Spaces:
Running
Running
| import gradio as gr | |
| import pandas as pd | |
| import numpy as np | |
| import os | |
| import sys | |
| import re | |
| from datetime import datetime | |
| import json | |
| import torch | |
| from tqdm import tqdm | |
| from concurrent.futures import ThreadPoolExecutor, as_completed | |
| import smtplib | |
| from email.mime.multipart import MIMEMultipart | |
| from email.mime.text import MIMEText | |
| from huggingface_hub import HfApi | |
| import shutil | |
| import tempfile | |
| import time | |
| from queue import Queue | |
| import threading | |
| import time | |
| from stark_qa import load_qa | |
| from stark_qa.evaluator import Evaluator | |
| from utils.hub_storage import HubStorage | |
| from utils.token_handler import TokenHandler | |
| from stark_qa import load_qa | |
| from stark_qa.evaluator import Evaluator | |
| from utils.hub_storage import HubStorage | |
| from utils.token_handler import TokenHandler | |
| class ForumPost: | |
| def __init__(self, message: str, timestamp: str, post_type: str): | |
| self.message = message | |
| self.timestamp = timestamp | |
| self.post_type = post_type # 'submission' or 'status_update' | |
| class SubmissionForum: | |
| def __init__(self, forum_file="submissions/forum_posts.json", hub_storage=None): | |
| self.forum_file = forum_file | |
| self.hub_storage = hub_storage | |
| self.posts = self._load_posts() | |
| def _load_posts(self): | |
| """Load existing posts from JSON file in the hub""" | |
| try: | |
| # Try to get content from hub | |
| content = self.hub_storage.get_file_content(self.forum_file) | |
| if content: | |
| posts_data = json.loads(content) | |
| return [ForumPost(**post) for post in posts_data] | |
| return [] | |
| except Exception as e: | |
| print(f"Error loading forum posts: {e}") | |
| return [] | |
| def _save_posts(self): | |
| """Save posts to JSON file in the hub""" | |
| try: | |
| posts_data = [ | |
| { | |
| "message": post.message, | |
| "timestamp": post.timestamp, | |
| "post_type": post.post_type | |
| } | |
| for post in self.posts | |
| ] | |
| # Convert to JSON string | |
| json_content = json.dumps(posts_data, indent=4) | |
| # Save to hub | |
| self.hub_storage.save_to_hub( | |
| file_content=json_content, | |
| path_in_repo=self.forum_file, | |
| commit_message="Update forum posts" | |
| ) | |
| except Exception as e: | |
| print(f"Error saving forum posts: {e}") | |
| def add_submission_post(self, method_name: str, dataset: str, split: str): | |
| """Add a new submission post""" | |
| timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| message = f"📥 New submission: {method_name} on {split}/{dataset}" | |
| self.posts.append(ForumPost(message, timestamp, "submission")) | |
| self._save_posts() | |
| def add_status_update(self, method_name: str, new_status: str): | |
| """Add a status update post""" | |
| timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| emoji = "✅" if new_status == "approved" else "❌" | |
| message = f"{emoji} Status update: {method_name} has been {new_status}" | |
| self.posts.append(ForumPost(message, timestamp, "status_update")) | |
| self._save_posts() | |
| def get_recent_posts(self, limit=50): | |
| """Get recent posts, newest first""" | |
| return sorted( | |
| self.posts, | |
| key=lambda x: datetime.strptime(x.timestamp, "%Y-%m-%d %H:%M:%S"), | |
| reverse=True | |
| )[:limit] | |
| def format_posts_for_display(self, limit=50): | |
| """Format posts for Gradio Markdown display""" | |
| recent_posts = self.get_recent_posts(limit) | |
| if not recent_posts: | |
| return "No forum posts yet." | |
| formatted_posts = [] | |
| for post in recent_posts: | |
| formatted_posts.append( | |
| f"**{post.timestamp}** \n" | |
| f"{post.message} \n" | |
| f"{'---'}" | |
| ) | |
| return "\n\n".join(formatted_posts) | |
| # Initialize storage once at startup | |
| try: | |
| REPO_ID = "snap-stanford/stark-leaderboard" # Replace with your space name | |
| hub_storage = HubStorage(REPO_ID) | |
| forum = SubmissionForum(hub_storage=hub_storage) | |
| except Exception as e: | |
| print(f"Failed to initialize forum with hub storage: {e}") | |
| forum = SubmissionForum(hub_storage=hub_storage) | |
| def process_single_instance(args): | |
| """Process a single instance with improved validation and error handling""" | |
| idx, eval_csv, qa_dataset, evaluator, eval_metrics = args | |
| try: | |
| # Get query data | |
| query, query_id, answer_ids, meta_info = qa_dataset[idx] | |
| # Get predictions | |
| matching_preds = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'] | |
| if len(matching_preds) == 0: | |
| print(f"Warning: No prediction found for query_id {query_id}") | |
| return None | |
| elif len(matching_preds) > 1: | |
| print(f"Warning: Multiple predictions found for query_id {query_id}, using first one") | |
| pred_rank = matching_preds.iloc[0] | |
| # Parse prediction | |
| if isinstance(pred_rank, str): | |
| try: | |
| pred_rank = eval(pred_rank) | |
| except Exception as e: | |
| print(f"Error parsing pred_rank for query_id {query_id}: {str(e)}") | |
| return None | |
| # Validate prediction format | |
| if not isinstance(pred_rank, list): | |
| print(f"Warning: pred_rank is not a list for query_id {query_id}") | |
| return None | |
| # # Validate and filter prediction values | |
| # valid_pred_rank = [] | |
| # for rank in pred_rank[:100]: # Only use top 100 predictions | |
| # if isinstance(rank, (int, np.integer)) and 0 <= rank < max_candidate_id: | |
| # valid_pred_rank.append(rank) | |
| # else: | |
| # print(f"Warning: Invalid prediction {rank} for query_id {query_id}") | |
| # if not valid_pred_rank: | |
| # print(f"Warning: No valid predictions for query_id {query_id}") | |
| # return None | |
| pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))} | |
| answer_ids = torch.LongTensor(answer_ids) | |
| result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics) | |
| result["idx"], result["query_id"] = idx, query_id | |
| return result | |
| except Exception as e: | |
| print(f"Error processing idx {idx}: {str(e)}") | |
| return None | |
| def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4): | |
| """Compute metrics with improved thread safety and error handling""" | |
| start_time = time.time() | |
| # Dataset configuration | |
| candidate_ids_dict = { | |
| 'amazon': [i for i in range(957192)], | |
| 'mag': [i for i in range