Category'})\n", + "us_plot_data = us_top_5.reset_index().rename(columns={'index': 'Category', 'Category': 'Category'})" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Categorycount
0Port Congestion242
1Port Closure116
2Port Disruption96
3Maritime Advisory71
4Maritime Accident24
\n", + "
" + ], + "text/plain": [ + " Category count\n", + "0 Port Congestion 242\n", + "1 Port Closure 116\n", + "2 Port Disruption 96\n", + "3 Maritime Advisory 71\n", + "4 Maritime Accident 24" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "china_plot_data" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/7x/56svhln929zdh2xhr3mwqg4r0000gn/T/ipykernel_4868/712307362.py:9: FutureWarning: \n", + "\n", + "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n", + "\n", + " ax_china = sns.barplot(x='count', y='Category', data=china_plot_data, palette='Oranges_r')\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAAImCAYAAACM3K1sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2fklEQVR4nO3dd3yN9///8edJJCVE7NorIVYisbeIKE2NUkXFDDVrK2LUas1Kkdi7aCliUy2folqlRmtLGxS1Z4xIJDm/P/xyvk4TJJVILn3cb7dz++Rc83WdvHs+nnm/r/dlMpvNZgEAAAAAYEA2qV0AAAAAAAD/FqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAkiSz2fyfPDcAwNgItQAAQxoyZIhcXV2f+2rbtm2K1jBw4MAEz/vtt98+c5+goKAX1h0ZGZmidSfk4MGD6tKlS6K2DQ8PV3BwsBo1aiRPT09VrVpV7du31//+978knzcqKkrjxo3Txo0bk7xvStq3b59cXV21b9++FD1PSEiIXF1ddfHixWQ53tmzZzVq1Cj5+PjI3d1dXl5e6t+/v06dOmW1Xdu2bV/430dcWwWAtC5dahcAAMC/0aNHD7Vq1cryfubMmTpx4oSCg4MtyzJlypSiNZw6dUoNGzaMFw4KFy78wn1Xrlz5zHX29vYvW1qSrVq1SmFhYS/cLiwsTB9++KFiY2PVrl07lShRQg8fPtTGjRvVvXt39enTRz169Ej0ea9du6YlS5Zo/PjxL1N+sitdurRWrlwpFxeXFD2Pl5eXVq5cqVy5cr30sb777jsNGjRIxYoVU/fu3ZU/f35duXJFS5YsUYsWLTRr1ixVr1490cd7//33VbNmzZeuCwBSGqEWAGBIBQsWVMGCBS3vs2XLJnt7e3l4eLyS80dGRurs2bNq3779vzrnq6ozOT1+/Fh9+/aVnZ2dvvrqK2XPnt2yzsfHRyNGjNC0adPk7e2tEiVKpGKlLy9Tpkyv5HeULVs2ZcuW7aWPc/78eQ0ePFg1a9bU1KlTZWtra1n31ltv6YMPPtDgwYP1v//9L9F/NMmdO7dy58790rUBQEpj+DEA4LX2008/qXXr1ipfvrwqV66sAQMG6PLly5b1ccM/f//9dzVt2lTu7u5q1KjRc4cQS1JoaKiio6NVsmTJFKl748aNcnV1VWhoqNXy7du3y9XVVSdOnJAk3blzR5988omqVasmNzc3tWjRQnv37rXax9XVVcuXL9ewYcNUqVIleXp6qk+fPrpx44akJ0O5165dq7///luurq4KCQlJsKZdu3YpNDRUffr0sQq0cXr37q02bdooOjraqt7WrVvL09NTZcqUUYMGDbR8+XJJ0sWLF1W3bl1JUkBAgLy9vS37HThwQG3atFHZsmVVqVIlDR48WLdu3bI63+HDh+Xn5ycPDw95eXlpyZIl6tChg4YMGWLZ5t69exo/frx8fHzk5uamhg0bavXq1VbH8fb21rhx49S+fXu5u7tr2LBhCQ4/Dg0NVdeuXVWuXDmVK1dOPXv21IULF6yOtWTJEjVo0EBubm6qWbOmRo0apfv37yf4eUrxhx8PGTJEHTp00Jo1a1S/fn2VKVNGTZo00e7du595DElaunSpoqKiNHz4cKtAK0kZMmTQ4MGD9d577+nu3buW5WazWfPmzZOXl5fc3d3VsmVLHTlyxLL+n8OP27Ztq2HDhmnu3Lny8vKSm5ubWrVqZbWP9PzfOQCkBEItAOC1tW7dOvn7+ytPnjwKDAxUQECADh8+rJYtW+rmzZtW23bt2lV169ZVcHCwihQpor59+2rXrl3PPHbcPYqrVq1SjRo1VKZMGbVu3Vq///57omqLjo5O8BUbGyvpSc+ng4ODNm/ebLXfpk2bVKxYMZUqVUqRkZFq3769duzYoX79+ik4OFi5c+dW586d4wXbL774QrGxsQoMDNSgQYP0ww8/aNy4cZKeDOWuXbu2cubMqZUrV8rLyyvBmnfv3i1bW1vVrl07wfU5c+bUiBEjVKZMGUnSzp071bNnT5UuXVozZ85UUFCQChQooDFjxuj3339Xrly5LMPFu3fvbvn5119/VYcOHZQ+fXpNnTpVQ4cO1f79+9WuXTs9evRI0pNh0B06dJAkBQYGqlevXpo7d64OHjxoqefRo0dq3bq1Nm7cqM6dO2vmzJkqX768hg0bptmzZ1vVvnz5crm5uWnmzJlq3rx5vGs7e/asWrVqpZs3b2rixIn67LPPdOHCBX3wwQeWtrRp0yZNnjxZfn5+WrBggXr27Kn169dr7NixCX5ez3Ls2DEtWLBAvXv31owZM2Rra6tevXpZBdJ/+vHHH1WqVCm9+eabCa6vWrWq+vXrp5w5c1qWHTx4UN9//71GjBihyZMn69q1a+revbvVHyX+adu2bdqxY4eGDx+uwMBA3bhxQ7169VJMTIykF//OASAlMPwYAPBaio2N1eeff64aNWpoypQpluXlypWTr6+vFixYoEGDBlmWt23bVj179pQk1axZU02bNtWMGTOeGeBOnjwpSYqIiNCUKVN0584dzZ07V+3atdPKlStfOPy2dOnSCS738/PTJ598ogwZMqh+/frasmWL+vXrJ0l68OCBfvjhB0ud69ev16lTp/TNN9+obNmykqRatWqpbdu2+vzzz7VmzRrLcYsXL2513+qRI0csvdEFCxZM1PDtK1euKGvWrMqYMeNzry3On3/+qaZNm2rYsGGWZZ6enqpcubL27dunsmXLWnq6CxYsqFKlSkmSpkyZoiJFimjOnDmWXseyZcvqnXfe0Zo1a+Tn56c5c+bI0dFR8+fPV4YMGSRJRYsWtbrPOiQkRKGhoVqxYoU8PT0lPfndRkdHa+bMmWrVqpWyZMkiScqbN68GDhxo2fefE0QFBwcrQ4YMWrx4seVe7apVq8rHx0fz58/X4MGDtX//fuXPn19+fn6ysbFRpUqV5ODg8NwwmpB79+4pJCTEMrzewcFBbdq00S+//KL69esnuM+VK1eSPGrA3t5ec+fOtXwG4eHhGj58uP78889ntt/o6GgtWLDA8hk8ePBAgwcP1smTJ1WmTJlE/c4BILkRagEAr6WzZ8/q+vXrGjBggNXyggULytPTU/v377da3rRpU8vPJpNJ9erVU1BQkB49eqT06dPHO36bNm1Up04dq4l0qlatqrfeekuzZ8/W1KlTn1vfP4fAxnl6WG+TJk20du1aHTlyRO7u7tqxY4eioqLUuHFjSdLevXuVM2dOlS5d2qp3rU6dOpo0aZLu3r0rJycnSfHv4c2dO7ciIiKeW+M/2draWnrkEqNz586SngSfs2fP6vz58zp69KikJ7MeJyQiIkK///67OnXqJLPZbLmuAgUKyNnZWT/99JP8/Pz0yy+/qFatWpZAKz0JT/ny5bO8379/v/Lly2cJtHEaN26s1atX6/fff7f80eJFgfCXX35RpUqVlD59ektNmTJlUoUKFfTzzz9LkqpUqaKVK1eqWbNm8vHxUe3atdWoUSOZTKZEf2bSk/tsn75fPO6+1uf9vpL6u5EkFxcXS6CVpPz580t6Eqqft8/TE7DF9QzH1fZvfucA8LIItQCA19KdO3ckSTly5Ii3LkeOHJZ7UuP8c/bZ7Nmzy2w2Kzw8PMFQW7RoURUtWtRqWebMmVWuXLl4j09JiJub2wu3qVy5st58801t3rxZ7u7u2rx5sypVqmQJOXfu3NH169ef2et7/fp1S6h9OvxJko2NTZKfDZsvXz7t3LlTDx48eGZv7ZUrVyz13bp1SyNHjtT27dtlMplUqFAhVahQQdKzn0sbHh6u2NhYzZs3T/PmzYu3/o033rAcO6H7ep/+fd+9e9dquO0/twkPD7csc3BwSLCeOHfu3NGWLVu0ZcuWeOviJnry9fVVbGysvvrqK8vQ23z58mngwIHy9fV97vGf9s/fVVwojhuanpC8efPq0qVLz1z/+PFj3b171+rz+ec129jYvPA8CbWjp/f5N79zAHhZhFoAwGsprgcqbjKkp12/fl1Zs2a1Wnbnzh2rf/DfuHFDtra2Vj1ZT9uyZYsyZ86sGjVqWC2PjIxMltlspSeBoVGjRtq0aZO6deumn376SWPGjLGsd3R0VOHChfX5558nuH9cz1tyqVGjhpYuXaoff/xRDRo0iLf+1q1bqlu3rlq3bq1hw4Zp4MCBOnPmjBYvXixPT0/Z29srIiJC33zzzTPPkTFjRplMJnXo0EHvvPNOvPVxoSp37twJ/m5v3rxp+WODk5OT/vrrr3jbXL9+XZLitYHncXR0VLVq1dSxY8d469Kl+79/TjVs2FANGzbUvXv3tGfPHs2bN08ff/yxypcv/8z7XZNDjRo1tGTJEl2/fj3BIL9r1y717NlTwcHBqlevXorV8W9+5wDwspgoCgDwWipSpIhy5sypTZs2WS2/cOGCfvvtN5UrV85q+fbt2y0/m81mfffddypfvvwzH3+yYsUKjRw50mpI5dWrV3Xo0CFVrlw52a6jSZMmunLlimXCoLfeesuyrlKlSrp8+bKyZ88uNzc3y+unn37S/Pnz482C+zxxPW7PU6NGDRUvXlxffPGFbt++HW/9lClTFB0drUaNGkl6MhHRW2+9pcqVK1s+x7hZfON69v5ZY6ZMmVSqVCmdOXPG6pqKFSumoKAgy72uFStW1I8//qjIyEjLvidOnLDMIhy3zd9//63Dhw9bnWPDhg2ys7OTu7v7C685TqVKlfTnn3+qZMmSlprKlCmjxYsX6/vvv5ck9e3b13K/s6Ojo95++2316NFD0dHRunbtWqLP9W/4+fnJzs5On332WbxhyA8fPtT06dOVNWtW1apVK0XrSMzvHACSGz21AIDXko2Njfr376+AgAANGDBAjRs31u3btxUcHCwnJ6d4PW6TJk1SZGSkihQpolWrViksLExLlix55vF79Oihjh07qkePHmrXrp3u3r2r4OBgZcmSRf7+/i+s77fffnvmuiJFiliGDRcvXlwlS5bUV199pbffftvqfsZmzZpp2bJl6tixo7p166Y8efLo559/1rx589SmTRvZ2dm9sI44mTNn1o0bN7Rr1y6VLFky3nBs6UmP5KRJk+Tv76/33ntP7dq1U4kSJXTr1i2FhIToxx9/1IABAyxh0d3dXRs3blTp0qWVO3duHTp0SHPnzpXJZLLcg+no6Cjpyf3Bzs7OKlu2rPr3768uXbpYfm8xMTFauHChfv/9d/Xo0UOS1K1bN23ZskWdO3eWv7+/wsPDNW3aNNnY2FiG6zZr1kxfffWVevbsqd69eyt//vz63//+pzVr1uijjz5S5syZE/359OjRQ61atVLXrl31wQcf6I033tDKlSu1fft2TZ8+XdKTe2pHjhypiRMnqlatWgoPD1dwcLAKFy6c4s/tzZ8/v0aNGqVhw4bJz89PrVq1Up48eXT+/HktWrRIFy5c0IIFCyzDt1NKYn7nAJDcCLUAgNdWs2bNlDFjRs2ZM0c9e/ZUpkyZVLNmTfXv3z/eEM1Ro0Zpzpw5unDhgkqVKqWFCxda7gVMSJUqVbRw4UIFBQWpX79+srGxUc2aNTVw4EBLUHueli1bPnPdjBkz5OPjY3nfpEkTTZgwwTJBVBwHBwctX75cU6ZM0eTJk3Xv3j3ly5dPAwYMSFSwflqzZs0sQ1R79+6tLl26JLhdyZIltXr1ai1atEhff/21rl69KgcHB7m6umr+/PlWE2dNmDBBY8eOtTzSpnDhwho9erQ2bNigAwcOSHrSM9uxY0etXLlSu3bt0k8//aQaNWpowYIFCg4OVu/evWVnZ6fSpUtr0aJFlgmvChUqpAULFmjSpEnq3bu3smfPrq5du2rWrFmW+30zZMigpUuXasqUKZo2bZru37+vokWL6rPPPkvwsT3PU6JECS1fvlxffPGFBg0aJLPZrOLFi2vGjBmWZ+22atVKjx8/1ooVK/TVV18pffr0qlq1qj7++OMk/YHh32ratKkKFSqkJUuWaOrUqbp586Zy5sypcuXKKSgoSM7OzileQ2J+5wCQ3Exm7toHAPyHhYSEKCAgQDt27Ej2e1CRcvbu3Ss7OzurPzyEh4erWrVqGjRokNq1a5eK1QEAXiV6agEAgOEcP35c06dPV//+/VW6dGnduXNHixYtkqOjoxo2bJja5QEAXiFCLQAAMBx/f39FRUXp66+/1uXLl+Xg4KBKlSpp/PjxyTb7NADAGBh+DAAAAAAwLB7pAwAAAAAwLEItAAAAAMCwCLUAAAAAAMNioiikGYcPH5bZbH4lz/IDAAAAkHY9fvxYJpNJnp6eL9yWnlqkGWaz2fICUoLZbFZUVBRtDCmC9oWURhtDSqJ9IaUltY0lJRfQU4s0w87OTlFRUXJxcZGDg0Nql4PX0MOHD3Xy5EnaGFIE7QspjTaGlET7QkpLahs7evRooo9NTy0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUIs0xmUypXQJeUyaTSRkyZKCNIUXQvpDSaGNISbQvGBnPqUWaYm9vrwwZMqR2GXhNZciQQaVKlUrtMvCaon0hpdHGkJJoX4iNiZGNrW1ql/GvEGqR5uwe31N3z/+Z2mUAAAAA/wlOBV1UK2BGapfxrxFqkebcPf+nbv15NLXLAAAAAGAA3FMLAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAADiiY2N1ddff61GjRrJ09NTdevW1bhx43T//v0Et1+yZIlcXV118eJFq+V//fWXBg0apB49eqhmzZr64IMPtHfv3mSrk1ALAAAAAIhn/vz5Gjt2rLy8vDRjxgz5+/tr/fr16tWrl8xms9W2Z8+eVWBgYLxj3L59W23atNG5c+fUrl07TZgwQTly5JC/v7/279+fLHWmS5ajvCLe3t76+++/Le9NJpMcHBxUqlQp9enTRxUrVnyp4x88eFBms1kVKlR47nZr167VqlWrFBoaKkkqVqyYOnTooPr167/U+VPDH3/8ob///lteXl6SJFdXV40fP17NmjVL3cIAAAAApJrY2FjNmzdPLVu21IABAyRJ1apVU9asWdWvXz8dO3ZMbm5ukqSYmBgFBAQoS5YsunLlitVx1q1bp9u3b2vp0qW6efOmSpYsKW9vbzVp0kQLFixQpUqVXrpWw/XU+vv7a8+ePdqzZ492796tFStWKFOmTOrcubMuXbr0Usdu3bq1zp8//8z1ZrNZffr00YQJE+Tr66sVK1Zo5cqVqlWrlvr166e5c+e+1PlTQ9euXXX06FHL+z179sjX1zcVKwIAAACQ2u7fv68mTZqoYcOGVsuLFi0qSbpw4YJl2YIFC3Tjxg116dIl3nHefPNNdejQQbly5bIss7W1VaFChZ6bvZLCUD21kuTg4KCcOXNa3ufKlUujR49WrVq19P3336t9+/Ypdu6vvvpK33//vVatWqXSpUtblnfv3l0xMTGaPn26GjZsqLx586ZYDSnt6c8WAAAAwH9T5syZNXz48HjLt2/fLklycXGR9GTkZ3BwsObPnx/vXlpJ8vX1la+vrx4+fGhZdvfuXf3666+qUqVKstRquJ7ahKRL9ySb29vbS5IePXqkqVOnqm7dunJzc1OTJk20bds2y/YhISGqV6+ePv30U5UvX149evSQq6urJCkgIEBDhgxJ8DwrVqyQl5eXVaCN0759ey1evFg5cuRIUg1x/1umTBk1a9ZMBw8etGwTERGhkSNHqnLlyipXrpyGDRumAQMGWNV36NAh+fn5yd3dXV5eXho9erTVjdtHjhxR69at5enpqYoVK6pXr16WHu244dzBwcFq27atpCfDj0NCQiz7r1u3To0bN5a7u7u8vb01c+ZMxcTESJIuXrwoV1dXbdu2Te+//77KlCkjb29vrVy58oW/MwAAAADG8vvvv2vu3LmqU6eOihcvrujoaA0ePFjvv/9+oocRx8bGasSIEbp//746d+6cLHUZPtRevXpVY8aMkYODg2rXri1J6t+/v9atW6cRI0Zow4YN8vHxUZ8+fSx/VZCk8+fP69q1a1q3bp369eunPXv2SJKGDh2qYcOGxTtPZGSkQkNDVa5cuQTrcHR0VIUKFSzBOjE1XL58WStWrNDkyZO1du1aZciQQUOGDLHcdD148GD99NNP+uKLL7RixQrdu3dPmzdvtux/6tQpdezYUTVr1tSGDRv0+eef6/jx4/L395fZbFZMTIy6du2qihUrasOGDVq8eLEuXbqkoUOHSpJWr16t3Llzy9/fX0FBQfGuafHixRoxYoRatmypDRs2qE+fPlqwYIEmTJhgtd348ePVrVs3bd26VV5eXho1apTVcAQAAAAAxnbw4EF17txZ+fPn1/jx4yVJs2fPVnh4uOWe2xeJjo7W8OHDtW3bNg0bNkzu7u7JUpvhhh/PmTNHCxculPTkQ4mKipKzs7OmTp2qvHnzKiwsTDt27NDs2bMtkx/16tVLp06d0uzZs+Xj42M5Vo8ePVSgQAGr4zs6OsrR0THeee/evStJcnJyemGNia3h8ePHGj16tEqWLClJ6tixo3r27Knr168rMjJS27Zt0/z581WtWjVJ0uTJk3Xo0CHLeRYsWKDq1aurW7dukqTChQtrypQp8vHx0f79+1WiRAndvn1buXLlUr58+VSgQAFNnTpVN2/elCRly5ZNtra2cnBwUJYsWayuwWw2a968eWrTpo38/Pwsx79z544mT56s3r17W7bt0KGD6tatK0nq16+fli9frt9//z3eZwsAAADAeLZs2aIhQ4aocOHCmj9/vrJmzaoTJ05o9uzZmjdvnuzt7RUdHa3Y2FhJT3pjY2JiZGtraznGvXv3NGHCBJ06dUojRoywZIzkYLhQ26pVK8tQWRsbG2XJksUqhJ4+fVqSVL58eav9KlasGG+K6cKFCyf6vFmyZJHJZNLt27dfuG1SanB2drb8HHcdjx8/1okTJyRJnp6elvVvvPGG1V8zTpw4ob/++stqmzhhYWGqXLmyOnfurLFjx2r69OmqUqWKateurbfffvuF13Dr1i3duHEj3jVUqlRJjx8/1pkzZ5Q9e/bnXgMAAAAAY1uwYIEmT56sSpUqacaMGZZ/7+/YsUOPHz9Whw4d4u1Tr149VapUSUuXLpUkXblyRR06dNDFixc1YcIENWnSJFlrNFyodXJyUqFChZK8n9lsttx7Gyd9+vSJ3t/e3l5lypSx6il9Wnh4uD766CN99NFHSaohbrjyP7eL+6tG3F87EhIbG6tGjRpZemqfli1bNknSwIED1bp1a+3atUt79+7V2LFjNX/+fK1bty7Bcz9dw7POKcnqOp51DQAAAACMa8WKFZo0aZJ8fX01ceJEq3/3t2jRwjIqNc7OnTsVHBysWbNmWToQ79+/r/bt2+vGjRsKCAhQvXr1kr1Ow99T+09xEz49PeGSJB04cMAyQ9e/1aJFC+3evVvHjx+Pt+7LL7/UgQMHlD9//mSpwdXVVSaTSb/99ptlWVRUlNW5ixUrpj///FOFChWyvKKjozV+/HhdvnxZZ86c0ciRI5U9e3Z98MEHmj59uubPn6+wsDCdOnXquefPkSOHcuTIkeA12NnZqWDBgom6DgAAAADGc/36dY0fP1758uWTn5+fTpw4od9++83ysrOzk5ubm9UrX758kqTixYtbHv0zffp0nTt3Tm3atJGtra2OHDliOUbc6NSXZbie2hdxdnZWnTp1NHr0aJlMJhUqVEibN2/Wjh07NHXq1Ofu6+DgoLCwMN2+fVtZs2aNt7558+basWOHOnbsqD59+qh69ep69OiRNmzYoEWLFmnw4MGWx/n82xriFChQQG+//bbGjh2rMWPGKGfOnJozZ46uXLkik8kk6ckze/38/DR69Gi1adNG4eHhGj16tB49eqTChQvrwYMH2rx5sx49eqQuXbrIxsZGa9eulZOTk6WRZcyYUefOndONGzcsMzfH6dSpk7744gsVKFBA1atX15EjRxQcHKyWLVvK0dHRcp8xAAAAgNfLrl279OjRI/39998J3v86fvx4NWvW7IXH+e677yQ9mVTqn/Lly6f//e9/L13raxdqJSkwMFCBgYEaNmyYwsPDVbx4cQUFBb2wq9vf39/Sk5nQh25jY6MZM2Zo2bJlWrVqlaZMmaJ06dKpWLFiCg4OtkyW9DI1PG3s2LH69NNP1atXL5nNZjVq1Eienp6ys7OTJHl4eGj+/PmaNm2amjZtKgcHB1WtWlWDBw+Wvb297O3tNW/ePE2ZMkUtWrRQTEyMPDw8tGjRImXKlEmS1LZtW02cOFF//PGHNmzYEO/zsLe315IlSzRu3Djlzp1bH374oTp16pToawAAAABgPM2bN1fz5s2TtE+zZs3iBd2dO3dKkh4+fKiTJ0+qZMmScnBwSK4yJUkmMzc/pkmRkZH68ccfVaVKFUsAlaT69eurcePG6tmzZypWlzKOHj0qSTo3c6Bu/Xk0lasBAAAA/huyubip0axtKXqOpIbauGzg5ub2wm1fy57a14G9vb1Gjx6tSpUqqUePHrK1tdXq1at16dIlNWjQILXLAwAAAIA04bWbKOp1YTKZNHfuXN2+fVstW7ZU06ZNdfjwYS1cuNDqEToAAAAA8F9GT20aVrJkSS1cuDC1ywAAAACANIueWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGlS61CwD+yamgS2qXAAAAAPxnGP3f34RapDm1AmakdgkAAADAf0psTIxsbG1Tu4x/heHHSFOioqIUERGR2mXgNRUREaETJ07QxpAiaF9IabQxpCTaF4waaCVCLdIgs9mc2iXgNWU2mxUREUEbQ4qgfSGl0caQkmhfMDJCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUIs0x2QypXYJeE2ZTCZlyJCBNoYUQfsCACB1pEvtAoCn2dvbK0OGDKldBl5TGTJkUKlSpVK7DLymXpf2ZY6NkcnGNrXLAAAg0Qi1SHPOzR+kR1fCUrsMAPjPSZ/bWYU7T0rtMgAASBJCLdKcR1fCFHH+ZGqXAQAAAMAAuKcWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAiXblyhVVqFBB+/btS9K6q1evasCAAapcubLKlSunDh066MSJE6+iZADAa45QCwAAEuXy5cvy9/fXvXv3krTu/v378vPz08mTJzV69GhNmTJFDx48UMeOHXXt2rVXUToA4DWWLrULSEu8vb31999/W96bTCY5ODioVKlS6tOnjypWrPhSxz948KDMZrMqVKjw3O3Wrl2rVatWKTQ0VJJUrFgxdejQQfXr17eqtWnTpurVq9dL1QQAwIvExsZq3bp1mjhxYpLWxVmyZInu3LmjLVu2KFeuXJKkMmXKqFmzZtq/f78aNmyYYrUDAF5/9NT+g7+/v/bs2aM9e/Zo9+7dWrFihTJlyqTOnTvr0qVLL3Xs1q1b6/z5889cbzab1adPH02YMEG+vr5asWKFVq5cqVq1aqlfv36aO3fuS50fAIB/4/Tp0xo5cqTeffddTZo0KdHr4mzbtk3169e3BFpJypkzp3788UcCLQDgpdFT+w8ODg7KmTOn5X2uXLk0evRo1apVS99//73at2+fYuf+6quv9P3332vVqlUqXbq0ZXn37t0VExOj6dOnq2HDhsqbN2+K1QAAwD/lyZNH33//vXLnzh3vftnnrZOkx48fKywsTI0bN9bUqVO1evVq3b59W+XKldMnn3yiYsWKvarLAAC8puipTYR06Z5kf3t7e0nSo0ePNHXqVNWtW1dubm5q0qSJtm3bZtk+JCRE9erV06effqry5curR48ecnV1lSQFBARoyJAhCZ5nxYoV8vLysgq0cdq3b6/FixcrR44cCe57+PBhtWvXTuXLl1flypUVEBCg27dvW9YfOXJErVu3lqenpypWrKhevXpZep4vXrwoV1dXq3+M/HPZkCFD1Lt3b/n7+6tcuXKaN2+eJOmHH35Qs2bN5O7urnr16mnq1KmKiopK3AcLADCELFmyKHfu3EleJ0nh4eGKjo7W4sWLtW/fPn366af64osvdPv2bbVp00ZXr15NqbIBAP8RhNoXuHr1qsaMGSMHBwfVrl1bktS/f3+tW7dOI0aM0IYNG+Tj46M+ffpo+/btlv3Onz+va9euad26derXr5/27NkjSRo6dKiGDRsW7zyRkZEKDQ1VuXLlEqzD0dFRFSpUsATrpx05ckRt27ZVsWLF9M0332jatGn6/fff1alTJ8XExCgmJkZdu3ZVxYoVtWHDBi1evFiXLl3S0KFDk/RZbNu2TdWqVdOaNWvUsGFD7d69W3379lWLFi20adMmjRw5Ulu3btXHH3+cpOMCAF5fjx8/tvw8f/58eXl56a233tLcuXP14MEDLV++PBWrAwC8Dhh+/A9z5szRwoULJUnR0dGKioqSs7Ozpk6dqrx58yosLEw7duzQ7Nmz5eXlJUnq1auXTp06pdmzZ8vHx8dyrB49eqhAgQJWx3d0dJSjo2O88969e1eS5OTklOSaFy5cKFdXV40YMUKS5OzsrMDAQDVp0kR79uyRh4eHbt++rVy5cilfvnwqUKCApk6dqps3bybpPE5OTurcubPl/YABA9SiRQu1atVKklSwYEGNHj1a7du318WLF5U/f/4kXwsA4PWSMWNGSVLlypUtP0tS3rx55ezszGN9AAAvjVD7D61atVLbtm0lSTY2NsqSJYtVCD19+rQkqXz58lb7VaxYUYGBgVbLChcunOjzZsmSRSaTyWrIcGKFhoaqevXqVstKlCghR0dHnT59WrVr11bnzp01duxYTZ8+XVWqVFHt2rX19ttvJ+k8hQoVsnp/4sQJHTlyRKtXr7YsM5vNkqSwsDBCLQBAjo6OypYtW4K3pkRHRyt9+vSpUBUA4HVCqP0HJyeneOEtMcxms+Xe2zhJ+T9qe3t7lSlTRocOHUpwfXh4uD766CN99NFHqlSpUrxzP6smOzs7SdLAgQPVunVr7dq1S3v37tXYsWM1f/58rVu3LsF9Y2Ji4i375/XExsaqc+fOatq0abxtn55sCwDw31a7dm19//33unXrlrJlyyZJOnPmjM6ePav3338/lasDABgd99QmUdyETwcPHrRafuDAAbm4uLzUsVu0aKHdu3fr+PHj8dZ9+eWXOnDgQIK9n66urvHqOXXqlO7fvy9nZ2edOXNGI0eOVPbs2fXBBx9o+vTpmj9/vsLCwnTq1ClL8L1//75l/3Pnzr2w3mLFiuns2bMqVKiQ5XXlyhVNmjRJDx48SOLVAwBeVz179pTJZFKnTp20fft2bdmyRd26dVPu3LnVvHnz1C4PAGBw9NQmkbOzs+rUqaPRo0fLZDKpUKFC2rx5s3bs2KGpU6c+d18HBweFhYXp9u3bypo1a7z1zZs3144dO9SxY0f16dNH1atX16NHj7RhwwYtWrRIgwcPTvBxPh07dlTr1q01duxYtW7dWjdu3NDYsWNVqlQpVa1aVffv39fmzZv16NEjdenSRTY2Nlq7dq2cnJxUtGhRZcyYUfny5dOSJUtUuHBh3blzR9OmTZPJZHru9Xz44Yfq27evgoOD9c477+jKlSsaNmyY8ufPT08tAMCiQIECWrFihT7//HN9/PHHsrW1VbVq1TR06FBlypQptcsDABgcofZfCAwMVGBgoIYNG6bw8HAVL15cQUFBqlev3nP38/f3t/SQzp49O956GxsbzZgxQ8uWLdOqVas0ZcoUpUuXTsWKFVNwcLDq1q2b4HHLli2r+fPna+rUqXr33XeVKVMm+fj4aMCAAbKzs1PWrFk1b948TZkyRS1atFBMTIw8PDy0aNEiyz8mJk2apHHjxqlJkyYqVKiQAgIC1KVLl+deT4MGDfTFF19ozpw5mj17trJkySJvb28NHDgwkZ8kAMBoKleubJlfIinrXFxcEvz/PgAAXpbJ/KwbMoFX7OjRo5Iku/WjFHH+ZCpXAwD/PRkKllSJ4WtSuww8w8OHD3Xy5EmVLFlSDg4OqV0OXjO0L6S0pLaxuGzg5ub2wm25pxYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFjpkrrDnDlz9O677+rNN99MiXoApc/tnNolAMB/Et+/AAAjSnKonTdvnqZPn66qVauqWbNm8vHxkb29fUrUhv+owp0npXYJAPCfZY6NkcnGNrXLAAAg0ZI8/HjPnj0aP368zGazBg4cqJo1a2r06NE6cuRIStSH/5ioqChFRESkdhl4TUVEROjEiRO0MaSI16V9EWgBAEaT5J7a9OnTq3HjxmrcuLGuXLmi9evX69tvv9WKFSvk4uKiZs2aqUmTJsqWLVtK1Iv/ALPZnNol4DVlNpsVERFBG0OKoH0BAJA6XmqiqNy5c6tjx47q0aOHKlSooD/++EOTJk2Sl5eXRo0apfv37ydXnQAAAAAAxJPknto4+/fv1/r167Vt2zY9fPhQVapUUWBgoGrVqqXdu3drzJgxunTpkubOnZuc9QIAAAAAYJHkUPvFF19o48aNunz5svLkyaMOHTqoWbNmyps3r2UbX19fnT59Wl9++WWyFgsAAAAAwNOSHGoXLVokHx8fjR07VtWqVZPJZEpwOzc3N/Xt2/dl6wMAAAAA4JmSHGq7du2qBg0ayNn5+c+y8/Hx+ddFAQAAAACQGEmeKGrevHm6ePFiStQCAAAAAECSJDnUOjs76+zZsylRCwAAAAAASZLk4cd16tRRYGCgfvzxR7m6usrBwcFqvclkUs+ePZOtQAAAAAAAniXJoTY4OFiS9NNPP+mnn36Kt55QCwAAAAB4VZIcak+dOpUSdQAAAAAAkGRJDrVPCwsL071795QtWzYVLFgwuWoCAAAAACBR/lWo3bRpkyZOnKgbN25YluXIkUMDBgzQu+++m1y1AQAAAADwXEkOtf/73//08ccfq0qVKurfv79y5Miha9euacOGDQoICFCWLFnk5eWVAqUCAAAAAGAtyaF21qxZatCggb744gur5e+995769eunOXPmEGoBAAAAAK9Ekp9TGxoaqqZNmya4rmnTpkwkhZdmMplSuwS8pkwmkzJkyEAbAwAAeI0kuac2a9asunv3boLr7ty5I3t7+5cuCv9d9vb2ypAhQ2qXgddUhgwZVKpUqdQuAwZijo2VySbJf/8FAACvUJJDbdWqVRUcHKyKFSsqd+7cluWXL1/WjBkzVL169WQtEP89t7dNV/Stv1O7DAD/cemy5VPW+r1TuwwAAPACSQ61/fv313vvvae33npLnp6eypEjh27cuKHDhw/LyclJAwYMSIk68R8SfetvPb5+NrXLAAAAAGAASR5TlTNnTq1du1Zt27ZVRESEjh07poiICLVt21Zr165Vvnz5UqJOAAAAAADi+VfPqc2ePbs+/vjj5K4FAAAAAIAkSXKoDQ4OfuY6GxsbOTg4qFChQqpevTqTRgEAAAAAUlSSQ+2GDRt05coVRUVFKV26dMqSJYvu3Lmj6OhomUwmmc1mSZKLi4u+/PJLZcuWLdmLBgAAAABA+hf31Pbp00f29vYKDAzUkSNHtGfPHh09elTBwcHKmjWrpk6dqo0bN8pkMikwMDAlagYAAAAAQNK/CLVBQUHq27evfH19ZfP/n91nMpnk4+Oj3r17a9q0aSpWrJi6deumXbt2JXvBAAAAAADESXKovXz5sgoVKpTgunz58unvv588X/TNN9/U3bt3X646AAAAAACeI8mh1sXFRatWrUpw3erVq1WkSBFJ0rlz55QrV66Xqw4AAAAAgOdI8kRRvXr1Us+ePdW0aVO99dZbyp49u27cuKHt27fr9OnTmj59uk6cOKHJkyfrvffeS4maAQAAAACQ9C9CrZeXlxYsWKCgoCAFBwcrJiZG6dKlU/ny5bVkyRJVqFBB//vf//TOO++ob9++KVAyAAAAAABPJDnUSlKVKlVUpUoVRUVF6e7du8qePbtl0ihJ8vb2lre3d7IVCQAAAABAQv5VqJWkXbt26eeff9b169fVr18/nTx5UqVLl1a+fPmSsz4AAAAAAJ4pyaE2IiJCPXv21M8//6xMmTLpwYMH6tSpk77++mudOHFCy5YtU7FixVKiVgAAAAAArCR59uPAwEAdP35cixcv1i+//CKz2SxJmjhxot58801NmzYt2YsEAAAAACAhSQ61W7duVf/+/VWlShWZTCbL8ly5cql79+46ePBgshYIAAAAAMCzJDnUhoeHP/O+WScnJz18+PCliwIAAAAAIDGSHGqLFSumjRs3Jrjuf//7H/fTAgAAAABemSRPFNW9e3d99NFHunPnjurUqSOTyaRff/1VISEhWrFihaZMmZISdQIAAAAAEE+SQ62Pj48mT56sKVOmaNeuXZKkCRMmKHv27Bo1apQaNGiQ7EUCAAAAAJCQf/Wc2kaNGqlRo0Y6c+aM7ty5o8yZM6to0aKysUnyaGYAAAAAAP61JKfQdu3aKSwsTJJUtGhRlStXTi4uLrKxsdGpU6fUqFGjZC8SAAAAAICEJKqn9sCBA5bn0e7fv1+//vqrbt26FW+7H374QRcuXEjeCgEAAAAAeIZEhdpVq1Zp/fr1MplMMplMGj16dLxt4kJvw4YNk7dCAAAAAACeIVGhdvjw4XrvvfdkNpvVvn17ffLJJ3JxcbHaxsbGRpkzZ+aRPgAAAACAVyZRodbR0VGVKlWSJH355ZcqVaqUMmXKlKKFAQAAAADwIkme/bhSpUq6evWqdu/eraioKMvy2NhYRURE6MCBA/riiy+StUgAAAAAABKS5FD77bffauDAgYqOjpbJZJL05H7auJ+LFi2avBUCAAAAAPAMSX6kz+zZs1W6dGmFhISoWbNmatKkiTZv3qyPP/5Ytra2Gjp0aErUCQBAmhAbG6sFCxaoXr16cnNz09tvv61ly5ZZbRMeHq5Ro0apevXq8vT0VMuWLbV3795UqhgAgNdbkntqz549qylTpqhUqVKqXLmyFi5cKGdnZzk7O+vGjRuaPXu2qlevnhK1AgCQ6iZMmKAlS5aoVatWqlevns6fP69p06bp7Nmz8vX1VUxMjD788ENdunRJH3/8sbJnz64vv/xSXbp00apVq1SiRInUvgQAAF4rSQ61NjY2cnJykiQVKlRIZ86cUWxsrGxsbFSrVi2tXbs22YtMLG9vb/3999+W9yaTSQ4ODipVqpT69OmjihUrvtTxDx48KLPZrAoVKiS4vm3bttq/f7/lfbp06ZQ1a1ZVqVJFffv2Vf78+a1qbdq0qXr16vVSNb2Mx48fa/ny5erQoYMkKSgoSGvXrtX//ve/VKsJANKyW7duadmyZXr//fetHm+XJ08e9ejRQ2XLllVYWJiOHTumkJAQubq6SnoyH0Xjxo31008/EWoBAEhmSR5+XLRoUR06dMjyc1RUlE6dOiXpyXCrpyePSg3+/v7as2eP9uzZo927d2vFihXKlCmTOnfurEuXLr3UsVu3bq3z588/d5u3337bcv5t27Zp8uTJOn/+vFq1amV1/tWrV8vf3/+l6nlZmzZt0vjx4y3v/f39tXr16lSsCADStnPnzikmJkZ16tSxWl65cmXFxsbqyJEj2r59uypWrGgJtJL0xhtvaNu2berUqdOrLhkAgNdekkNtq1atNG3aNH3xxRdydHRUlSpVFBAQoKVLl2rKlCkqXbp0StSZaA4ODsqZM6dy5sypXLlyqXjx4ho9erQePXqk77//PsXPnz59esv58+fPr6pVq2rBggWytbVVYGCgZbts2bIpY8aMKV7P85jNZqv3GTNmVLZs2VKpGgBI+7JmzSpJ8f5IGvcHz2vXrun06dNycXHR4sWL5e3trdKlS6tZs2Y6cODAK68XAID/giSH2vfff1/Dhg2z9MiOHTtWkZGR+uyzzxQdHa1hw4Yle5EvK126J6Os7e3tJUmPHj3S1KlTVbduXbm5ualJkybatm2bZfuQkBDVq1dPn376qcqXL68ePXpY/uIeEBCgIUOGJOn8jo6Oatasmb7//nvL5+bt7a2goCBJUkREhIYNG6bq1avLzc1N7777rr777jvL/m3bttWIESP0/vvvq0KFCtqwYYOGDBmitm3bWp3n6WUXL16Uq6ur1q1bp4YNG8rd3V0tWrTQwYMHLdcYEBAgSXJ1ddW+ffsUFBQkb29vy/EuX76sgQMHqnr16vLw8FCnTp0svfJx5xsyZIgmTpyoqlWrqmzZsuratauuXr2apM8HAIyiSJEiKl++vIKCgvT999/r3r17OnHihIYNGyZ7e3tFRkbqzp07+vbbb7Vq1SoNGjRIM2fOVIYMGeTv72/1HQoAAJJHkkOtJPn5+Wnw4MGSpAIFCmjr1q36+eeftWPHDqvhVmnB1atXNWbMGDk4OKh27dqSpP79+2vdunUaMWKENmzYIB8fH/Xp00fbt2+37Hf+/Hldu3ZN69atU79+/bRnzx5J0tChQ/9VcC9evLgePXqkc+fOxVs3bdo0nT59WnPnztWWLVtUq1Yt9evXTxcvXrRss2rVKrVr105fffWVatasmejzTpgwQd26ddPatWtVtGhR+fv768KFC/L19bXMVL1nzx55enpa7Xf//n198MEHunr1qmbNmqUVK1Yoffr0atOmjdV9y5s2bdKdO3e0bNkyzZs3T8ePH9fUqVOT9uEAgIFMnz5dFSpU0EcffaQKFSqoffv2atmypZycnGRvb6/Hjx/r3r17WrBggRo0aKDatWtrzpw5ypgxo+bNm5fa5QMA8NpJ0kRRt27d0v3791WwYEGr5UuXLpWvr2+yFvZvzZkzRwsXLpQkRUdHKyoqSs7Ozpo6dary5s2rsLAw7dixQ7Nnz5aXl5ckqVevXjp16pRmz54tHx8fy7F69OihAgUKWB3f0dFRjo6OSa4rc+bMkqR79+7FW3f+/HllzJhRBQoUUObMmS2TWsVNyCVJJUuWVKNGjZJ83i5duqhhw4aSnvSq//LLL/rmm280YMAAy3XkzJkz3n4bNmzQ7du3FRISYhmSPGXKFPn4+Gj58uUaNGiQpCefx5gxY2RnZydnZ2f5+vpq165dSa4TAIwiR44cmjlzpsLDw3Xt2jUVLFhQNjY2GjlypDJlyiQHBwe5uLgod+7cln0yZcokT09PnThxIhUrBwDg9ZTontp169bJ29tbK1assFp+5coVjRs3Tt7e3tq6dWuyF5hUrVq10rp167Ru3Tpt2bJFBw4c0JYtWyy9tKdPn5YklS9f3mq/ihUrKjQ01GpZ4cKFk62uuDAbF26f9uGHH+rUqVOqWrWqPvjgA82aNUsFCxa0Cs+FChX6V+etXLmy5Wc7OzuVKVMm3nUmJDQ0VIULF7a6xzZ9+vRyd3e32r9gwYKys7OzvHd0dNTjx4//Va0AYASbN2/WqVOnlDlzZrm4uMje3l4nT55UbGysChcurIIFCyY4aWJ0dLTSp0+fChUDAPB6S1SoPXjwoIYOHaqKFSuqSZMmVuty586ttWvXqmLFihowYICOHj2aIoUmlpOTkwoVKqRChQqpQIECie5VNZvNlntv4yTnPz6OHz8uBweHBIOyp6endu3apenTp6t06dJat26dfH19tXfv3iTVEh0dHW/ZP68pJiZGNjYv/rX/cxKpOLGxsVbHjLtPGQD+K2bNmqW5c+daLVu8eLEyZcqkUqVKqUaNGjp58qTCwsIs62/fvq1Dhw7F+4MqAAB4eYkKtfPmzVOVKlU0b968BO+ZLVmypObNm6cyZcpozpw5yV5kcoqrP27CpDgHDhyQi4tLipzz/v37WrdunRo0aGDVqxln+vTpOnjwoOrWravhw4dr27ZtKlCggNXkVf9kZ2en+/fvWy3766+/4m339B8ZoqKidPz4ccsM1SaT6ZnHd3V11blz53Tz5k3LssjISB07dizFPicAMIK2bdtqy5YtmjVrln755Rd98skn2rRpk3r37i0HBwe1bt1auXPnVpcuXbRp0ybt2LFDH374oUwmE4/0AQAgBSQq1B4/flwtW7Z8/oFsbOTn56djx44lS2EpxdnZWXXq1NHo0aO1c+dOnT17VsHBwdqxY8cLnxvr4OCgsLAw3b59+5nbPHr0SNevX9f169d16dIl7dmzR126dJHZbFbfvn0T3OfChQsaOXKk9u7dq7///lvbtm3TpUuX4k3e9DQPDw+dOnVKGzZs0IULFzRjxowEhxVPnTpVO3fu1J9//qmhQ4cqIiJCLVq0sFyPJB07dkyPHj2y2q9Ro0bKkiWL+vbtqyNHjujUqVMaOHCgHj58+MK2AACvs5YtWyogIEAhISHq1q2bjh49qilTpuj999+X9OQ2k6+//loeHh4aM2aMBg4cKCcnJ3311VfKkydPKlcPAMDrJ1ETRd27d09ZsmR54XZ58uTRnTt3XrKklBcYGKjAwEANGzZM4eHhKl68uIKCglSvXr3n7ufv76/58+crLCxMs2fPTnCbrVu3Wu4tTpcunXLmzCkfHx8FBgbqzTffTHCfkSNHauLEifr44491584d5cuXTwMHDow31PtpjRs31smTJ/Xpp58qOjpab7/9ttq3b6/Dhw9bbffBBx9o4sSJunTpksqWLaulS5cqV65ckqQqVaqobNmyatWqlSZPnmy1n6Ojo5YtW6YJEyaoQ4cOkp7ch/z111/HmzwLAP5r2rdvr/bt21ste/jwoeXn3Llza8qUKa+6LAAA/pNM5mfdPPmUuMDUqlWr5273zTffaO7cuVaPxkHquHjxourWrasvv/zSarKotCxuqHTuY8v0+PrZVK4GwH+dXc4iyvnBxERv//DhQ508eVIlS5a0jIQBkhNtDCmJ9oWUltQ2FpcN3NzcXrhtooYf16lTR0uXLk1wNsc4kZGRWrp0qWECFAAAAADA+BIVajt06KBbt26pQ4cOCd4ze/z4cXXq1EkXL1584X2pAAAAAAAkl0TdU5srVy4FBwerX79+ev/995U9e3blz59fMTExunz5sm7evKns2bMrODhYzs7OKV0zEiF//vyWZ/ICAAAAwOsqUaFWejJJ0MaNG7V27Vrt2bNHV65cka2trdzc3FSjRg01adJEmTJlSslaAQAAAACwkuhQK0lOTk7q0KGDZTZcAAAAAABSU6LuqQUAAAAAIC0i1AIAAAAADItQCwAAAAAwLEItAAAAAMCwkhxqf/31Vz148CDBdeHh4dq8efNLFwUAAAAAQGIkOdS2a9dOYWFhCa47ceKEAgICXrooAAAAAAASI1GP9Bk8eLAuX74sSTKbzRo1alSCz6Q9d+6ccuTIkbwVAgAAAADwDInqqa1fv77MZrPMZrNlWdz7uJeNjY08PDw0fvz4FCsWAAAAAICnJaqn1tvbW97e3pKktm3batSoUXJ2dk7RwgAAAAAAeJFEhdqnLV26NCXqAAAAAAAgyZIcah89eqRZs2bphx9+UEREhGJjY63Wm0wmbd++PdkKBAAAAADgWZIcaj/77DOtXr1alSpVUsmSJWVjw6NuAQAAAACpI8mh9rvvvlO/fv3UpUuXlKgHAAAAAIBES3I36+PHj+Xu7p4StQAAAAAAkCRJDrU1atTQ7t27U6IWAAAAAACSJMnDj319fTVy5EjdunVLZcuWVYYMGeJt8+677yZHbQAAAAAAPFeSQ23fvn0lSevWrdO6devirTeZTIRaAAAAAMArkeRQu2PHjpSoAwAAAACAJEtyqM2XL5/V+8jISNnb28tkMiVbUQAAAAAAJEaSQ60knTlzRtOnT9fPP/+s+/fva9WqVVq9erWKFi2qtm3bJneNAAAAAAAkKMmzH588eVLNmzfX8ePH1ahRI5nNZkmSra2txo0bp7Vr1yZ7kQAAAAAAJCTJPbUTJ05UmTJltHDhQknS8uXLJUnDhw9XZGSkvvzySzVt2jR5qwQAAAAAIAFJ7qn97bff1KFDB6VLly7efbS+vr46d+5cctUGAAAAAMBzJTnUvvHGG3r06FGC6+7cuSN7e/uXLgoAAAAAgMRI8vDj6tWra/r06SpXrpxy5swp6cmzaR88eKCFCxeqWrVqyV4k/lvSZcv34o0AIIXxXQQAgDEkOdR+/PHHatmypRo0aKASJUrIZDJpwoQJOnv2rMxmswIDA1OiTvyHZK3fO7VLAABJkjk2ViabJA9qAgAAr1CS/586T548Wr9+vdq3by+z2ayCBQvq4cOHatiwoUJCQlSgQIGUqBP/EVFRUYqIiEjtMvCaioiI0IkTJ2hjSDQCLQAAaV+Se2pv3bqlbNmyqV+/filRD2B5TBSQ3MxmsyIiImhjAAAAr5Ek/wm6Vq1a6t69u7799ltFRUWlRE0AAAAAACRKkkPtwIEDdfPmTfXt21fVq1fX8OHDdeDAgZSoDQAAAACA50ry8OMOHTqoQ4cOunDhgjZt2qQtW7Zo9erVyps3rxo3bqxGjRrJ2dk5JWoFAAAAAMDKv54Bo0CBAurevbs2btyojRs3ysvLS/PmzVPDhg2Tsz4AAAAAAJ4pyT21T7t586a2bt2qrVu36vDhw8qSJYt8fX2TqzYAAAAAAJ4ryaH23r172rZtmzZv3qxff/1Vtra28vb21syZM1WzZk3Z2tqmRJ0AAAAAAMST5FBbtWpVxcbGqnz58ho1apQaNGigTJkypURtAAAAAAA8V5JDba9evdSoUSPlzZs3JeoBAAAAACDRkjxRVNeuXZ8ZaB89eqRTp069dFEAAAAAACRGokJtjRo1dPLkSatlixYt0q1bt6yWnT59Wk2bNk2+6gAAAAAAeI5EhdobN27o8ePHlvcxMTGaNGmSLl++nGKFAQAAAADwIv/6ObVmszk56wAAAAAAIMn+dagFAAAAACC1EWoBAAAAAIZFqAUAAAAAGNZLhVqTyZRcdQAWtCukFJPJpAwZMtDGAAAAXiPpErthz549ZW9vb7WsW7dusrOzs7yPiopKvsrwn2Rvb68MGTKkdhl4TWXIkEGlSpVK7TJSldkcK5OJQToAAOD1kahQy7Nn8SrdP7pFMQ9uvXhDAElimzGbMrn5pnYZAAAAySpRoXb8+PEpXQdgEfPglmLuXUvtMgAAAAAYAGPQAAAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABhWutQuAACQOvbt26d27do9c32vXr300UcfWd5HR0erdevWqlmzpnr16vUqSgQAAHghQi0A/EeVLl1aK1eujLd86tSpOnr0qN555x3LssjISA0aNEi///67atas+SrLBAAAeK5UH37s7e0tV1dXLVq0KMH1n3zyiVxdXRUUFPRS52nbtq2GDBlief/DDz/ozz//lPSkt8LV1VUXL158qXP8G998841cXV01bty4RG2flFovXrwoV1dX7du372XLBPAaypQpkzw8PKxeN2/e1N69e/XZZ5+pSJEikqQDBw7o/fff1y+//JLKFQMAAMSX6qFWkuzs7LRt27Z4y6Ojo/Xdd9/JZDK99DmCgoI0bNgwSdLff/+tbt266ebNm5IkT09P7dmzR3ny5Hnp8yRVSEiIihQponXr1ikyMjJZj50nTx7t2bNHnp6eyXpcAK+nR48e6dNPP5WXl5caNGhgWd69e3flzZtXISEhqVgdAABAwtJEqK1atap+++03XblyxWr5L7/8IgcHh2QJm1myZJGjo6MkyWw2W62zt7dXzpw5ZWtr+9LnSYqwsDAdPnxYAwcOVHh4uLZu3Zqsx7e1tVXOnDllb2+frMcF8Hr68ssvdfXqVQ0dOtRq+bJlyzR79mzly5cvlSoDAAB4tjQRat3d3ZU3b159++23Vsu3bNmit99+O15P7apVq9SoUSO5u7vLw8NDrVu31tGjRy3rvb29NXHiRPn6+qpy5crav3+/ZfjxxYsXVbduXUlSu3btFBQUFG9Ir7e3t+bOnasuXbqobNmy8vb21vbt27V9+3bVr19fHh4e6tSpk6WnV3oSUD/88EN5enqqRo0aGjBggK5fv/7c6w4JCZGTk5Pq1KmjcuXKacWKFfG2iRv25+7ursaNG+vUqVNW+7u5uSk8PNxqHx8fH33xxRfxhh+fO3dOnTp1Uvny5eXp6alOnTrp9OnTlv3u3Lmj0aNHq3bt2nJ3d1erVq2shi4HBQWpTZs26tevn8qVK6eRI0eqatWqCg4Otjr/ihUrVKNGDUVHRz/3+gGkHVFRUfryyy/l6+urQoUKWa1zdXVNpaoAAABeLE2EWkl6++23rUJtVFSUtm/fbjVRiSR9//33GjNmjDp37qytW7dq8eLFioyM1PDhw622W7ZsmYYPH6758+fLw8PDsjxPnjxatWqVpCchzd/fP8F6Zs6cKV9fX23cuFElSpTQoEGDNHv2bE2ePFmzZ8/W0aNHNW/ePEnS1atX1bp1axUqVEirV6/W7Nmzdf/+fbVs2VIPHz5M8PgxMTFav369fHx8ZGtrK19fXx0+fNgqtF64cEH+/v4qWbKk1q5dq549e2rmzJmW9Q0aNFC6dOmshm4fOnRIFy5cULNmzeKds3///nrzzTe1Zs0arVq1SjY2NpaZTWNiYuTv768DBw5o8uTJCgkJUfHixdWpUycdOXLEcoxff/1VOXLk0Pr169WxY0c1btxYGzZssDrPunXr1LhxY6VLxzxkgFFs27ZN169fV+fOnVO7FAAAgCRJU6H2t99+09WrVyVJP/30k7Jly6ZSpUpZbZclSxZ99tlnatKkifLlyycPDw81b95coaGhVtvVrl1b1apVk5ubm9XwW1tbW2XLlk2S5OTkpIwZMyZYj5eXl959910VLFhQLVq00IMHD9SvXz+5u7urSpUqqlatmv744w9J0tdff63cuXNr+PDhcnZ2VpkyZTR16lTdvHkzXu9znN27d+v69euW0N6gQQPZ2tpazUT6zTffKEeOHBo5cqScnZ1Vv359de/e3bLewcFBDRo00MaNGy3LNm7cqHLlysXraZGk8+fPK1u2bMqXL59cXFw0btw4ffrpp4qNjdWePXt0/PhxTZkyRZUqVZKLi4tGjx6tYsWKacGCBVbH6d27twoUKKDChQvrvffe019//aXDhw9Lks6ePavDhw8nGKoBpF3btm1TsWLFVKJEidQuBQAAIEnSTKgtU6aMChQoYOl13LJlS7xeWkmqWLGiSpcurRkzZmjAgAFq3ry5xo0bp9jYWKvtEgp1SfH0/hkyZJAkFSxY0LIsffr0ioqKkiSdOHFCf/zxhzw9PS2vatWqKTIyUmFhYQkef82aNcqePbuqVKkiScqRI4eqVKmiDRs2WHp3Q0NDVapUKat7fcuVK2d1nGbNmunXX3/V1atX9fjxY23duvWZgbJfv35atGiRKleurG7duum7775TiRIlZGNjo9DQUDk6Oqp48eKW7U0mkypUqGD1B4Ps2bNb7k2WpOLFi8vNzU3r1q2T9KSX1t3dXS4uLs/4ZAGkNY8fP9aePXusJocCAAAwijQ1PjRuCHLLli21Y8cOyzDhp23cuFFDhgxRo0aNVK5cObVq1UqhoaEaM2aM1Xbp06d/qVoSGjr7rFmYY2NjVaVKFY0cOTLeuqcDYJxbt25p586devz4sdzc3KyOYzabtWnTJrVo0UImkyleWP9nXRUqVFC+fPm0adMmFS1aVI8ePdLbb7+dYJ1+fn5q0KCBdu3apb1792r69OmaNWuW1q1bF2/yrDhms9nqnAl9ru+9956++OILDRs2TBs3bmT4ImAwoaGhioiIUPny5VO7FAAAgCRLMz210pNQe+jQIa1Zs0YFChSQs7NzvG3mzp2r5s2ba8KECfLz81PFihV14cIFSfFnNX6W5HhE0NOKFSumsLAw5cmTR4UKFVKhQoXk5OSkcePGxRsWLUkbNmzQ48ePNWPGDK1bt87qlS1bNsuEUSVKlNCxY8csPcKSdOzYsXjX0rRpU3333XfavHmzfHx8lClTpnjnvHnzpsaMGaPHjx+rWbNmmjx5sjZs2KDr169r//79cnV11b1796zqNZvNOnjw4At7XRs2bKjIyEgtWrRIN27cUMOGDZP0+QFIXXH/3Sf0nQsAAJDWpalQW7JkSRUqVEhTpkxJcOix9GSip0OHDun48eM6f/68Fi9erGXLlkmSVfh7HgcHB0lP/iF37969l667devWunfvngYOHKhTp07p1KlT6tevn44ePWo1nDfOmjVr5OnpKR8fHxUvXtzyKlGihFq3bq3jx4/r6NGj+uCDDxQREaGhQ4cqLCxMP/zwg4KCguIdr2nTpjp69Kh27NjxzKHHTk5O2rlzp4YPH66TJ0/qwoULWrFihezs7FSmTBnVqFFDJUuW1IABA7R//36FhYVpzJgxCg0NVfv27Z97/Y6OjqpXr55mzpypunXrKnPmzP/ugwSQKm7cuCHpyfcEAACA0aSpUCs96a29f/++fH19E1w/YsQI5ciRQ23atNH777+vH374QZMmTZIkq8f6PE/WrFn13nvvadKkSZo2bdpL11ygQAEtW7ZMDx480AcffKA2bdrIzs5OX375pWVSqjjHjh1TaGio/Pz8EjxW69at9cYbb2jFihV68803tWTJEl25ckVNmzbVhAkTrCaKipM3b15VqlRJTk5Olnt0/yldunSaN2+ebGxs1KFDB73zzjv6+eefNXfuXBUsWFC2trZauHChSpUqpY8++kjvvfee/vjjDy1evNhq9uhnadasmR49esQEUYABffjhhzp9+rTeeOONF257+vRp9erV6xVUBQAAkDgmc2LH7ALPERISoqCgIO3YsUM2Nv/ubyVxf5Qo+OB3xdy7lpzlAZBk65hLTlXapHYZr62HDx/q5MmTKlmypGVEEJCcaGNISbQvpLSktrG4bPD0HETPkqYmioLxHD9+XGfOnNH06dPVpk2bfx1oAQAAAODfIIHgpfz2228aPny4ypYt+8J7bwEAAAAgudFTi5fi5+f3zPuDAQAAACCl0VMLAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAwyLUAgAAAAAMi1ALAAAAADAsQi0AAAAAwLAItQAAAAAAw0qX2gUA/2SbMVtqlwC8lvhvCwAAvI4ItUhzMrn5pnYJwGvLbI6VycQgHQAA8PrgXzZIU6KiohQREZHaZeA1FRERoRMnTvyn2xiBFgAAvG741w3SHLPZnNol4DVlNpsVERFBGwMAAHiNEGoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFmmOyWRK7RIAAAAAGAShFmmKvb29MmTIkNplpGlmszm1SwAAAADSjHSpXQDwT1HX/1Ts44jULiNNsrHLIPucLqldBgAAAJBmEGqR5sQ+jpA56mFql5EmxaZ2AQAAAEAaw/BjAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFngNxMbG6uuvv1ajRo3k6empunXraty4cbp//36C2y9ZskSurq66ePHiK64UAAAASF7pUrsAAC9v/vz5mjp1qjp16qSqVavq7Nmzmj59uv744w8tXLhQJpPJsu3Zs2cVGBiYitUCAAAAySfVe2q9vb3l6uqqRYsWJbj+k08+kaurq4KCgl7qPG3bttWQIUMs73/44Qf9+eefkqR9+/alWq/VN998I1dXV40bNy7Zj+3q6qqQkJBnrh8yZIjatm2brOf8448/tHPnzmQ9Jp4vNjZW8+bNU8uWLTVgwABVq1ZNfn5+GjlypH7++WcdO3bMsm1MTIwCAgKUJUuW1CsYAAAASEapHmolyc7OTtu2bYu3PDo6Wt99951VL9O/FRQUpGHDhkmS/v77b3Xr1k03b96UJHl6emrPnj3KkyfPS58nqUJCQlSkSBGtW7dOkZGRyXrsPXv2yNfXN1mP+SJdu3bV0aNHX+k5/+vu37+vJk2aqGHDhlbLixYtKkm6cOGCZdmCBQt048YNdenS5ZXWCAAAAKSUNBFqq1atqt9++01XrlyxWv7LL7/IwcEhWcJmlixZ5OjoKEkym81W6+zt7ZUzZ07Z2tq+9HmSIiwsTIcPH9bAgQMVHh6urVu3Juvxc+bMqfTp0yfrMZH2ZM6cWcOHD1f58uWtlm/fvl2S5OLiIulJL3pwcLDGjRunDBkyvPI6AQAAgJSQJkKtu7u78ubNq2+//dZq+ZYtW/T222/H66ldtWqVGjVqJHd3d3l4eKh169ZWvYPe3t6aOHGifH19VblyZe3fv98y/PjixYuqW7euJKldu3YKCgqKN/zY29tbc+fOVZcuXVS2bFl5e3tr+/bt2r59u+rXry8PDw916tTJ0tMrPQmoH374oTw9PVWjRg0NGDBA169ff+51h4SEyMnJSXXq1FG5cuW0YsWKeNv89ddf6t69u8qXL6/KlSurf//+VufdsGGDGjduLHd3d9WtW1dLliyxrHt6+LHZbNbMmTNVq1YteXh4KCAgIF7P8NWrV9WvXz9VqFBBlStXVrdu3XTu3DnL+iFDhmjIkCGaOHGiqlatqrJly6pr1666evWq5XP7+++/FRwcnOzDmpE0v//+u+bOnas6deqoePHiio6O1uDBg/X++++rUqVKqV0eAAAAkGzSRKiVpLffftsq1EZFRWn79u165513rLb7/vvvNWbMGHXu3Flbt27V4sWLFRkZqeHDh1ttt2zZMg0fPlzz58+Xh4eHZXmePHm0atUqSU+GJPv7+ydYz8yZM+Xr66uNGzeqRIkSGjRokGbPnq3Jkydr9uzZOnr0qObNmyfpSRhs3bq1ChUqpNWrV2v27Nm6f/++WrZsqYcPHyZ4/JiYGK1fv14+Pj6ytbWVr6+vDh8+rFOnTlm2CQ8Pl5+fn6KiorRkyRItWrRI58+fV9++fSU9Cf2DBw9WkyZNtGHDBvXv31+ff/55gvfRzp07V/Pnz9egQYMUEhKizJkza8uWLZb1Dx8+tATRZcuWaenSpcqaNatatGhhCa2StGnTJt25c0fLli3TvHnzdPz4cU2dOlWStHr1auXOnVv+/v4vfQ80/r2DBw+qc+fOyp8/v8aPHy9Jmj17tsLDwzVgwIBUrg4AAABIXmkq1P7222+WAPXTTz8pW7ZsKlWqlNV2WbJk0WeffaYmTZooX7588vDwUPPmzRUaGmq1Xe3atVWtWjW5ubnJ3t7estzW1lbZsmWTJDk5OSljxowJ1uPl5aV3331XBQsWVIsWLfTgwQP169dP7u7uqlKliqpVq6Y//vhDkvT1118rd+7cGj58uJydnVWmTBlNnTpVN2/ejNf7HGf37t26fv26JbQ3aNBAtra2WrlypWWbLVu26MGDBwoMDFSZMmVUqlQpffrpp/Lw8LAEXV9fX3Xq1EmFCxfWO++8oxEjRsQbcmw2m7V06VK1a9dODRs2VNGiRRUQEKCSJUtattm8ebPCw8M1efJklShRQsWLF9dnn32mTJky6ZtvvrFs5+joqDFjxsjZ2VmVKlWSr6+vDh06JEnKli2bbG1t5eDgwEREqWTLli3q2LGj8uTJo8WLFytr1qw6ceKEZs+erbFjx8re3l7R0dGKjY2V9GSSqZiYmFSuGgAAAPj30swjfcqUKaMCBQpo27ZtateunbZs2RKvl1aSKlasqLCwMM2YMUNnzpzRX3/9pdOnT1v+kR6nUKFCL1XP0/vH3X9YsGBBy7L06dNbhgGfOHFCf/zxhzw9Pa2OERkZqbCwsASPv2bNGmXPnl1VqlSRJOXIkUNVqlTRhg0b9PHHH8vBwUGhoaEqXLiwnJycLPuVKFFCJUqUkCSFhobG+4xatGgR71y3b9/W9evX5ebmZrXcw8PDUt+JEyd09+5dVaxY8bnXULBgQdnZ2VneOzo66vHjxwleI16tBQsWaPLkyapUqZJmzJhhuYd8x44devz4sTp06BBvn3r16qlSpUpaunTpK64WAAAASB5pJtRK/zcEuWXLltqxY4dlmPDTNm7cqCFDhqhRo0YqV66cWrVqpdDQUI0ZM8Zqu5edIClduvgfzbNmYY6NjVWVKlU0cuTIeOvigsXTbt26pZ07d+rx48dWQTM2NlZms1mbNm1SixYtEqzhRTUmJK7uf06Q9fT+sbGxKlKkiGbNmhVvfwcHB8vPT/d6I+1YsWKFJk2aJF9fX02cONHq99SiRQt5eXlZbb9z504FBwdr1qxZKly48KstFgAAAEhGaWb4sfQk1B46dEhr1qxRgQIF5OzsHG+buXPnqnnz5powYYL8/PxUsWJFyyNL/hnaniU5HhH0tGLFiiksLEx58uRRoUKFVKhQITk5OWncuHHxhkVLTyZ3evz4sWbMmKF169ZZvbJly2aZMMrFxUXnzp3TvXv3LPseP35cVatW1ZUrV+Ts7Bzv8Tnjx49X7969rZZlzZpVefLk0cGDB62WP/380uLFi+vSpUtydHS0XEPevHk1ZcoU/frrry/9GSHlXL9+XePHj1e+fPnk5+enEydO6LfffrO87Ozs5ObmZvXKly+fpCe/97hH/wAAAABGlKZCbcmSJVWoUCFNmTIlwaHH0pOJng4dOqTjx4/r/PnzWrx4sZYtWybpyeRSiRHX8xgaGmoVGP+t1q1b6969exo4cKBOnTqlU6dOqV+/fjp69KiKFy8eb/s1a9bI09NTPj4+Kl68uOVVokQJtW7dWsePH9fRo0fVqFEjOTk56eOPP9apU6d07NgxjRw5UsWLF1fu3LnVpUsXbdmyRUuXLtX58+e1ceNGff311/L29o53zg8//FDLly/XqlWrdPbsWU2dOlVHjhyxrG/cuLGcnJzUu3dv/f777woLC9OQIUO0e/duubq6JvqzyJgxo86dO6cbN278uw8TSbZr1y49evRIf//9t/z8/NSyZUur186dO1O7RAAAACDFpKlQKz3prb1//758fX0TXD9ixAjlyJFDbdq00fvvv68ffvhBkyZNkqR4vZbPkjVrVr333nuaNGmSpk2b9tI1FyhQQMuWLdODBw/0wQcfqE2bNrKzs9OXX35pmZQqzrFjxxQaGio/P78Ej9W6dWu98cYbWrFihTJkyKAFCxYoOjparVq1UufOneXi4mKZbdjb21tjxozR8uXL5evrq+DgYAUEBOjdd9+Nd1w/Pz99/PHHmjVrlpo0aaI//vhDzZs3t6x3dHTUsmXLlDVrVnXq1EnNmzfX1atXtXDhwgR7zJ+lbdu22rlz5zNnlUbya968uU6fPv3MV7NmzeLt06xZM50+fVr58+dPhYoBAACA5GMyJ3bMLpDC4v4oUSy7ZI5K+FFI/3Umewelz+v24g2RoIcPH+rkyZMqWbKk1b3iQHKgfSGl0caQkmhfSGlJbWNx2eCfk90mJM311AIAAAAAkFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFiEWgAAAACAYRFqAQAAAACGRagFAAAAABgWoRYAAAAAYFjpUrsA4J9s7DIoNrWLSKNs7DKkdgkAAABAmkKoRZpjn9MltUtI08xms0wmU2qXAQAAAKQJDD9GmhIVFaWIiIjULiNNI9ACAAAA/4dQizTHbDandgkAAAAADIJQCwAAAAAwLEItAAAAAMCwCLUAAAAAAMMi1AIAAAAADItQCwAAAAAwLJOZqWaRRhw6dEhms1l2dnY8tgYpwmw26/Hjx7QxpAjaF1IabQwpifaFlJbUNhYVFSWTyaRy5cq9cNt0yVEgkBziGjdfpEgpJpNJ9vb2qV0GXlO0L6Q02hhSEu0LKS2pbcxkMiU6F9BTCwAAAAAwLO6pBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoBQAAAAAYFqEWAAAAAGBYhFoAAAAAgGERagEAAAAAhkWoRaqLjY3V9OnTVbNmTXl4eOjDDz/UhQsXUrssGNjVq1fl6uoa7xUSEiJJOnnypNq0aSMPDw95e3vryy+/TOWKYRRz5sxR27ZtrZa9qD3xHYekSKiNDR8+PN73mbe3t2U9bQzPc+fOHX3yySeqVauWypUrpw8++EAHDhywrN+7d6+aNWumsmXLqkGDBtq8ebPV/pGRkRo9erSqVq0qT09PDRgwQLdu3XrVl4E06kXtq2PHjvG+v57+jku29mUGUllQUJC5cuXK5h9++MF88uRJs7+/v/mtt94yR0ZGpnZpMKidO3ea3dzczFevXjVfu3bN8oqIiDDfunXLXLlyZXNAQID5zz//NK9evdrs5uZmXr16dWqXjTRu2bJl5hIlSpjbtGljWZaY9sR3HBIroTZmNpvNzZs3NwcGBlp9n928edOynjaG5+nYsaO5YcOG5l9//dV85swZ8+jRo83u7u7msLAw859//ml2c3MzBwYGmv/880/z/PnzzaVKlTL//PPPlv2HDBli9vHxMf/666/m33//3fzuu++a/fz8UvGKkJY8r32ZzWZz1apVzV999ZXV99ft27ct+ydX+yLUIlVFRkaaPT09zcuXL7csu3v3rtnd3d28cePGVKwMRjZ37lxzo0aNElw3e/Zsc40aNcyPHz+2LJsyZYr5rbfeelXlwWCuXLli7tq1q9nDw8PcoEEDq8DxovbEdxwS43ltLDY21uzh4WH+7rvvEtyXNobnOXfunLl48eLmAwcOWJbFxsaafXx8zFOnTjWPGDHC3Lx5c6t9+vfvb/b39zebzU/aZokSJcw7d+60rD9z5oy5ePHi5kOHDr2ai0Ca9aL2dePGDXPx4sXNx48fT3D/5GxfDD9Gqjp16pQePHigqlWrWpZlzpxZpUqV0q+//pqKlcHITp8+LWdn5wTXHThwQJUqVVK6dOksy6pUqaJz587pxo0br6pEGMjx48dlZ2enDRs2qGzZslbrXtSe+I5DYjyvjZ0/f14PHz5U0aJFE9yXNobnyZo1q+bOnSs3NzfLMpPJJJPJpPDwcB04cMCq7UhPvsMOHjwos9msgwcPWpbFKVKkiN58803aF17Yvk6fPi2TyaQiRYokuH9yti9CLVLVlStXJEl58uSxWp4rVy7LOiCpQkNDdevWLfn5+alatWr64IMPtHv3bklP2lzu3Lmtts+VK5ck6fLly6+8VqR93t7eCgoKUoECBeKte1F74jsOifG8NhYaGipJWrp0qby9veXj46MxY8bo3r17kvj/UTxf5syZVbt2bdnb21uWbdu2TX/99Zdq1qz5zO+wiIgI3b59W1evXlXWrFn1xhtvxNuG9oUXta/Q0FA5OjpqzJgxqlWrlho0aKCpU6cqKipKkpK1fRFqkaoiIiIkyeo/Bkl64403FBkZmRolweCio6N15swZ3b17V7169dLcuXPl4eGhLl26aO/evXr06FGC7U0SbQ5J9qL2xHccXlZoaKhsbGyUK1cuzZ49W0OGDNGePXvUo0cPxcbG0saQJIcOHVJAQIDeeusteXl5JfgdFvc+KipKERER8dZLtC8k7J/tKzQ0VJGRkXJ3d9f8+fPVvXt3rVq1SsOHD5ekZG1f6V68CZBy0qdPL+nJF2fcz9KTfwxmyJAhtcqCgaVLl0779u2Tra2tpU2VKVNGf/zxhxYsWKD06dNb/kIYJ+6L08HB4ZXXC2N7UXviOw4vq3v37mrdurWyZs0qSSpevLhy5sypFi1a6OjRo7QxJNr27ds1cOBAlStXTp9//rmkJ+Hhn99hce8zZMiQ4HecRPtCfAm1rzFjxmjw4MFycnKS9OT7y87OTv369dOgQYOStX3RU4tUFTdc6tq1a1bLr127pjfffDM1SsJrIGPGjFb/uJOkYsWK6erVq8qdO3eC7U0SbQ5J9qL2xHccXpaNjY0l0MYpVqyYpCdDj2ljSIxly5apV69eqlOnjmbPnm0ZUZInT54E246Dg4McHR2VO3du3blzJ17woH3hac9qX+nSpbME2jhPf38lZ/si1CJVlShRQpkyZdK+ffssy8LDw3XixAlVrFgxFSuDUf3xxx8qV66cVZuSpGPHjsnFxUUVK1bUwYMHFRMTY1n3yy+/qEiRIsqePfurLhcG96L2xHccXtagQYPUoUMHq2VHjx6VJLm4uNDG8EJfffWVxo4dKz8/PwUGBloN96xQoYL2799vtf0vv/yicuXKycbGRuXLl1dsbKxlQh9JOnv2rK5evUr7gqTnt6+2bdsqICDAavujR4/Kzs5OhQsXTtb2RahFqrK3t1ebNm30+eefa8eOHTp16pT69eun3Llz66233krt8mBAzs7OKlq0qMaMGaMDBw4oLCxM48eP12+//abu3bvrvffe0/379zVs2DD9+eefCgkJ0eLFi9W1a9fULh0G9KL2xHccXlb9+vW1d+9eBQcH6/z589q1a5eGDh2qhg0bytnZmTaG5zp79qzGjRunevXqqWvXrrpx44auX7+u69ev6969e2rbtq2OHDmizz//XGFhYVq4cKG+/fZbde7cWdKTESfvvPOOhg8frn379unIkSPq37+/KlWqJA8Pj9S9OKS6F7Wv+vXra/369fr666914cIFbdmyRZMmTVKnTp2UKVOmZG1fJrPZbE6ZywQSJyYmRoGBgQoJCdGjR49UsWJFffLJJ8qfP39qlwaDunHjhqZMmaIff/xR4eHhKlWqlAYOHKgKFSpIko4cOaLPPvtMJ06cUM6cOeXv7682bdqkctUwgiFDhujvv//W0qVLLcte1J74jkNSJNTGtm7dqrlz5+rMmTNydHRUo0aN1LdvX8sQP9oYnmX27Nn64osvElzXtGlTTZgwQbt379bkyZN17tw55c+fX7169ZKvr69lu4cPH2rcuHHatm2bJKlWrVoaPnx4vGHx+O9JTPtavny5li9frgsXLljmA+jSpYtsbJ70rSZX+yLUAgAAAAAMi+HHAAAAAADDItQCAAAAAAyLUAsAAAAAMCxCLQAAAADAsAi1AAAAAADDItQCAAAAAAyLUAsAAPCK8URFAEg+hFoAANKQtm3bqlSpUjp69GiC6729vTVkyJBXUsuQIUPk7e39Ss6VFNHR0RoyZIg8PT1Vrlw5/fLLL/G2uXjxolxdXZ/7+vrrr1957eHh4Ro0aJAOHDjwys8NAK+rdKldAAAAsBYTE6OAgACFhITI3t4+tctJc3788UetXbtWPXr0ULVq1VSqVKlnbtu9e3d5eXkluK5AgQIpVOGznTx5UuvXr9d77733ys8NAK8rQi0AAGmMo6Oj/vjjD82YMUP9+vVL7XLSnDt37kiSmjVr9sJgWrBgQXl4eKR8UQCAVMPwYwAA0piSJUvq3Xff1fz583Xs2LHnbuvq6qqgoCCrZUFBQXJ1dbW8HzJkiDp16qSVK1fKx8dH7u7uatWqlc6ePasffvhBjRo1UtmyZfX+++/r5MmT8c6xcuVKeXl5yd3dXe3bt9eJEyes1l+6dEn9+/dXpUqVVLZs2XjbxA0FXrRokRo0aKCyZctqzZo1CV5PTEyMli9frkaNGsnd3V1eXl76/PPPFRkZabmWuOHXPj4+atu27XM/nxeJjIxU+fLlNXHiRKvl0dHRqlKlij799FPLslWrVumdd95RmTJl5OXlpaCgIMXExFjWDxkyRB06dNCaNWtUv359lSlTRk2aNNHu3bslSfv27VO7du0kSe3atbPUfv78eXXr1k2VK1dW2bJl1bJlS+3ateulrgsA/ksItQAApEFDhw5V1qxZFRAQoKioqJc+3uHDh7Vs2TINGTJE48ePV1hYmLp06aLx48era9euCgwM1OXLlzVw4ECr/a5cuaLg4GD17dtXgYGBunv3rtq2batLly5Jkm7duqVWrVrp+PHjGjFihKZMmaLY2Fj5+fkpLCzM6lhBQUH68MMPNWnSJFWvXj3BOj/55BONHz9ePj4+mjVrlvz8/LRs2TL16NFDZrNZPXr0UPfu3SVJwcHBGjly5HOvOzY2VtHR0fFecWH0jTfeUP369bV161aryZt++ukn3b59W02aNJEkzZkzRyNGjFDVqlU1e/Zs+fn5ad68eRoxYoTV+Y4dO6YFCxaod+/emjFjhmxtbdWrVy/dvXtXpUuX1ieffGK5zpEjRyo2NlZdu3ZVRESEJk2apJkzZypLlizq3r27/vrrr+deGwDgCYYfAwCQBjk5OWnMmDHq3r17sgxDfvDggaZOnSpnZ2dJ0v79+7VixQotXrxYVatWlST99ddfmjhxosLDw5U5c2ZJT3pOZ8yYIXd3d0lS2bJl5ePjo6VLl2rw4MFasmSJ7ty5o6+//lr58uWTJNWqVUu+vr6aNm2apk+fbqnh7bfffu69pH/++adWr16tAQMGqEuXLpKk6tWrK1euXBo0aJB2796t2rVrq2DBgpKe9Gjnz5//udc9bNgwDRs2LN5yBwcHHT58WJLUpEkTrVmzRgcPHlSFChUkSZs3b1bRokXl5uame/fuaebMmWrZsqWGDx8uSapRo4ayZMmi4cOHq2PHjipWrJgk6d69ewoJCbHU6ODgoDZt2uiXX35R/fr15eLiIklycXGRi4uLrl+/rjNnzqhHjx6qXbu2JMnd3V3BwcHJ8scMAPgvINQCAJBGeXt7q3Hjxpo/f77eeustlS5d+l8fy8nJyRJoJSlHjhySnoTUOFmyZJEkq1BboEABS6CVpJw5c8rDw0O//vqrJGnv3r0qWbKk3nzzTUVHR0uSbGxsVKtWLW3YsMGqhpIlSz63xv3790uS3nnnHavl77zzjgICArRv3z5L8Eusjz76KMGJomxtbS0/V6pUSXnz5tXmzZtVoUIFRUZGavv27ZZgffjwYT169Eje3t6Wa5RkmRn6p59+soTabNmyWQKtJOXOnVuSFBERkWB9OXLkkIuLi0aMGKE9e/aoRo0aqlWrlgICApJ0nQDwX0aoBQAgDRs+fLj27t2rgICAZ96HmhiZMmVKcLmDg8Nz94sLv0/Lnj27Ll++LOnJpE1//fXXMwP302HuRee6e/eupCfB+Wnp0qVT1qxZde/evefun5B8+fLJzc3tuduYTCY1atRIq1at0vDhw/XDDz/o4cOHatSokaT/m5gqLuT+07Vr1yw/Z8iQId6xpSfDoJ917oULF2rWrFn6/vvvtW7dOtnZ2cnHx0ejR4+Wk5NToq4TAP7LCLUAAKRhTk5OGjVqlHr27KmZM2cmuM3TkxVJ0sOHD5Pt/HFB82nXr19XtmzZJD2ZqblSpUoaNGhQgvsn5ZFEcQHu+vXrlqHMkvT48WPdvn1bWbNmTUrpSdKkSRPNmTNH+/bt05YtW1SxYkVLDXG91p9//rkKFy4cb9+Egn9SvPnmmxo1apRGjhypU6dO6dtvv9W8efOUNWvWF94zDABgoigAANI8Hx8fNWzYUHPnztWtW7es1mXKlElXr161Wnbo0KFkO/fZs2d1/vx5y/vLly/r8OHDqly5sqQnQ3fPnj2rIkWKyM3NzfJav369Vq9ebTXM90UqVaok6cn9rE/bvHmzYmJiVL58+WS4ooQ5OzurdOnS2rx5s3bt2qXGjRtb1pUtW1Z2dna6evWq1TWmS5dOgYGBunjxYqLP88/P4/Dhw6pWrZqOHDkik8mkkiVLql+/fipevLhlMi4AwPPRUwsAgAGMGDFCv/zyi27cuGG13MvLS5s3b1bZsmVVqFAhhYSEJOusuW+88Ya6d++ufv36KSYmRtOmTVOWLFnUvn17SVKHDh20fv16dejQQf7+/sqaNau2bNmib775Jsn3hbq4uKhp06aaPn26IiIiVLFiRZ08eVLBwcGqXLmyatasmeT6z58/r99++y3BdU5OTipSpIjlfZMmTTRx4kSlS5dODRo0sCzPmjWrOnfurGnTpun+/fuqXLmyrl69qmnTpslkMqlEiRKJrsfR0VGStHPnTjk5OalUqVJKnz69Bg0apF69eilHjhz6+eefdfLkScvjfwAAz0eoBQDAALJkyaJRo0bpo48+sloeEBCg6OhoSxjz9fXVgAEDLLP0vqxSpUqpfv36GjVqlO7du6eqVatq6NChluHHb775plasWKEpU6Zo1KhRioyMVOHChfXZZ5+pefPmST7fZ599pkKFCmnNmjWaN2+ecuXKpXbt2qlHjx6ysUn6ALNZs2Zp1qxZCa6rW7eu1ZDuhg0batKkSapTp44lfMbp27evcubMqa+++krz58+Xk5OTqlatqv79+8fb9nmKFSumhg0bavny5frxxx+1adMmLVy4UFOmTNFnn32m8PBwFS5cWGPGjFGzZs2SfL0A8F9kMj/9UDYAAAAAAAyEe2oBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBhEWoBAAAAAIZFqAUAAAAAGBahFgAAAABgWIRaAAAAAIBh/T+7miDKKKhvzQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/7x/56svhln929zdh2xhr3mwqg4r0000gn/T/ipykernel_4868/712307362.py:26: FutureWarning: \n", + "\n", + "Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.\n", + "\n", + " ax_us = sns.barplot(x='count', y='Category', data=us_plot_data, palette='Blues_r')\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9AAAAImCAYAAAC7EmJYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8XUlEQVR4nOzdd3iN9//H8dcJCULsVZsgVkKMEFsaRQSlrb2pWZuKolaJGSu22LVHzFZL+7WqdrU1qrX33jJEzu8PV87PaYI7lTgRz8d15ZJzz/d9PieJ1/l87s8xmc1mswAAAAAAwCvZ2boAAAAAAADeBQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AQCJjNpvfy3MnFonxOUzI1/Rfa0vI1wQg/hCgAQA25efnJxcXl1d+tWjRIl5r6Nu3b4zn/f7771+6z9SpU19bd1hYWLzWHZNDhw6pQ4cOhrZ98OCBAgMDVadOHbm7u8vT01OtWrXSTz/9FOvzhoeHa9SoUdq4cWOs941P+/btk4uLi/bt2xev51m7dq1cXFx06dKlNzrOv9vv0qVLcnFx0dq1a9+0xBh5eXnJz8/vpetdXFw0derUWB2zRYsWVj+zq1at0pgxY/5zjS/y8/OTl5fXa7f76aef1KpVK5UuXVqurq6qXr26Ro4cqdu3b1tt919rmz59uoKCgmK9H4B3X1JbFwAAeL916dJFjRs3tjyePn26jh8/rsDAQMuyVKlSxWsNJ0+elK+vb7SgnidPntfuu2LFipeuc3BweNPSYm3VqlU6ffr0a7c7ffq0Pv/8c0VGRqply5YqVKiQnjx5oo0bN6pz587q0aOHunTpYvi8N27c0MKFC+Xv7/8m5ce5okWLasWKFcqfP3+8nqdq1apasWKFMmfO/EbHMdp+CdmQIUOsHs+YMUMeHh5v7fzr1q3TgAED1LhxY7Vu3VopUqTQP//8o9mzZ+vnn3/WmjVrlCZNmjeqbfLkyfriiy/iunQA7wACNADApnLlyqVcuXJZHqdPn14ODg4qUaLEWzl/WFiYzp49q1atWv2nc76tOuPS06dP1bNnT9nb22vp0qXKkCGDZZ23t7cGDx6syZMny8vLS4UKFbJhpW8uVapUb6WN0qdPr/Tp08f7ed4F8f1mxetMmzZNtWvX1tChQy3LypUrp9KlS6tevXpatWqV2rdvb7sCAbzTGMINAHgn7NmzR02bNlWpUqVUtmxZ9enTR1evXrWsjxpCe/ToUdWvX19ubm6qU6fOK4dhS9KpU6cUERGhwoULx0vdGzdulIuLi06dOmW1fNu2bXJxcdHx48clSffu3dPXX3+t8uXLy9XVVQ0bNtTevXut9nFxcdG3336rgQMHysPDQ+7u7urRo4du3bol6fnw1nXr1uny5cuvHPa7Y8cOnTp1Sj169LAKz1G6d++u5s2bKyIiwqrepk2byt3dXcWKFVPNmjX17bffSno+zPjDDz+UJA0YMMBqiO3BgwfVvHlzFS9eXB4eHurfv7/u3Lljdb4jR46oWbNmKlGihKpWraqFCxeqdevWVkOLHz58KH9/f3l7e8vV1VW+vr5avXq11XG8vLw0atQotWrVSm5ubho4cGCMQ7hPnTqljh07qmTJkipZsqS6du2qixcvWh1r4cKFqlmzplxdXVWpUiUNHTpUjx49ivH5lKIP4fbz81Pr1q21Zs0a1ahRQ8WKFVO9evW0c+fOlx7jVe138+ZNde/eXe7u7vLw8NDgwYP1+PFjq/1XrVql2rVrq1ixYqpataqmTp2qZ8+evfR8/8XrXoOS9RBuLy8vXb58WevWrbN6fq5cuaLevXvLw8NDxYsXV6tWrSw/C1Hu37+vAQMGyMPDQ2XKlNG4ceMUGRn52hpv3boV4/3JhQoV0oABA1SsWLFX1nbgwAG1a9dOZcqUUbFixeTl5aWpU6dazu3i4iJJCgwMtHwvxc/rCkDCQ4AGACR4wcHBatu2rT744AMFBARowIABOnLkiBo1ahTtnsaOHTvqww8/VGBgoPLmzauePXtqx44dLz32yZMnJT0PHxUrVlSxYsXUtGlTHT161FBtERERMX5F/Wfb29tbjo6O2rx5s9V+mzZtUoECBVSkSBGFhYWpVatW2r59u3r16qXAwEBlzZpV7du3jxaiJ06cqMjISAUEBOjLL7/Uzz//rFGjRkl6Phy+SpUqypQpk1asWKGqVavGWPPOnTuVJEkSValSJcb1mTJl0uDBgy1B43//+5+6du2qokWLavr06Zo6dapy5syp4cOH6+jRo8qcObNlyH3nzp0t3x84cECtW7dW8uTJNWnSJH311Vfav3+/WrZsqdDQUEnPh5K3bt1akhQQEKBu3bpp9uzZOnTokKWe0NBQNW3aVBs3blT79u01ffp0lSpVSgMHDtTMmTOtav/222/l6uqq6dOn69NPP412bWfPnlXjxo11+/ZtjRkzRiNHjtTFixfVpEkTy2tp06ZNGjdunJo1a6agoCB17dpV69ev14gRI2J8vl7mzz//VFBQkLp3765p06YpSZIk6tatm+7fvx/j9q9qv8mTJ+uDDz7Q9OnT1apVK61cudLqNodZs2Zp8ODB8vT01MyZM9WsWTPNmTNHgwcPjlXNRrzqNfhvgYGBypQpk6pUqWIZ4n7nzh01btxYx44d0+DBgzVhwgRFRkaqWbNmluHrkZGRat++vXbs2KH+/ftr9OjROnz4sLZs2fLa+qpWrarNmzera9eu2rRpk65fv25Z17p1a5UrV+6ltZ08eVKtW7dW2rRpNXHiRM2YMUOlS5dWYGCgvvvuO0n/f9vGp59+avn+bb6uANgWQ7gBAAlaZGSkxo8fr4oVK2rChAmW5SVLlpSPj4+CgoL05ZdfWpa3aNFCXbt2lSRVqlRJ9evX17Rp014aFk+cOCFJCgkJ0YQJE3Tv3j3Nnj1bLVu21IoVK147hLlo0aIxLm/WrJm+/vprpUiRQjVq1NCWLVvUq1cvSdLjx4/1888/W+pcv369Tp48qZUrV6p48eKSpMqVK6tFixYaP3681qxZYzluwYIFre4z/v333y297Lly5TI0BP7atWtKly6dUqZM+cpri/LPP/+ofv36GjhwoGWZu7u7ypYtq3379ql48eKWHvxcuXKpSJEikqQJEyYob968mjVrlpIkSSJJKl68uGrXrq01a9aoWbNmmjVrlpycnDR37lylSJFCkpQvXz6r++LXrl2rU6dOafny5XJ3d5f0vG0jIiI0ffp0NW7cWGnTppUkZcuWTX379rXs++/JwwIDA5UiRQotWLDAcm+9p6envL29NXfuXPXv31/79+9Xjhw51KxZM9nZ2cnDw0OOjo4vDb4v8/DhQ61du9Zyi4Kjo6OaN2+uX3/9VTVq1Ii2fUzt9+TJE0lSjRo1NGDAAEu9e/bs0a+//mo5z/Tp09WoUSMNGjRIklSxYkWlTZtWgwYNUps2bVSgQIFY1f4qr3oN/luRIkXk4OCg9OnTW65p4cKFunfvnpYtW6bs2bNLev569/Hx0eTJkzVlyhTt3LlTv//+u+bMmaPKlStbrtvIBGIjRoxQZGSkfvjhB23btk3S8+f2ww8/VJs2bZQlS5aX1nby5EmVL19e48aNk53d836mChUq6KefftK+fftUu3Zty7ZZs2a1fP82X1cAbIsADQBI0M6ePaubN2+qT58+Vstz5cold3d37d+/32p5/fr1Ld+bTCZVr15dU6dOVWhoqJInTx7t+M2bN1e1atVUqVIlyzJPT0999NFHmjlzpiZNmvTK+v49jDjKi0Oj69Wrp3Xr1un333+Xm5ubtm/frvDwcNWtW1eStHfvXmXKlElFixa1GjZdrVo1jR07Vvfv37dMevTvYJw1a1aFhIS8ssZ/S5IkSayG9kbdL/r48WOdPXtWFy5c0B9//CHp+ezbMQkJCdHRo0fVrl07mc1my3XlzJlTzs7O2rNnj5o1a6Zff/1VlStXtoRn6Xk4jwpWkrR//35lz57dEp6j1K1bV6tXr9bRo0ctb5C8bij+r7/+Kg8PDyVPntxSU6pUqVS6dGn98ssvkp7fL7tixQo1aNBA3t7eqlKliurUqSOTyWT4OZOe3xf94v39WbNmtTw3sVW6dGmrxzly5LD00h85ckShoaHy8vKyev1Ehc09e/a8UYD+93W/6Wtw7969Kly4sLJkyWKp187OTpUrV9aGDRskPR/6b29vb/Vz6ejoqCpVqujAgQOvPL6Tk5OmTJmiS5cuaceOHdq3b5/27dun+fPna8WKFZo3b16011KUjz/+WB9//LFlboTz58/rxIkTevbsmZ4+ffrSc77N1xUA2yJAAwAStHv37kmSMmbMGG1dxowZo903+e9ZkDNkyCCz2awHDx7EGKDz5cunfPnyWS1LnTq1SpYsaRne/Squrq6v3aZs2bLKkiWLNm/eLDc3N23evFkeHh6WQHXv3j3dvHnzpb3ZN2/etAToF4Om9Dx4xPbzaLNnz67//e9/evz48Ut7oa9du2ap786dOxoyZIi2bdsmk8mk3LlzWwLdy8794MEDRUZGas6cOZozZ0609cmSJbMcO6b7sF9s7/v37ytTpkwv3ebBgweWZY6OjjHWE+XevXvasmVLjEOBoyYB8/HxUWRkpJYuXWoZsp49e3b17dtXPj4+rzz+i/7dVlFBych9vK871ovtHvUz8rKPL7tx48ZLj+vo6PjSN0Gilv/73G/6Grx3757Onz//0td7SEiI7t+/r7Rp00YLlzG9Dl4mqre3WbNmioyM1LZt2+Tn56cRI0a8dH6A0NBQjRgxQuvXr1dERIRy5Mghd3d3JU2a9JXX+DZfVwBsiwANAEjQoobmvjhJUZSbN28qXbp0Vsvu3btnFb5u3bqlJEmSWI7zb1u2bFHq1KlVsWJFq+VhYWFxNquynZ2d6tSpo02bNqlTp07as2ePhg8fblnv5OSkPHnyaPz48THunyNHjjipI0rFihW1ePFi7dq1SzVr1oy2/s6dO/rwww/VtGlTDRw4UH379tWZM2e0YMECubu7y8HBQSEhIVq5cuVLz5EyZUqZTCa1bt1atWvXjrY+KoRlzZo1xra9ffu25Y2NNGnS6Pz589G2uXnzpiRFew28ipOTk8qXL682bdpEW5c06f//t8jX11e+vr56+PChdu/erTlz5qhfv34qVaqUZQhwQpE6dWpJ0vjx42P86LWY3nx6cd3LAva1a9deu/9/4eTkJA8PD6tbL17k4OCgdOnS6e7du3r27Jll+L/0/28WvMzWrVs1ZMgQLVu2THnz5rUst7Oz00cffaQDBw688nU7cuRIbd26VZMmTVL58uUtb8h4enq+9poS2+sKQMyYRAwAkKDlzZtXmTJl0qZNm6yWX7x4Ub/99ptKlixptTzqnkfpee/oDz/8oFKlSr30M5mXL1+uIUOGWPXCXb9+XYcPH1bZsmXj7Drq1auna9euWSaT+uijjyzrPDw8dPXqVWXIkEGurq6Wrz179mju3LlWAeJ1ou7bfJWKFSuqYMGCmjhxou7evRtt/YQJExQREaE6depIkg4dOqSPPvpIZcuWtTyPUbNJR/Wm/rvGVKlSqUiRIjpz5ozVNRUoUEBTp0613JtcpkwZ7dq1S2FhYZZ9jx8/bpkROWqby5cv68iRI1bn2LBhg+zt7eXm5vbaa47i4eGhf/75R4ULF7bUVKxYMS1YsEA//vijJKlnz56W+9OdnJxUq1YtdenSRREREa/szY0LRtrv34oXLy57e3tdv37d6rlOmjSpAgICrJ7Lf/Pw8NDRo0dj3Ob7779XkiRJVKZMmVjX9KJ/X5OHh4fOnj2rvHnzWtW7fv16rV69WkmSJJGnp6ciIiKsfp7Dw8O1Z8+eV56rQIECunfvnhYuXBjj+nPnzqlgwYIvre3QoUMqW7asZfI/6flkcHfu3LEaORDTNSXk1xWAuEMPNAAgQbOzs1Pv3r01YMAA9enTR3Xr1tXdu3cVGBioNGnSROvxGTt2rMLCwpQ3b16tWrVKp0+fful/pqXnMx+3adNGXbp0UcuWLXX//n0FBgYqbdq0atu27Wvr++233166Lm/evJah1wULFlThwoW1dOlS1apVyzLRkCQ1aNBAS5YsUZs2bdSpUyd98MEH+uWXXzRnzhw1b95c9vb2r60jSurUqXXr1i3t2LFDhQsXjjakXXreIzZ27Fi1bdtWn3zyiVq2bKlChQrpzp07Wrt2rXbt2qU+ffpYgqmbm5s2btyookWLKmvWrDp8+LBmz54tk8lkuffVyclJ0vP7W52dnVW8eHH17t1bHTp0sLTbs2fPNG/ePB09elRdunSRJHXq1ElbtmxR+/bt1bZtWz148ECTJ0+WnZ2dZfhugwYNtHTpUnXt2lXdu3dXjhw59NNPP2nNmjX64osvLD2wRnTp0kWNGzdWx44d1aRJEyVLlkwrVqzQtm3bNGXKFEnP71UdMmSIxowZo8qVK+vBgwcKDAxUnjx54v1zsf/dfkakS5dO7du31+TJk/Xo0SOVLVtW169f1+TJk2UymV5Zc/PmzbVq1Sq1aNFCn3/+uQoUKKDQ0FD98ssvWrx4sdq3b69s2bK98TUdP35c+/fvl5ubm1q3bq3169erdevWatu2rdKlS6ctW7Zo5cqVVhOlVaxYUYMGDdLt27eVPXt2LVq06KVD/qPky5dPHTp00KxZs3TlyhXVrVtXWbNm1e3bt7V+/Xrt3btX8+fPf2ltbm5u+u6777Rs2TI5Ozvr5MmTmjFjhtVrPWq/w4cP68CBAypdunSCf10BiDsEaABAgtegQQOlTJlSs2bNUteuXZUqVSpVqlRJvXv3jnZP5NChQzVr1ixdvHhRRYoU0bx586JNwPSicuXKad68eZo6dap69eolOzs7VapUSX379rWEwldp1KjRS9dNmzZN3t7elsf16tXT6NGjLZOHRXF0dNS3336rCRMmaNy4cXr48KGyZ8+uPn36GArxL2rQoIF27NhhCZsvuy+2cOHCWr16tebPn69ly5bp+vXrcnR0lIuLi+bOnWs1edPo0aM1YsQIy8ft5MmTR8OGDdOGDRt08OBBSc97nNu0aaMVK1Zox44d2rNnjypWrKigoCAFBgaqe/fusre3V9GiRTV//nzLRFS5c+dWUFCQxo4dq+7duytDhgzq2LGjZsyYYbk/O0WKFFq8eLEmTJhgCYn58uXTyJEjY/yoqlcpVKiQvv32W02cOFFffvmlzGazChYsqGnTplk+y7px48Z6+vSpli9frqVLlyp58uTy9PRUv379YvVmxn/x7/Yzem9sz549lSlTJi1dulRz585VmjRp5Onpqd69e7/ydZw6dWqtXr1a06dP17x583Tjxg0lT55c+fLl0zfffKOPP/74ja+pbdu2GjVqlNq1a6f58+erdOnSWr58uSZMmKChQ4cqLCxMefLkidaegYGBGj9+vKZMmaKwsDD5+PioYcOG2r59+yvP17t3bxUuXFirVq3SN998o0ePHil16tQqXbq0Vq9ebRVW/12bn5+fnj59qkmTJik8PFw5cuRQ586d9c8//+inn36yDCnv1KmTpk+frs8//1xbtmxJ8K8rAHHHZI7tzCMAACRAa9eu1YABA7R9+/Y4v2cY8Wfv3r2yt7e3epPjwYMHKl++vL788ku1bNnShtUBAGCNHmgAAGAzx44d05QpU9S7d28VLVpU9+7d0/z58+Xk5CRfX19blwcAgBUCNAAAsJm2bdsqPDxcy5Yt09WrV+Xo6CgPDw/5+/vH2SzoAADEFYZwAwAAAABgAB9jBQAAAACAAQRoAAAAAAAMIEADAAAAAGAAk4jhvXXkyBGZzWY+exEAAAB4zz19+lQmk0nu7u6v3I4eaLy3zGaz5QuJi9lsVnh4OG2bCNG2iRdtm3jRtokXbZt4vY9tazQX0AON95a9vb3Cw8OVP39+OTo62rocxKEnT57oxIkTtG0iRNsmXrRt4kXbJl60beL1PrbtH3/8YWg7eqABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgMZ7z2Qy2boExDGTyaQUKVLQtokQbZt40baJF22beNG2iRdt+3Im8/v06djAC6I+683V1dXGlQAAAADvl2eRkUpil3D6c41mg6RvoxggIes1fatOX7lj6zIAAACA94JztvSa2KWGrcv4TwjQeO+dvnJHx87dtHUZAAAAABK4hNNnDgAAAABAAkaABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAAO+E3377TS1atFCJEiVUvnx59e/fX7dv37as37t3r5o3b64yZcqoQoUK6tatmy5cuBBn5ydAAwAAAAASvD///FMtW7ZUypQpFRgYqL59+2rPnj3q2rWrJOnQoUNq166d0qVLp/Hjx2vQoEE6d+6cmjRpojt37sRJDUnj5CiJkJeXly5fvmx5bDKZ5OjoqCJFiqhHjx4qU6bMGx3/0KFDMpvNKl269Cu3W7dunVatWqVTp05JkgoUKKDWrVurRo0ab3R+W/j77791+fJlVa1aVZLk4uIif39/NWjQwLaFAQAAAEjwxo0bpyJFimj69Omys3veF5wqVSqNHDlSFy9e1Jw5c+Ts7KzJkydb1pcsWVJVq1bVunXr1K5duzeugR7oV2jbtq12796t3bt3a+fOnVq+fLlSpUql9u3b68qVK2907KZNm75yKIHZbFaPHj00evRo+fj4aPny5VqxYoUqV66sXr16afbs2W90flvo2LGj/vjjD8vj3bt3y8fHx4YVAQAAAHgX3L17V/v371eTJk0s4ViSPvroI+3YsUM5c+ZU8eLF1apVK6v1WbJkkZOTU5wN46YH+hUcHR2VKVMmy+PMmTNr2LBhqly5sn788Ue1atUq3s69dOlS/fjjj1q1apWKFi1qWd65c2c9e/ZMU6ZMka+vr7JlyxZvNcS3F59bAAAAAHiZv/76S5GRkUqfPr369Omjn376SZJUvXp1DRo0SKlTp1bnzp2j7bd//37dv39fBQoUiJM66IGOpaRJn7/n4ODgIEkKDQ3VpEmT9OGHH8rV1VX16tXT1q1bLduvXbtW1atX1zfffKNSpUqpS5cucnFxkSQNGDBAfn5+MZ5n+fLlqlq1qlV4jtKqVSstWLBAGTNmjFUNUf8WK1ZMDRo00KFDhyzbhISEaMiQISpbtqxKliypgQMHqk+fPlb1HT58WM2aNZObm5uqVq2qYcOG6dGjR5b1v//+u5o2bSp3d3eVKVNG3bp1s/TURw2JDwwMVIsWLSQ9H8K9du1ay/7BwcGqW7eu3Nzc5OXlpenTp+vZs2eSpEuXLsnFxUVbt27VZ599pmLFisnLy0srVqx4bZsBAAAAeLdF3cP81VdfKXny5Jo+fbq+/PJL/fzzz+rYsaPMZnOM+wwePFiZM2fWxx9/HCd1EKBj4fr16xo+fLgcHR1VpUoVSVLv3r0VHByswYMHa8OGDfL29laPHj20bds2y34XLlzQjRs3FBwcrF69emn37t2Snjf+wIEDo50nLCxMp06dUsmSJWOsw8nJSaVLl7aEeCM1XL16VcuXL9e4ceO0bt06pUiRQn5+fpYXWv/+/bVnzx5NnDhRy5cv18OHD7V582bL/idPnlSbNm1UqVIlbdiwQePHj9exY8fUtm1bmc1mPXv2TB07dlSZMmW0YcMGLViwQFeuXNFXX30lSVq9erWyZs2qtm3baurUqdGuacGCBRo8eLAaNWqkDRs2qEePHgoKCtLo0aOttvP391enTp303XffqWrVqho6dKguXrz4+sYDAAAA8M56+vSpJKlo0aIaOXKkPD091aRJEw0dOlSHDx/Wnj17rLa/ceOGWrVqpRs3bigwMFCpUqWKkzoYwv0Ks2bN0rx58yRJERERCg8Pl7OzsyZNmqRs2bLp9OnT2r59u2bOnGmZGKtbt246efKkZs6cKW9vb8uxunTpopw5c1od38nJSU5OTtHOe//+fUlSmjRpXluj0RqePn2qYcOGqXDhwpKkNm3aqGvXrrp586bCwsK0detWzZ07V+XLl5f0/Ab9w4cPW84TFBSkChUqqFOnTpKkPHnyaMKECfL29tb+/ftVqFAh3b17V5kzZ1b27NmVM2dOTZo0yTKlfPr06ZUkSRI5Ojoqbdq0VtdgNps1Z84cNW/eXM2aNbMc/969exo3bpy6d+9u2bZ169b68MMPJUm9evXSt99+q6NHj0Z7bgEAAAAkHilTppQkVatWzWp5pUqVJEnHjx9XxYoVJT0f7t2pUyc9fvxYc+fOVfHixeOsDgL0KzRu3Ngy3NjOzk5p06a1Crx//fWXJKlUqVJW+5UpU0YBAQFWy/LkyWP4vGnTppXJZNLdu3dfu21sanB2drZ8H3UdT58+1fHjxyVJ7u7ulvXJkiWTm5ub5fHx48d1/vx5q22inD59WmXLllX79u01YsQITZkyReXKlVOVKlVUq1at117DnTt3dOvWrWjX4OHhoadPn+rMmTPKkCHDK68BAAAAQOIVlafCw8OtlkdEREiSkidPLkn69ddf1bVrVzk5Oenbb7+Ns3ufoxCgXyFNmjTKnTt3rPczm82We6WjRDWoEQ4ODipWrJhVD/CLHjx4oC+++EJffPFFrGqIGvL97+2SJEkiSYqMjHzp8SIjI1WnTh1LD/SL0qdPL0nq27evmjZtqh07dmjv3r0aMWKE5s6dq+Dg4BjP/WINLzunJKvreNk1AAAAAEi8nJ2dlT17dm3evFnNmzeXyWSSJG3fvl2SVLp0aR0/flydOnVSjhw5FBQUpCxZssR5HdwD/QaiJgN7cTIuSTp48KDy58//Rsdu2LChdu7cqWPHjkVbt2jRIh08eFA5cuSIkxpcXFxkMpn022+/WZaFh4dbnbtAgQL6559/lDt3bstXRESE/P39dfXqVZ05c0ZDhgxRhgwZ1KRJE02ZMkVz587V6dOndfLkyVeeP2PGjMqYMWOM12Bvb69cuXIZug4AAAAAiZPJZNKXX36p3377Tb169dIvv/yiRYsWadSoUapRo4aKFCmigQMHKiIiQt26ddPVq1f122+/Wb74GKsEwNnZWdWqVdOwYcNkMpmUO3dubd68Wdu3b9ekSZNeua+jo6NOnz6tu3fvKl26dNHWf/rpp9q+fbvatGmjHj16qEKFCgoNDdWGDRs0f/589e/f3/IRVv+1hig5c+ZUrVq1NGLECA0fPlyZMmXSrFmzdO3aNcs7O23btlWzZs00bNgwNW/eXA8ePNCwYcMUGhqqPHny6PHjx9q8ebNCQ0PVoUMH2dnZad26dUqTJo3y5csn6fl9C+fOndOtW7csM4hHadeunSZOnKicOXOqQoUK+v333xUYGKhGjRrJycnJcl84AAAAgPdTzZo1NWPGDE2bNk0dO3ZUmjRp1LhxY/Xq1UsXL1603Jr64hxKUerXrx9tguL/ggD9hgICAhQQEKCBAwfqwYMHKliwoKZOnarq1au/cr+2bdtaemhnzpwZbb2dnZ2mTZumJUuWaNWqVZowYYKSJk2qAgUKKDAw0DKR1pvU8KIRI0bom2++Ubdu3WQ2m1WnTh25u7vL3t5eklSiRAnNnTtXkydPVv369eXo6ChPT0/1799fDg4OcnBw0Jw5czRhwgQ1bNhQz549U4kSJTR//nzLjHctWrTQmDFj9Pfff2vDhg3Rng8HBwctXLhQo0aNUtasWfX555+rXbt2hq8BAAAAQOJWrVq1aBOJSc87BaPmh4pPJjM3kL73wsLCtGvXLpUrV85qevcaNWqobt266tq1qw2riz9//PGHJGngij917NxNG1cDAAAAvB+K5smkDd80sXUZVqKygaur6yu3owcacnBw0LBhw+Th4aEuXbooSZIkWr16ta5cuaKaNWvaujwAAAAASBCYRAwymUyaPXu27t69q0aNGql+/fo6cuSI5s2bZ/WxUQAAAADwPqMHGpKkwoULa968ebYuAwAAAAASLHqgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABSW1dAGBrztnS27oEAAAA4L3xLv//mwCN997ELjVsXQIAAADwXnkWGakkdu/egOh3r2IgDoWHhyskJMTWZSCOhYSE6Pjx47RtIkTbJl60beJF2yZetG3i9Tba9l0MzxIBGpDZbLZ1CYhjZrNZISEhtG0iRNsmXrRt4kXbJl60beJF274cARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQOO9ZzKZbF0C4pjJZFKKFClo20SItk28aFsAwLsgqa0LAGzJwcFBKVKksHUZiGMpUqRQkSJFbF0G4gFtm3glhraNjDTLzo43AAAgMSNA4703NvigLtx+aOsyAADvsFwZnPTlx6VtXQYAIJ4RoPHeu3D7oU5fu2/rMgAAAAAkcNwDDQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAMBGIiMjFRQUpI8++khubm6qW7euNmzY8NLtR40aJRcXl7dYIQDgRUltXQAAAMD7avLkyQoKClL37t3l6uqqHTt2qF+/frKzs5Ovr6/VtgcOHNCiRYtsVCkAQKIH+o14eXnJxcXF8lWoUCGVLFlSzZs314EDB974+IcOHdLBgwdfur5FixZW5y9atKgqVqyovn376tKlS9FqnTp16hvX9CaePn2qBQsWWB5PnTpVXl5etisIAAAbCgkJ0aJFi9SiRQt16NBBnp6e8vPzk4eHhxYvXmy17ePHjzVgwABlyZLFRtUCACQC9Btr27atdu/erd27d2vnzp1avny5UqVKpfbt2+vKlStvdOymTZvqwoULr9ymVq1alvNv3bpV48aN04ULF9S4cWOr869evVpt27Z9o3re1KZNm+Tv72953LZtW61evdqGFQEAYDsODg5atmxZtL/P9vb2CgsLs1o2duxYZcyYUQ0aNHibJQIA/oUA/YYcHR2VKVMmZcqUSZkzZ1bBggU1bNgwhYaG6scff4z38ydPntxy/hw5csjT01NBQUFKkiSJAgICLNulT59eKVOmjPd6XsVsNls9TpkypdKnT2+jagAAsK0kSZKoUKFCypQpk8xms27duqXZs2frl19+UdOmTS3b7dmzR+vXr5e/v7/s7PivGwDYEr+F40HSpM9vLXdwcJAkhYaGatKkSfrwww/l6uqqevXqaevWrZbt165dq+rVq+ubb75RqVKl1KVLF8sEIQMGDJCfn1+szu/k5KQGDRroxx9/VHh4uCTrIdwhISEaOHCgKlSoIFdXV3388cf64YcfLPu3aNFCgwcP1meffabSpUtrw4YN8vPzU4sWLazO8+KyS5cuycXFRcHBwfL19ZWbm5saNmyoQ4cOWa5xwIABkiQXFxft27cv2hDuq1evqm/fvqpQoYJKlCihdu3a6eTJk1bn8/Pz05gxY+Tp6anixYurY8eOun79eqyeHwAAEprNmzerQoUKmjBhgqpUqaK6detKkh4+fKiBAweqe/fuyps3r42rBAAQoOPY9evXNXz4cDk6OqpKlSqSpN69eys4OFiDBw/Whg0b5O3trR49emjbtm2W/S5cuKAbN24oODhYvXr10u7duyVJX331lQYOHBjrOgoWLKjQ0FCdO3cu2rrJkyfrr7/+0uzZs7VlyxZVrlxZvXr1srpvetWqVWrZsqWWLl2qSpUqGT7v6NGj1alTJ61bt0758uVT27ZtdfHiRfn4+Oirr76SJO3evVvu7u5W+z169EhNmjTR9evXNWPGDC1fvlzJkydX8+bNdfnyZct2mzZt0r1797RkyRLNmTNHx44d06RJk2L35AAAkMC4ublpyZIlGjx4sA4fPqz27dvLbDZr1KhRypo1q1q3bm3rEgEAYhbuNzZr1izNmzdPkhQREaHw8HA5Oztr0qRJypYtm06fPq3t27dr5syZqlq1qiSpW7duOnnypGbOnClvb2/Lsbp06aKcOXNaHd/JyUlOTk6xrit16tSSnr9z/W8XLlxQypQplTNnTqVOnVo9evRQmTJllCZNGss2hQsXVp06dWJ93g4dOlhmDR0xYoR+/fVXrVy5Un369LFcR6ZMmaLtt2HDBt29e1dr1661DOueMGGCvL299e233+rLL7+U9Pz5GD58uOzt7eXs7CwfHx/t2LEj1nUCAJCQ5MqVS7ly5VKZMmWUKlUq9e/fX9OmTdPmzZu1Zs0aRUZGWr6k5//nsLOzY0g3ALxlBOg31LhxY8swZjs7O6VNm9Yq8P7111+SpFKlSlntV6ZMGat7lCUpT548cVZXVHCOCtIv+vzzz9WpUyd5enrKzc1NFSpUUJ06dazqzp079386b9myZS3f29vbq1ixYjp16tRr9zt16pTy5MljdU908uTJ5ebmZrV/rly5ZG9vb3ns5OSkp0+f/qdaAQCwpTt37mjnzp2qVKmSMmTIYFlepEgRSc/fpA8PD4/2cVaSVLRoUdWvX1+jR49+a/UCAAjQbyxNmjT/KWyazWbLvdJRkidPHldl6dixY3J0dIwxlLu7u2vHjh3as2eP9u7dq+DgYM2YMUNz586Vp6en4VoiIiKiLfv3NT179szQu+P/nmAsSmRkpNUxo+4rBwDgXRcaGqr+/furd+/e6tixo2X5nj17JEnr1q1TSEiI1T4rV67UypUrtXr1aqVLl+6t1gsA4B7oeBc1GVjUZFpRDh48qPz588fLOR89eqTg4GDVrFnTqrc2ypQpU3To0CF9+OGHGjRokLZu3aqcOXNaTWz2b/b29nr06JHVsvPnz0fb7o8//rB8Hx4ermPHjqlo0aKSJJPJ9NLju7i46Ny5c7p9+7ZlWVhYmP788894e54AALClbNmy6ZNPPtG0adMUFBSkvXv3aurUqQoICNCnn36q/Pnzy9XV1eorc+bMkiRXV1flyJHDxlcAAO8feqDjmbOzs6pVq6Zhw4bJZDIpd+7c2rx5s7Zv3/7aya8cHR11+vRp3b1796XvMoeGhurmzZuSpKdPn+rMmTOaPn26zGazevbsGeM+Fy9e1IYNGzRixAjlypVLR48e1ZUrV6JN7PWiEiVKaPXq1dqwYYPc3d21YcMGnTp1Sm5ublbbTZo0SRkzZlSOHDk0c+ZMhYSEqGHDhpbrkRRjKK5Tp45mzZqlnj17ql+/fnJwcNC0adP05MkTNWrU6JXPEwAA76qhQ4cqZ86cWrlypS5fvqwPPvhA3bt3V7t27WxdGgAgBgTotyAgIEABAQEaOHCgHjx4oIIFC2rq1KmqXr36K/dr27at5s6dq9OnT2vmzJkxbvPdd9/pu+++k/R8+HSmTJnk7e2tgIAAZcmSJcZ9hgwZojFjxqhfv366d++esmfPrr59+6pevXovraVu3bo6ceKEvvnmG0VERKhWrVpq1aqVjhw5YrVdkyZNNGbMGF25ckXFixfX4sWLLe+WlytXTsWLF1fjxo01btw4q/2cnJy0ZMkSjR492jLTaKlSpbRs2bJoE6sBAJBYODg4qHPnzurcubOh7bt166Zu3brFc1UAgJcxmV928ykQC5cuXdKHH36oRYsWWU0klpBFDTeftf+WTl+7b+NqAADvMuesaRTYrpqty0iQnjx5ohMnTqhw4cKW0WhIHGjbxOt9bNuobODq6vrK7bgHGgAAAAAAAwjQAAAAAAAYwD3QiBM5cuSwfOY1AAAAACRG9EADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAOSxnaHWbNm6eOPP1aWLFniox7grcuVwcnWJQAA3nH8LQGA90OsA/ScOXM0ZcoUeXp6qkGDBvL29paDg0N81Aa8FV9+XNrWJQAAEoHISLPs7Ey2LgMAEI9iPYR79+7d8vf3l9lsVt++fVWpUiUNGzZMv//+e3zUB8Sr8PBwhYSE2LoMxLGQkBAdP36ctk2EaNvEKzG0LeEZABK/WPdAJ0+eXHXr1lXdunV17do1rV+/Xt9//72WL1+u/Pnzq0GDBqpXr57Sp08fH/UCcc5sNtu6BMQxs9mskJAQ2jYRom0TL9oWAPAueKNJxLJmzao2bdqoS5cuKl26tP7++2+NHTtWVatW1dChQ/Xo0aO4qhMAAAAAAJuKdQ90lP3792v9+vXaunWrnjx5onLlyikgIECVK1fWzp07NXz4cF25ckWzZ8+Oy3oBAAAAALCJWAfoiRMnauPGjbp69ao++OADtW7dWg0aNFC2bNks2/j4+Oivv/7SokWL4rRYAAAAAABsJdYBev78+fL29taIESNUvnx5mUwxT5jh6uqqnj17vml9AAAAAAAkCLEO0B07dlTNmjXl7Oz8yu28vb3/c1EAAAAAACQ0sZ5EbM6cObp06VJ81AIAAAAAQIIV6wDt7Oyss2fPxkctAAAAAAAkWLEewl2tWjUFBARo165dcnFxkaOjo9V6k8mkrl27xlmBAAAAAAAkBLEO0IGBgZKkPXv2aM+ePdHWE6ABAAAAAIlRrAP0yZMn46MOAAAAAAAStFgH6BedPn1aDx8+VPr06ZUrV664qgkAAAAAgATnPwXoTZs2acyYMbp165ZlWcaMGdWnTx99/PHHcVUbAAAAAAAJRqwD9E8//aR+/fqpXLly6t27tzJmzKgbN25ow4YNGjBggNKmTauqVavGQ6kAAAAAANhOrAP0jBkzVLNmTU2cONFq+SeffKJevXpp1qxZBGgAAAAAQKIT68+BPnXqlOrXrx/juvr16zPJGN45JpPJ1iUgjplMJqVIkYK2TYRo28SLtgUAvAti3QOdLl063b9/P8Z19+7dk4ODwxsXBbwtDg4OSpEiha3LQBxLkSKFihQpYusyEA9o28QrIbZtpNksOwI9AOAFsQ7Qnp6eCgwMVJkyZZQ1a1bL8qtXr2ratGmqUKFCnBYIxLcV+07r5sMQW5cBAEhAMjmlUKOyzrYuAwCQwMQ6QPfu3VuffPKJPvroI7m7uytjxoy6deuWjhw5ojRp0qhPnz7xUScQb24+DNGVe09sXQYAAACABC7W90BnypRJ69atU4sWLRQSEqI///xTISEhatGihdatW6fs2bPHR50AAAAAANjUf/oc6AwZMqhfv35xXQsAAAAAAAlWrAN0YGDgS9fZ2dnJ0dFRuXPnVoUKFZhQDAAAAACQaMQ6QG/YsEHXrl1TeHi4kiZNqrRp0+revXuKiIiQyWSS2WyWJOXPn1+LFi1S+vTp47xoAAAAAADetljfA92jRw85ODgoICBAv//+u3bv3q0//vhDgYGBSpcunSZNmqSNGzfKZDIpICAgPmoGAAAAAOCti3WAnjp1qnr27CkfHx/Z2T3f3WQyydvbW927d9fkyZNVoEABderUSTt27IjzggEAAAAAsIVYB+irV68qd+7cMa7Lnj27Ll++LEnKkiWL7t+//2bVAQAAAACQQMQ6QOfPn1+rVq2Kcd3q1auVN29eSdK5c+eUOXPmN6sOAAAAAIAEItaTiHXr1k1du3ZV/fr19dFHHylDhgy6deuWtm3bpr/++ktTpkzR8ePHNW7cOH3yySfxUTMAAAAAAG9drAN01apVFRQUpKlTpyowMFDPnj1T0qRJVapUKS1cuFClS5fWTz/9pNq1a6tnz57xUDIAAAAAAG9frAO0JJUrV07lypVTeHi47t+/rwwZMlgmFJMkLy8veXl5xVmRAAAAAADY2n8K0JK0Y8cO/fLLL7p586Z69eqlEydOqGjRosqePXtc1gcAAAAAQIIQ6wAdEhKirl276pdfflGqVKn0+PFjtWvXTsuWLdPx48e1ZMkSFShQID5qBQAAAADAZmI9C3dAQICOHTumBQsW6Ndff5XZbJYkjRkzRlmyZNHkyZPjvEgAAAAAAGwt1gH6u+++U+/evVWuXDmZTCbL8syZM6tz5846dOhQnBYIAAAAAEBCEOsA/eDBg5fe55wmTRo9efLkjYsCAAAAACChiXWALlCggDZu3Bjjup9++on7nwEAAAAAiVKsJxHr3LmzvvjiC927d0/VqlWTyWTSgQMHtHbtWi1fvlwTJkyIjzoBAAAAALCpWAdob29vjRs3ThMmTNCOHTskSaNHj1aGDBk0dOhQ1axZM86LBAAAAADA1v7T50DXqVNHderU0ZkzZ3Tv3j2lTp1a+fLlk51drEeEAwAAAADwToh14m3ZsqVOnz4tScqXL59Kliyp/Pnzy87OTidPnlSdOnXivEgAAAAAAGzNUA/0wYMHLZ/3vH//fh04cEB37tyJtt3PP/+sixcvxm2FAAAAAAAkAIYC9KpVq7R+/XqZTCaZTCYNGzYs2jZRAdvX1zduKwQAAAAAIAEwFKAHDRqkTz75RGazWa1atdLXX3+t/PnzW21jZ2en1KlT8zFWAAAAAIBEyVCAdnJykoeHhyRp0aJFKlKkiFKlShWvhQEAAAAAkJDEehZuDw8PXb9+XTt37lR4eLhleWRkpEJCQnTw4EFNnDgxTosEAAAAAMDWYh2gv//+e/Xt21cREREymUySnt//HPV9vnz54rZCAAAAAAASgFh/jNXMmTNVtGhRrV27Vg0aNFC9evW0efNm9evXT0mSJNFXX30VH3UCAAAkeJGRkQoKCtJHH30kNzc31a1bVxs2bLDaZu3atfL19ZWbm5tq1KihRYsWWSZjBQAkbLHugT579qwmTJigIkWKqGzZspo3b56cnZ3l7OysW7duaebMmapQoUJ81AoAAJCgTZ48WUFBQerevbtcXV21Y8cO9evXT3Z2dvL19dWqVas0aNAgtW/fXhUrVtTRo0c1evRoPXnyRJ06dbJ1+QCA14h1gLazs1OaNGkkSblz59aZM2cUGRkpOzs7Va5cWevWrYvzIhMTLy8vXb582fLYZDLJ0dFRRYoUUY8ePVSmTJk3Ov6hQ4dkNptVunTpNy1VknT37l1t27ZNn3322Su3mzVrlq5cuRLjR5y1aNFC+/fvt1pmb2+vjBkzysvLS/369VOKFCkkPX9+6tevr27duhmq78qVKzpy5Ihq165t8IoAAIgfISEhWrRokVq0aKEOHTpIkjw9PXXs2DEtXrxYvr6+mjlzpmrUqKF+/fpZ1p87d05LliwhQAPAOyDWATpfvnw6fPiwypQpo3z58ik8PFwnT55UkSJF9ODBA6uJxRCztm3bqm3btpKe3z9+7949BQQEqH379vruu++ULVu2/3zspk2byt/fP84C9NixY3Xp0qXXBugdO3aoffv2L11fq1YtDRw40PL4yZMn2r17t/z9/RUZGamhQ4dKklavXq1kyZIZrq9///7Knj07ARoAYHMODg5atmyZMmTIYLXc3t5eDx8+lCTNnj072t85e3t7hYWFvbU6AQD/XawDdOPGjTVkyBA9efJEvXr1Urly5TRgwAB9+umnWrJkiYoWLRofdSYqjo6OypQpk+Vx5syZNWzYMFWuXFk//vijWrVqZcPqrBm5J+vBgwc6ceKEypUr99JtkidPbnXN0vMRDH/++ae2bNliCdDp06d/o3oBALCVJEmSqFChQpKe//28ffu21q5dq19++UXDhw+XJDk7O1vW379/Xz/++KOCg4Mtb6wDABK2WE8i9tlnn2ngwIGWnuYRI0YoLCxMI0eOVEREhFUvI4xLmvT5exkODg6Sng9lHjNmjHx8fFS2bFnt379fz54904IFC1SjRg25urqqRo0aWrZsmeUYLi4ukqQBAwbIz89PknT9+nX16tVLpUuXVtmyZdWpUyedO3fOss/t27fVvXt3lS1bVm5ubmrcuLFluLWfn5/WrVun/fv3W44dk927d8vd3V2Ojo6xvu5kyZJZrj3quqdOnWp5/L///U8NGzaUu7u7KlasKH9/f4WGhkr6/6Hh69atk5eXV6zPDQBAfNm8ebMqVKigCRMmqEqVKqpbt67V+t9++01ly5bVoEGDVLBgQbVp08ZGlQIAYiPWPdCS1KxZM8v3OXPm1Hfffae7d+/Se/gfXb9+XaNGjZKjo6OqVKliWb5kyRLNmjVLTk5OcnFx0ejRo7V+/XoNHjxYrq6u2rlzp0aOHKmwsDC1bt1au3fvVsWKFfXVV1+pQYMGevLkiVq0aKGiRYtqyZIlsrOz0/z589WwYUNt3LhRWbJk0dChQxUeHq4lS5bIwcFBM2fOVJcuXbRz504NHDhQoaGhunbtmlWo/bcdO3aocuXKsbrmiIgI7d69W+vXr1fjxo1j3ObHH39U9+7d1a1bN40ZM0ZnzpzR0KFDdfHiRU2fPl1Tp05Vp06dlDVrVn399dexOj8AAPHJzc1NS5Ys0V9//aXJkyerffv2Wrx4seVjP7Nly6bFixfr0qVLmjRpkho3bqx169ZZ5gQBACRMsQrQd+7c0aNHj5QrVy6r5YsXL5aPj0+cFpaYzZo1S/PmzZP0PEiGh4fL2dlZkyZNsrr/uUqVKipfvrwk6dGjR1q2bJn8/PxUp04dSVKePHl06dIlzZ49W61atbIMkXZycpKTk5NWrVqlBw8eaNy4cZZe3pEjR2rfvn1auXKlunXrpgsXLqhgwYLKmTOnkidProEDB6pOnTpKkiSJHB0dlTx5ctnb20cbfh3FbDZr9+7d6tix4yuveePGjdq6davlcWhoqLJly6Z27dq9dNKU2bNnq3r16urSpYskKW/evDKbzeratav++ecf5c+fX/b29kqePDlv3gAAEpRcuXIpV65cKlOmjFKlSqX+/fvr4MGDlslCs2TJoixZssjDw0M5c+ZU8+bNtXXrVn388ce2LRwA8EqGh3AHBwfLy8tLy5cvt1p+7do1jRo1Sl5eXvruu+/ivMDEqHHjxgoODlZwcLC2bNmigwcPasuWLVa9z9Lze4SjnDlzRk+fPlWpUqWstvHw8NDt27d1+/btaOc5fvy47t+/rzJlysjd3V3u7u4qVaqUrl27ptOnT0uSvvjiC/3444/y8PBQmzZttGLFCjk7OxueyOvPP/9U8uTJlS9fvldu5+XlpeDgYK1bt07Dhg1T6tSpVb58eXXq1MlqCPeLTp06pZIlS0a73qh1AAAkJHfu3FFwcHC0v8lFihSR9PyTIzZu3Kjz58/HuP7GjRtvp1AAwH9mqAf60KFD+uqrr1ShQgXVq1fPal3WrFm1bt06jR8/Xn369FGOHDnk6uoaL8UmFmnSpLEKxy+TPHlyy/cvm8wrMjJSkmIMoZGRkcqbN69mzJgRbV3U/crVq1fXrl27tGvXLv3yyy+aP3++AgMDtXLlShUoUOC1Ne7YsSNa8I9JypQpLdecJ08eZc6cWW3atFGSJEksE4j9W0zX/KrrBQDAlkJDQ9W/f3/17t3bamTWnj17JElFixbVJ598onr16lkmFXtx/avmGwEAJAyGeqDnzJmjcuXKac6cOTH+ci9cuLDmzJmjYsWKadasWXFeJJ7P2mlvb69Dhw5ZLT948KAyZcpk+WzuFxUsWFBXrlyRk5OTcufOrdy5cytbtmyaMGGCDhw4oPDwcPn7++vixYvy8fHRN998o23btsnOzk7/+9//JMlyr9bL7Ny5M9b3P0tSuXLl1KZNGy1btkw7d+6McRsXFxcdPnw42vVK/z+LKQAACUW2bNn0ySefaNq0aQoKCtLevXs1depUBQQE6NNPP1X+/PnVoUMHrVy5UpMmTdLevXu1YMECffXVVypfvvx/+nsKAHi7DAXoY8eOqVGjRq8+kJ2dmjVrpj///DNOCoO1VKlSqVGjRpoyZYo2bdqk8+fP69tvv9XSpUvVtm1bS9B1dHTU6dOndffuXdWtW1dp0qRR9+7ddfToUZ0+fVp+fn7auXOnXFxc5ODgoD/++EODBw/Wb7/9pkuXLmnt2rV68uSJ3N3dLce7ceOGLl68GK2mO3fu6NSpU6/8+KpX6dGjh/LkyaOhQ4fq8ePH0da3b99eP/zwg6ZPn66zZ8/q559/1ogRI1StWjVLgE6ZMqUuX76sa9eu/acaAACIS0OHDlXnzp21cuVKff7559qwYYO6d++uESNGSJK6dOmiIUOGaNu2berYsaMWLFigxo0ba+bMma990xoAYHuGxsE+fPhQadOmfe12H3zwge7du/eGJeFlBgwYoHTp0mn8+PG6deuW8uTJo6+//loNGza0bNO2bVvNnTtXp0+f1syZM7VkyRKNHTtW7dq107Nnz1S0aFHNmzfPEkAnTpwof39/de7cWQ8fPlS+fPk0fvx4lS5dWpL08ccf68cff5Svr69++OEHZcmSxXKu3bt3q1SpUlZDzWMjWbJkGjFihFq2bKmJEydq0KBBVutr1KihgIAAzZgxQ9OnT1f69Onl6+ur7t27W7Zp3Lix+vfvr7p162rv3r1KkiTJf6oFAIC44ODgoM6dO6tz584xrjeZTGrSpImaNGnylisDAMQFk/llN9e+oFatWmrVqtVLP24oysqVKzV79mxt27YtzgoE4ssff/whSdpx3aQr957YuBoAQEKSLa2jvvAuZusyEoUnT57oxIkTKly4sGUOFiQOtG3i9T62bVQ2eN18XoaGcFerVk2LFy9WeHj4S7cJCwvT4sWLVbZs2ViUCQAAAADAu8FQgG7durXu3Lmj1q1bx3iP87Fjx9SuXTtdunRJbdu2jfMiAQAAAACwNUP3QGfOnFmBgYHq1auXPvvsM2XIkEE5cuTQs2fPdPXqVd2+fVsZMmRQYGAgsyMDAAAAABIlwx+mW6pUKW3cuFHr1q3T7t27de3aNSVJkkSurq6qWLGi6tWrp1SpUsVnrQAAAAAA2IzhAC1JadKkUevWrdW6det4KgcAAAAAgITJ0D3QAAAAAAC87wjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAbEOkAfOHBAjx8/jnHdgwcPtHnz5jcuCgAAAACAhCbWAbply5Y6ffp0jOuOHz+uAQMGvHFRAAAAAAAkNIY+xqp///66evWqJMlsNmvo0KExfubzuXPnlDFjxritEAAAAACABMBQD3SNGjVkNptlNpsty6IeR33Z2dmpRIkS8vf3j7diAQAAAACwFUM90F5eXvLy8pIktWjRQkOHDpWzs3O8FgYAAAAAQEJiKEC/aPHixfFRBwAAAAAACVqsA3RoaKhmzJihn3/+WSEhIYqMjLRabzKZtG3btjgrEAAAAACAhCDWAXrkyJFavXq1PDw8VLhwYdnZ8VHSAAAAAIDEL9YB+ocfflCvXr3UoUOH+KgHAAAAAIAEKdbdx0+fPpWbm1t81AIAAAAAQIIV6wBdsWJF7dy5Mz5qAQAAAAAgwYr1EG4fHx8NGTJEd+7cUfHixZUiRYpo23z88cdxURsAAAAAAAlGrAN0z549JUnBwcEKDg6Ott5kMhGgAQAAAACJTqwD9Pbt2+OjDgAAAAAAErRYB+js2bNbPQ4LC5ODg4NMJlOcFQUAAAAAQEIT6wAtSWfOnNGUKVP0yy+/6NGjR1q1apVWr16tfPnyqUWLFnFdIwAAAAAANhfrWbhPnDihTz/9VMeOHVOdOnVkNpslSUmSJNGoUaO0bt26OC8SAAAAAABbi3UP9JgxY1SsWDHNmzdPkvTtt99KkgYNGqSwsDAtWrRI9evXj9sqAQAAAACwsVj3QP/2229q3bq1kiZNGu2+Zx8fH507dy6uagMAAAAAIMGIdYBOliyZQkNDY1x37949OTg4vHFRAAAAAAAkNLEewl2hQgVNmTJFJUuWVKZMmSQ9/+znx48fa968eSpfvnycFwnEp0xOKWxdAgAggeFvAwAgJrEO0P369VOjRo1Us2ZNFSpUSCaTSaNHj9bZs2dlNpsVEBAQH3UC8aZRWWdblwAASIAizWbZ8TGdAIAXxHoI9wcffKD169erVatWMpvNypUrl548eSJfX1+tXbtWOXPmjI86gXgRHh6ukJAQW5eBOBYSEqLjx4/TtokQbZt4JcS2JTwDAP4t1j3Qd+7cUfr06dWrV6/4qAd466I+ig2Jh9lsVkhICG2bCNG2iRdtCwB4F8S6B7py5crq3Lmzvv/+e4WHh8dHTQAAAAAAJDixDtB9+/bV7du31bNnT1WoUEGDBg3SwYMH46M2AAAAAAASjFgP4W7durVat26tixcvatOmTdqyZYtWr16tbNmyqW7duqpTp46cnZmUCQAAAACQuMS6BzpKzpw51blzZ23cuFEbN25U1apVNWfOHPn6+sZlfQAAAAAAJAix7oF+0e3bt/Xdd9/pu+++05EjR5Q2bVr5+PjEVW0AAAAAACQYsQ7QDx8+1NatW7V582YdOHBASZIkkZeXl6ZPn65KlSopSZIk8VEnAAAAAAA2FesA7enpqcjISJUqVUpDhw5VzZo1lSpVqvioDQAAAACABCPWAbpbt26qU6eOsmXLFh/1AAAAAACQIMV6ErGOHTu+NDyHhobq5MmTb1wUAAAAAAAJjaEAXbFiRZ04ccJq2fz583Xnzh2rZX/99Zfq168fd9UBAAAAAJBAGArQt27d0tOnTy2Pnz17prFjx+rq1avxVhgAAAAAAAnJf/4caLPZHJd1AAAAAACQoP3nAA0AAAAAwPuEAA0AAAAAgAEEaAAAAAAADHijAG0ymeKqDsBmeB0nPiaTSSlSpKBtEyHaFgAA2FJSoxt27dpVDg4OVss6deoke3t7y+Pw8PC4qwx4CxwcHJQiRQpbl4E4liJFChUpUsTWZSAe0La2ZTabefMCAPBeMxSg+WxnJGZHzt3Qw9Cnr98QAN5jTsnt5Z4ns63LAADApgwFaH9///iuA7CZh6FP9SCE0RMAAAAAXo1JxAAAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAUltXQAAAEjcIiMjtWLFCi1dulSXLl1S+vTp9eGHH6p79+5KlSqVJOnw4cMaO3asLl26pNSpU8vb21s9e/a0rAcAICEgQAMAgHg1d+5cTZo0Se3atZOnp6fOnj2rKVOm6O+//9a8efP0zz//qHPnzipQoIDGjBmje/fuafz48bp06ZJmzpxp6/IBALCw+RBuLy8vubi4aP78+TGu//rrr+Xi4qKpU6dKktauXSsXF5e3UtulS5fk4uKiffv2SZL8/PzUokWLt3JuW4p6jl/2FRQU9NZquXv3rlatWvXWzgcAiFuRkZGaM2eOGjVqpD59+qh8+fJq1qyZhgwZol9++UV//vmnNm7cKJPJpD59+qhChQr67LPP1KtXL/3888+6fPmyrS8BAACLBNEDbW9vr61bt6pNmzZWyyMiIvTDDz/IZDJZlvn4+KhSpUpvu8T30u7du2Nc/jaH00UN5/vss8/e2jkBAHHn0aNHqlevnmrVqmW1PF++fJKkixcvKiwsTEmTJpWDg4Nlfdq0aSVJ9+7dU/bs2d9avQAAvEqCCNCenp7atWuXrl27pqxZs1qW//rrr3J0dFSKFCksy5InT67kyZPbosz3TqZMmWxdgsxms61LAAC8gdSpU2vQoEHRlm/btk2SlD9/fuXPn1+rVq3SkiVL1L9/f12+fFnTpk1TwYIFVahQobddMgAAL2XzIdyS5ObmpmzZsun777+3Wr5lyxbVqlXLqgf630O4d+zYoQYNGqh48eLy9PSUn5+f7t+/b1l//vx5de7cWaVKlVLZsmXVu3dv3b5927J+zZo1qlWrltzc3FSrVi0tXLhQkZGRhuo+ePCgWrZsqZIlS6pYsWKqVauW1q9fb1nv5+cnPz8/jRkzRp6enipevLg6duyo69evW7a5fv26evXqpdKlS6ts2bLq1KmTzp07Z3We4OBg1a1bV25ubvLy8tL06dP17NkzSdGHmce07Pbt2+revbvKli0rNzc3NW7cWPv37zd0jS9z8eJFFSpUSDt27LBaPmDAADVp0kSSFB4ernHjxqlSpUpyd3dXw4YNrXq1165dq+rVq1v+LVasmBo0aKBDhw5Znr9169Zp//79ljY/d+6c2rVrp1KlSsnd3V3t2rXTX3/99UbXAgB4u44eParZs2erWrVqKliwoAoWLKgePXpo69atqlatmnx9ffX48WPNnj1bSZIksXW5AABYJIgALUm1atWyCtDh4eHatm2bateu/dJ97ty5oy+++EKffPKJtmzZosDAQB04cEBjx46VJD148EDNmjVTeHi4Fi5cqPnz5+vChQvq2bOnJGnFihUaO3asvvjiC23evFk9e/bUnDlzNH78+NfWe/36dbVr106urq5at26dgoOD5ebmpoEDB+rWrVuW7TZt2qR79+5pyZIlmjNnjo4dO6ZJkyZJkp48eWK5p3rJkiVavHix0qVLp4YNG1pC9oIFCzR48GA1atRIGzZsUI8ePRQUFKTRo0cbfm6HDh2qsLAwLVmyRBs3blTevHnVpUsXPXnyxPAx/i1nzpwqU6aMNm3aZFkWFhamH374QQ0aNJD0PEzv2bNH48eP17p161SrVi116tRJ//vf/yz7XL16VcuXL9e4ceO0bt06pUiRQn5+fjKbzRo4cKBq1aold3d3S/Du3bu3smTJojVr1mjVqlWys7PTF1988Z+vAwDwdh06dEjt27dXjhw55O/vL0maPXu2Ro0aJW9vb82aNUsTJ05UypQp1bp1a6u/qQAA2FqCGMItPQ/QQUFBun79urJkyaI9e/Yoffr0KlKkyEv3uX79usLDw5UtWzZlz55d2bNn18yZMy29s1u2bNHjx48VEBCgNGnSSJK++eYbbd68WeHh4Zo+fbo6d+5sCek5c+bUo0ePNGzYMPXo0eOV9YaFhalbt25q166dpYe8Q4cOCg4O1rlz55QxY0ZJkpOTk4YPHy57e3s5OzvLx8fH0mu7efNmPXjwQOPGjVPSpM+bYuTIkdq3b59WrlypL774QnPmzFHz5s3VrFkzSVKePHl07949jRs3Tt27dzf03F64cEEFCxZUzpw5lTx5cg0cOFB16tR57bv67u7uMS7fs2ePHB0d1aBBAw0fPlwhISFKkSKFfvrpJz179ky1atXS+fPntWnTJgUHB6tw4cKSpDZt2ujkyZMKCgpS1apVJUlPnz7VsGHDrLbp2rWrbt68qcyZMyt58uSyt7e3DCe/cOGCypcvr+zZs8ve3l6jRo3SmTNnFBkZKTu7BPN+EAAgBlu2bJGfn5/y5MmjuXPnKl26dIqIiND06dPl4+Oj5s2bq3DhwnJ0dFTZsmXl7e2toKAg9e/f39alAwAgKQEF6GLFiilnzpzaunWrWrZsqS1btryy91mSChcuLF9fX3Xq1EmZMmVShQoVVLVqVVWvXl2SdOrUKeXJk8cSniWpUKFCKlSokO7cuaNr164pICBAkydPtqyPjIxUWFiYLl26pGTJkr303Lly5VKDBg20aNEinTp1ShcuXNDJkyclyRLgo7azt7e3PHZyctLTp08lScePH9f9+/dVpkwZq2OHhYXp9OnTunPnjm7duqVSpUpZrffw8NDTp0915swZZciQ4ZXPkSR98cUX6tevn7Zu3apSpUqpYsWK8vX1feX1Sc+Hjsck6p70GjVqaPjw4dq+fbt8fX21YcMGeXt7K1WqVNq1a5ckqWnTplb7Pn36VKlTp7Za5uzsbPneycnJsl1MevXqpVGjRmnp0qXy8PBQpUqV5OvrS3gGgAQuKChI48aNk4eHh6ZNm2b5fX/nzh2FhISoePHiVttnyJBBefPm1d9//22LcgEAiFGCCdDS/w/jbtSokbZv327o44smTJigrl27aufOnfrll1/Ur18/lSpVSgsXLrT06sYk6j7nAQMGqHz58tHWf/DBB7px48ZL9//nn3/UtGlTFS1aVOXLl9dHH32kdOnSRZst+sUZRWOqIW/evJoxY0a0dY6Oji+dQCuq9pdd34sBXpKqV6+uXbt2adeuXfrll180f/58BQYGauXKlSpQoMBL68udO/dL10XVWLNmTW3cuFEVK1bUrl27NHv2bEn/P/nXt99+q5QpU1rt9++wG9Nz9LJrb9asmWrWrKkdO3Zo7969mjJlimbMmKHg4GBLrz8AIGFZvny5xo4dKx8fH40ZM8bq936GDBmUNm1aHTlyRK6urpbld+7c0blz56IFawAAbClBddvVqlVLhw8f1po1a5QzZ06rnsmYHD16VKNGjVK+fPnUunVryz1Uv/76q27fvq38+fPr3LlzevjwoWWfY8eOydPTU0+fPlX69Ol18eJF5c6d2/L14j3Kr7J8+XJlyJBB8+fP1+eff64qVapY7tMyOnN0wYIFdeXKFTk5OVnOny1bNk2YMEEHDhxQxowZlTFjRsukWlEOHjwoe3t7q97tR48eWda/OAlZeHi4/P39dfHiRfn4+Oibb77Rtm3bZGdnZ3Uv8n/1ySefaM+ePZYAW65cOUmyBPObN29aPb9r167V2rVrDR//xQnkbt++reHDh+vp06dq0KCBxo0bpw0bNujmzZtvPCkaACB+3Lx5U/7+/sqePbuaNWum48eP67fffrN83b9/X926ddP333+voKAg7du3T1u2bFGbNm2UJEkStW3b1taXAACARYLqgS5cuLBy586tCRMmqGPHjq/dPlWqVFq6dKns7e3VsGFDhYWFacuWLcqTJ4/SpUunOnXqaPr06erXr5969uypiIgIDR06VAULFtQHH3ygzz//XBMnTlS2bNlUuXJl/fXXXxo6dKg+/PDDV/YcS1LWrFl17do17dixQ/nz59exY8f0zTffSHoeWo2oW7euZs+ere7du6tfv35KlSqVpk+frp07d1ruwW7Xrp0mTpyonDlzqkKFCvr9998VGBioRo0aycnJSalSpVL27Nm1cOFCy/3RkydPtgRPBwcH/fHHHzp48KAGDx6sjBkzaufOnXry5MlL73GOcvPmzRiXJ0uWzDIMu3Tp0vrggw80ZcoUtWjRwtK7XKBAAVWrVk1DhgzR119/rQIFCuj777/XrFmzLJPGGOHo6KgbN27o4sWL+uCDD/S///1PFy5cUJ8+fZQqVSqtXbtW9vb2KlasmOFjAgDenh07dig0NFSXL1+2zOfxIn9/fzVv3lzJkiXTnDlz1K1bN6VLl06lS5dWYGCgcubMaYOqAQCIWYIK0NLzXugZM2bIx8fntds6Oztr6tSpCgwM1NKlS2VnZ6dy5cppzpw5srOzU4oUKRQUFCR/f381btxYyZMnV9WqVS2TkbRt21bJkiXT4sWLNXr0aGXMmFENGzY0NDlXy5YtdebMGX355ZcKDw9Xnjx51Lt3b02ZMkV//PGHKleu/NpjODk5acmSJRo7dqzatWunZ8+eqWjRopo3b56l971t27ZycHDQwoULNWrUKGXNmlWff/652rVrJ+l5D+3YsWM1atQo1atXT7lz59aAAQPUoUMHy3kmTpwof39/de7cWQ8fPlS+fPk0fvx4lS5d+pX1VaxYMcblVatW1axZsyyP69evr8mTJ1tm337xvBMnTtTXX3+t+/fvK1euXBo5cqTq16//2ucmyscff6wff/xRvr6++uGHHzRnzhyNGTNGrVu3VkhIiAoXLqzZs2crV65cho8JAHh7Pv30U3366aev3a527drKly+fZRIxAAASIpPZ6HhjIJH5448/JEl37dPrQYixUQMA8L5KncJBlQtlj7fjP3nyRCdOnCBAJ0K0beJF2yZe72PbRmWDF+fjiEmCugcaAAAAAICEigANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYkNTWBQC25pTc3tYlAECCx+9KAAAI0IDc82S2dQkA8E4wm80ymUy2LgMAAJthCDfea+Hh4QoJCbF1GYhjISEhOn78OG2bCNG2tkV4BgC87wjQeO+ZzWZbl4A4ZjabFRISQtsmQrQtAACwJQI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQeO+ZTCZbl4A4ZjKZlCJFCto2EaJtAQCALSW1dQGALTk4OChFihS2LgNxLEWKFCpSpIity0A8oG3jltls5s0IAABigQCN9961u08UHhFp6zIA4K1ySGqnrOkcbV0GAADvFAI03nvhEZEKI0ADAAAAeA3ugQYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwIKmtCwAAAO+WyMhIrVixQkuXLtWlS5eUPn16ffjhh+revbtSpUolFxeXl+7r4eGhxYsXv8VqAQCIOwRoAAAQK3PnztWkSZPUrl07eXp66uzZs5oyZYr+/vtvzZs3TytWrIi2zw8//KCgoCA1adLEBhUDABA3CNA25OXlpcuXL1sem0wmOTo6qkiRIurRo4fKlCnzRsc/dOiQzGazSpcu/crt1q1bp1WrVunUqVOSpAIFCqh169aqUaOGVa3169dXt27d3qgmAMC7LTIyUnPmzFGjRo3Up08fSVL58uWVLl069erVS3/++adKlChhtc/Vq1e1atUqNWvWTD4+PjaoGgCAuME90DbWtm1b7d69W7t379bOnTu1fPlypUqVSu3bt9eVK1fe6NhNmzbVhQsXXrrebDarR48eGj16tHx8fLR8+XKtWLFClStXVq9evTR79uw3Oj8AIPF59OiR6tWrJ19fX6vl+fLlkyRdvHgx2j6jR49WsmTJ1Lt377dSIwAA8YUeaBtzdHRUpkyZLI8zZ86sYcOGqXLlyvrxxx/VqlWreDv30qVL9eOPP2rVqlUqWrSoZXnnzp317NkzTZkyRb6+vsqWLVu81QAAeLekTp1agwYNirZ827ZtkqT8+fNbLf/tt9/0/fffy9/fX6lSpXorNQIAEF/ogU6AkiZ9/r6Gg4ODJCk0NFSTJk3Shx9+KFdXV9WrV09bt261bL927VpVr15d33zzjUqVKqUuXbpYJnAZMGCA/Pz8YjzP8uXLVbVqVavwHKVVq1ZasGCBMmbMGOO+R44cUcuWLVWqVCmVLVtWAwYM0N27dy3rf//9dzVt2lTu7u4qU6aMunXrZulRv3TpklxcXLRv3z7L9v9e5ufnp+7du6tt27YqWbKk5syZI0n6+eef1aBBA7m5ual69eqaNGmSwsPDjT2xAIB4cfToUc2ePVvVqlVTwYIFrdbNnTtX2bNnV926dW1UHQAAcYcAncBcv35dw4cPl6Ojo6pUqSJJ6t27t4KDgzV48GBt2LBB3t7e6tGjh+Xdfkm6cOGCbty4oeDgYPXq1Uu7d++WJH311VcaOHBgtPOEhYXp1KlTKlmyZIx1ODk5qXTp0pYQ/6Lff/9dLVq0UIECBbRy5UpNnjxZR48eVbt27fTs2TM9e/ZMHTt2VJkyZbRhwwYtWLBAV65c0VdffRWr52Lr1q0qX7681qxZI19fX+3cuVM9e/ZUw4YNtWnTJg0ZMkTfffed+vXrF6vjAgDizqFDh9S+fXvlyJFD/v7+VuuuXbum7du3q1WrVpY3hwEAeJfx18zGZs2apXnz5kmSIiIiFB4eLmdnZ02aNEnZsmXT6dOntX37ds2cOVNVq1aVJHXr1k0nT57UzJkz5e3tbTlWly5dlDNnTqvjOzk5ycnJKdp579+/L0lKkyZNrGueN2+eXFxcNHjwYEmSs7OzAgICVK9ePe3evVslSpTQ3bt3lTlzZmXPnl05c+bUpEmTdPv27VidJ02aNGrfvr3lcZ8+fdSwYUM1btxYkpQrVy4NGzZMrVq10qVLl5QjR45YXwsA4L/bsmWL/Pz8lCdPHs2dO1fp0qWzWv/DDz/IZDKpdu3aNqoQAIC4RYC2scaNG6tFixaSJDs7O6VNm9Yq8P7111+SpFKlSlntV6ZMGQUEBFgty5Mnj+Hzpk2bViaTyWrYtVGnTp1ShQoVrJYVKlRITk5O+uuvv1SlShW1b99eI0aM0JQpU1SuXDlVqVJFtWrVitV5cufObfX4+PHj+v3337V69WrLMrPZLEk6ffo0ARoA3qKgoCCNGzdOHh4emjZtWoxv1v7vf/9T6dKlX3o7EAAA7xoCtI2lSZMmWlA0wmw2RxsOlzx5csP7Ozg4qFixYjp8+HCM6x88eKAvvvhCX3zxhTw8PKKd+2U12dvbS5L69u2rpk2baseOHdq7d69GjBihuXPnKjg4OMZ9nz17Fm3Zv68nMjJS7du3V/369aNt++JEbACA+LV8+XKNHTtWPj4+GjNmTIy3+5jNZv3+++9q3ry5DSoEACB+cA90Ahc1GdihQ4eslh88eDDaTKex1bBhQ+3cuVPHjh2Ltm7RokU6ePBgjL26Li4u0eo5efKkHj16JGdnZ505c0ZDhgxRhgwZ1KRJE02ZMkVz587V6dOndfLkSUvIfvTokWX/c+fOvbbeAgUK6OzZs8qdO7fl69q1axo7dqweP34cy6sHAPwXN2/elL+/v7Jnz65mzZrp+PHj+u233yxfd+7ckSRduXJFDx8+fOO/VQAAJCT0QCdwzs7OqlatmoYNGyaTyaTcuXNr8+bN2r59uyZNmvTKfR0dHXX69GndvXs32n1pkvTpp59q+/btatOmjXr06KEKFSooNDRUGzZs0Pz589W/f/8YP8KqTZs2atq0qUaMGKGmTZvq1q1bGjFihIoUKSJPT089evRImzdvVmhoqDp06CA7OzutW7dOadKkUb58+ZQyZUplz55dCxcuVJ48eXTv3j1NnjxZJpPpldfz+eefq2fPngoMDFTt2rV17do1DRw4UDly5KAHGgDekh07dig0NFSXL19Ws2bNoq339/dXgwYNLPNepE6d+m2XCABAvCFAvwMCAgIUEBCggQMH6sGDBypYsKCmTp2q6tWrv3K/tm3bWnp+Z86cGW29nZ2dpk2bpiVLlmjVqlWaMGGCkiZNqgIFCigwMFAffvhhjMctXry45s6dq0mTJunjjz9WqlSp5O3trT59+sje3l7p0qXTnDlzNGHCBDVs2FDPnj1TiRIlNH/+fMtngI4dO1ajRo1SvXr1lDt3bg0YMEAdOnR45fXUrFlTEydO1KxZszRz5kylTZtWXl5e6tu3r8FnEgDwpj799FN9+umnr93Ozc3NMo8HAACJhcn8shtagUTujz/+kCSlyZpXYRGRNq4GAN6uZEntlCtTKluXYfHkyROdOHFChQsXlqOjo63LQRyibRMv2jbxeh/bNiobuLq6vnI77oEGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNAAAAAAABhCgAQAAAAAwgAANAAAAAIABBGgAAAAAAAwgQAMAAAAAYAABGgAAAAAAAwjQAAAAAAAYQIAGAAAAAMAAAjQAAAAAAAYQoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMSGrrAgBbc0jK+0gA3j/87gMAIPYI0HjvZU3naOsSAMAmzGazTCaTrcsAAOCdwdvPeK+Fh4crJCTE1mUgjoWEhOj48eO0bSJE28YtwjMAALFDgMZ7z2w227oExDGz2ayQkBDaNhGibQEAgC0RoAEAAAAAMIAADQAAAACAAQRoAAAAAAAMIEADAAAAAGAAARoAAAAAAANMZqYyxXvq8OHDMpvNsre356NcEhmz2aynT5/StokQbZt40baJF22beNG2idf72Lbh4eEymUwqWbLkK7dL+pbqARKcqF8G78svhfeJyWSSg4ODrctAPKBtEy/aNvGibRMv2jbxeh/b1mQyGcoF9EADAAAAAGAA90ADAAAAAGAAARoAAAAAAAMI0AAAAAAAGECABgAAAADAAAI0AAAAAAAGEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAAAAABhAgAYAAAAAwAACNN47kZGRmjJliipVqqQSJUro888/18WLF21dFt7QrFmz1KJFC6tlJ06cUPPmzVWiRAl5eXlp0aJFNqoOsXXv3j19/fXXqly5skqWLKkmTZro4MGDlvV79+5VgwYNVLx4cdWsWVObN2+2YbWIjdu3b6tfv34qV66c3N3d1aFDB50+fdqynp/bxOHs2bNyd3fX2rVrLcto23fX9evX5eLiEu0rqn1p23dbcHCwfHx85Orqqtq1a+u7776zrLt06ZI6duyokiVLqmLFipo0aZKePXtmw2ptjwCN98706dO1dOlSjRgxQsuXL1dkZKTat2+v8PBwW5eG/+jbb7/VpEmTrJbdvXtXbdq0Ua5cubRmzRp17dpV48eP15o1a2xTJGKld+/eOnLkiAICArRmzRoVLlxY7dq105kzZ3T69Gl17NhRlSpV0tq1a/XZZ5/pyy+/1N69e21dNgzo2rWrzp8/r9mzZ2v16tVKnjy5WrdurZCQEH5uE4mnT5+qb9++evLkiWUZbftuO3nypJIlS6Zdu3Zp9+7dli8fHx/a9h23fv16DRw4UM2aNdPmzZvl6+tr+Rv89OlTtWvXTpK0fPlyDR06VMuWLdO0adNsXLVtJbV1AcDbFB4ernnz5qlv376qWrWqJGnixImqVKmSfvjhB/n6+tq2QMTK9evXNWTIEO3bt0958uSxWrdy5UrZ29tr+PDhSpo0qZydnS3/af/kk09sUzAMOX/+vPbs2aOlS5eqVKlSkqTBgwdr165d2rhxo27fvi0XFxf16tVLkuTs7Kzjx49r7ty58vT0tGXpeI379+8re/bs6tixowoWLChJ6tKli+rVq6e///5be/fu5ec2EZg6dapSpUpltYzfye+2U6dOKU+ePMqcOXO0dQsXLqRt31Fms1mTJ09Wy5Yt1axZM0lS586ddfDgQe3fv1+XL1/WlStXtHLlSqVJk0YFCxbU7du3NXbsWHXq1EkODg42vgLboAca75WTJ0/q8ePHVv/JTp06tYoUKaIDBw7YsDL8F8eOHZO9vb02bNig4sWLW607ePCgPDw8lDTp/79PWK5cOZ07d063bt1626UiFtKlS6fZs2fL1dXVssxkMslkMunBgwc6ePBgtKBcrlw5HTp0SGaz+W2Xi1hIkyaNJkyYYAnPd+7c0YIFC5Q1a1blz5+fn9tE4MCBA1qxYoVGjx5ttZy2fbf99ddfcnZ2jnEdbfvuOnv2rC5fvqw6depYLQ8KClLHjh118OBBFS1aVGnSpLGsK1eunB49eqQTJ0687XITDAI03ivXrl2TJH3wwQdWyzNnzmxZh3eHl5eXpk6dqpw5c0Zbd+3aNWXNmtVqWdQ751evXn0r9eG/SZ06tapUqWL1zvbWrVt1/vx5VapU6aVtGzUEGO+GwYMHy9PTU5s3b9bIkSPl6OjIz+077sGDB/ryyy81aNCgaH9nadt326lTp3Tnzh01a9ZM5cuXV5MmTbRz505JtO277OzZs5KkJ0+eqF27dvL09NRnn32mn376SRJt+zIEaLxXQkJCJCnakJNkyZIpLCzMFiUhnoSGhsbYzpJo63fM4cOHNWDAAH300UeqWrVqjG0b9Zi5DN4drVq10po1a+Tr66uuXbvq2LFj/Ny+44YOHSp3d/dovVkSv5PfZRERETpz5ozu37+vbt26afbs2SpRooQ6dOigvXv30rbvsEePHkmS+vfvL19fX82bN08VKlRQly5daNtX4B5ovFeSJ08u6fl/sqO+l57/EkiRIoWtykI8SJ48ebQwFfXL3tHR0RYl4T/Ytm2b+vbtq5IlS2r8+PGSnv/x/nfbRj3m5/jdkT9/fknSyJEjdfToUS1ZsoSf23dYcHCwDh48qI0bN8a4nrZ9dyVNmlT79u1TkiRJLP93KlasmP7++28FBQXRtu8we3t7SVK7du1Uv359SVLhwoV1/PhxzZ8/n7Z9CXqg8V6JGlJ248YNq+U3btxQlixZbFES4knWrFljbGdJtPU7YsmSJerWrZuqVaummTNnWt71/uCDD2JsW0dHRzk5OdmiVBh0584dbd68WREREZZldnZ2yp8/v27cuMHP7TtszZo1un37tqpWrSp3d3e5u7tLkoYMGaL27dvTtu+4lClTWnU8SFKBAgV0/fp12vYdFtU+UfNSRMmfP78uXbpE274EARrvlUKFCilVqlTat2+fZdmDBw90/PhxlSlTxoaVIa6VKVNGhw4dsvqswl9//VV58+ZVhgwZbFgZjIj6qLlmzZopICDAaghZ6dKltX//fqvtf/31V5UsWVJ2dvxZS8hu3bql3r17W33k2NOnT3X8+HE5Ozvzc/sOGz9+vLZs2aLg4GDLlyR1795dI0eOpG3fYX///bdKlixp9X8nSfrzzz+VP39+2vYdVrRoUaVMmVJHjx61Wn7q1CnlypVLZcqU0fHjxy1DvaXnbZsyZUoVKlTobZebYPA/DbxXHBwc1Lx5c40fP17bt2/XyZMn1atXL2XNmlUfffSRrctDHPrkk0/06NEjDRw4UP/884/Wrl2rBQsWqGPHjrYuDa9x9uxZjRo1StWrV1fHjh1169Yt3bx5Uzdv3tTDhw/VokUL/f777xo/frxOnz6tefPm6fvvv1f79u1tXTpeo2DBgqpcubK++eYbHThwQKdOnZKfn58ePHig1q1b83P7DsuSJYty585t9SVJGTJkUJYsWWjbd5izs7Py5cun4cOH6+DBgzp9+rT8/f3122+/qXPnzrTtOyx58uRq3769pk2bpk2bNunChQuaMWOG9uzZozZt2sjb21uZMmVSz549dfLkSW3btk0BAQFq27bte/sRVpJkMvOZH3jPPHv2TAEBAVq7dq1CQ0NVpkwZff3118qRI4etS8Mb8PPz0+XLl7V48WLLst9//10jR47U8ePHlSlTJrVt21bNmze3YZUwYubMmZo4cWKM6+rXr6/Ro0dr586dGjdunM6dO6ccOXKoW7du8vHxecuV4r94+PChJkyYoG3btunhw4cqXbq0/Pz8VKBAAUn83CYmLi4u8vf3V4MGDSTRtu+yW7duacKECdq1a5cePHigIkWKqG/fvipdurQk2vZdN3/+fC1ZskTXr1+Xs7OzunXrJm9vb0nS+fPnNWzYMB08eFBp0qTRp59+qm7dur3XI74I0AAAAAAAGPD+vnUAAAAAAEAsEKABAAAAADCAAA0AAAAAgAEEaAAAAAAADCBAAwAAAABgAAEaAAAAAAADCNAAAACJHJ9aCgBxgwANAMB7rEWLFipSpIj++OOPGNd7eXnJz8/vrdTi5+cnLy+vt3Ku2IiIiJCfn5/c3d1VsmRJ/frrr9G2uXTpklxcXF75tWzZsrde+4MHD/Tll1/q4MGDb/3cAJAYJbV1AQAAwLaePXumAQMGaO3atXJwcLB1OQnOrl27tG7dOnXp0kXly5dXkSJFXrpt586dVbVq1RjX5cyZM54qfLkTJ05o/fr1+uSTT976uQEgMSJAAwDwnnNyctLff/+tadOmqVevXrYuJ8G5d++eJKlBgwavDcG5cuVSiRIl4r8oAIBNMIQbAID3XOHChfXxxx9r7ty5+vPPP1+5rYuLi6ZOnWq1bOrUqXJxcbE89vPzU7t27bRixQp5e3vLzc1NjRs31tmzZ/Xzzz+rTp06Kl68uD777DOdOHEi2jlWrFihqlWrys3NTa1atdLx48et1l+5ckW9e/eWh4eHihcvHm2bqOHU8+fPV82aNVW8eHGtWbMmxut59uyZvv32W9WpU0dubm6qWrWqxo8fr7CwMMu1RA1h9/b2VosWLV75/LxOWFiYSpUqpTFjxlgtj4iIULly5fTNN99Ylq1atUq1a9dWsWLFVLVqVU2dOlXPnj2zrPfz81Pr1q21Zs0a1ahRQ8WKFVO9evW0c+dOSdK+ffvUsmVLSVLLli0ttV+4cEGdOnVS2bJlVbx4cTVq1Eg7dux4o+sCgPcFARoAAOirr75SunTpNGDAAIWHh7/x8Y4cOaIlS5bIz89P/v7+On36tDp06CB/f3917NhRAQEBunr1qvr27Wu137Vr1xQYGKiePXsqICBA9+/fV4sWLXTlyhVJ0p07d9S4cWMdO3ZMgwcP1oQJExQZGalmzZrp9OnTVseaOnWqPv/8c40dO1YVKlSIsc6vv/5a/v7+8vb21owZM9SsWTMtWbJEXbp0kdlsVpcuXdS5c2dJUmBgoIYMGfLK646MjFRERES0r6jgmyxZMtWoUUPfffed1cRee/bs0d27d1WvXj1J0qxZszR48GB5enpq5syZatasmebMmaPBgwdbne/PP/9UUFCQunfvrmnTpilJkiTq1q2b7t+/r6JFi+rrr7+2XOeQIUMUGRmpjh07KiQkRGPHjtX06dOVNm1ade7cWefPn3/ltQEAGMINAAAkpUmTRsOHD1fnzp3jZCj348ePNWnSJDk7O0uS9u/fr+XLl2vBggXy9PSUJJ0/f15jxozRgwcPlDp1aknPe4SnTZsmNzc3SVLx4sXl7e2txYsXq3///lq4cKHu3bunZcuWKXv27JKkypUry8fHR5MnT9aUKVMsNdSqVeuV9/7+888/Wr16tfr06aMOHTpIkipUqKDMmTPryy+/1M6dO1WlShXlypVL0vOe+hw5crzyugcOHKiBAwdGW+7o6KgjR45IkurVq6c1a9bo0KFDKl26tCRp8+bNypcvn1xdXfXw4UNNnz5djRo10qBBgyRJFStWVNq0aTVo0CC1adNGBQoUkCQ9fPhQa9eutdTo6Oio5s2b69dff1WNGjWUP39+SVL+/PmVP39+3bx5U2fOnFGXLl1UpUoVSZKbm5sCAwPj5I0TAEjsCNAAAEDS8xm369atq7lz5+qjjz5S0aJF//Ox0qRJYwnPkpQxY0ZJzwNxlLRp00qSVYDOmTOnJTxLUqZMmVSiRAkdOHBAkrR3714VLlxYWbJkUUREhCTJzs5OlStX1oYNG6xqKFy48Ctr3L9/vySpdu3aVstr166tAQMGaN++fZaQadQXX3wR4yRiSZIksXzv4eGhbNmyafPmzSpdurTCwsK0bds2S4g/cuSIQkND5eXlZblGSZYZyvfs2WMJ0OnTp7eEZ0nKmjWrJCkkJCTG+jJmzKj8+fNr8ODB2r17typWrKjKlStrwIABsbpOAHhfEaABAIDFoEGDtHfvXg0YMOCl9w0bkSpVqhiXOzo6vnK/qKD9ogwZMujq1auSnk/odf78+ZeG+xeD4+vOdf/+fUnPQ/qLkiZNqnTp0unhw4ev3D8m2bNnl6ur6yu3MZlMqlOnjlatWqVBgwbp559/1pMnT1SnTh1J/z9pWVSg/rcbN25Yvk+RIkW0Y0vPh5K/7Nzz5s3TjBkz9OOPPyo4OFj29vby9vbWsGHDlCZNGkPXCQDvKwI0AACwSJMmjYYOHaquXbtq+vTpMW7z4kRWkvTkyZM4O39UqH3RzZs3lT59eknPZwz38PDQl19+GeP+sfkYrqiwePPmTctwcEl6+vSp7t69q3Tp0sWm9FipV6+eZs2apX379mnLli0qU6aMpYao3vjx48crT5480faN6U2G2MiSJYuGDh2qIUOG6OTJk/r+++81Z84cpUuX7rX3eAPA+45JxAAAgBVvb2/5+vpq9uzZunPnjtW6VP/X3t2DNLKFYRx/skS0WJkE/CiT4AcakRSiIYKgWCgSFMVag9goCkZBUBCCkEIhQkRIodgpIioEjLUiiJURm5SBIEjASgURDLvFcofN1b13wrW7/x9MMecMnDnTPcx7zvn+Xfl8vqjt5ubmy8bOZrPK5XLm/cPDg9LptPx+v6Rf5c/ZbFYej0etra3mlUwmdXR0VFQq/W86Ojok/Vp//LtUKqVCoaC2trYvmNHn6urq1NLSolQqpYuLCw0ODpp9Pp9PZWVlyufzRXO02+3a2NjQ/f295XH+/j3S6bQ6Ozt1d3cnm82m5uZmhcNhNTY2mhu1AQD+jD/QAADgg5WVFV1fX+vx8bGovbu7W6lUSj6fTy6XSycnJ1+6e3N5ebmmpqYUDodVKBQUj8flcDg0Pj4uSQqFQkomkwqFQpqYmJDT6dTZ2ZkODw9LXsdbX1+v4eFhbW5u6vX1Ve3t7cpkMtra2pLf71dXV1fJ75/L5XR7e/tpn2EY8ng85v3Q0JDW1tZkt9vV399vtjudTk1OTioej+vl5UV+v1/5fF7xeFw2m01NTU2W36eyslKSdH5+LsMw5PV6VVFRocXFRc3OzqqqqkpXV1fKZDLmkVcAgD8jQAMAgA8cDocikYhmZmaK2peWlvT+/m4Gv4GBAS0sLJi7Rf9XXq9XfX19ikQien5+ViAQ0PLyslnCXVtbq4ODA8ViMUUiEb29vcntdisajWp0dLTk8aLRqFwul46Pj7W9va2amhqNjY1penpa376VXqiXSCSUSCQ+7evt7S0qiw8Gg1pfX1dPT48ZdP8yNzen6upq7e/va2dnR4ZhKBAIaH5+/sOz/6ShoUHBYFB7e3u6vLzU6empdnd3FYvFFI1G9fT0JLfbrdXVVY2MjJQ8XwD4v7H9+P0QQgAAAAAA8CnWQAMAAAAAYAEBGgAAAAAACwjQAAAAAABYQIAGAAAAAMACAjQAAAAAABYQoAEAAAAAsIAADQAAAACABQRoAAAAAAAsIEADAAAAAGABARoAAAAAAAsI0AAAAAAAWECABgAAAADAgp86rb8HdDLhsQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Apply seaborn style\n", + "sns.set_style(\"whitegrid\")\n", + "\n", + "# Plot for China\n", + "plt.figure(figsize=(10, 6))\n", + "ax_china = sns.barplot(x='count', y='Category', data=china_plot_data, palette='Oranges_r')\n", + "plt.title('Top 5 Event Categories in China')\n", + "plt.xlabel('Number of Events')\n", + "plt.ylabel('Event Category')\n", + "\n", + "# Loop through the bars and add text annotation\n", + "for p in ax_china.patches:\n", + " width = p.get_width()\n", + " plt.text(width + 1, # x position, shifted +1 to the right for spacing\n", + " p.get_y() + p.get_height() / 2, # y position, at the center of the bar\n", + " f'{int(width)}', # text label, the count of events\n", + " va='center') # center alignment\n", + "\n", + "plt.show()\n", + "\n", + "# Plot for United States\n", + "plt.figure(figsize=(10, 6))\n", + "ax_us = sns.barplot(x='count', y='Category', data=us_plot_data, palette='Blues_r')\n", + "plt.title('Top 5 Event Categories in the United States')\n", + "plt.xlabel('Number of Events')\n", + "plt.ylabel('Event Category')\n", + "\n", + "# Loop through the bars and add text annotation for the US plot\n", + "for p in ax_us.patches:\n", + " width = p.get_width()\n", + " plt.text(width + 1, # x position, shifted +1 to the right for spacing\n", + " p.get_y() + p.get_height() / 2, # y position, at the center of the bar\n", + " f'{int(width)}', # text label, the count of events\n", + " va='center') # center alignment\n", + "\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}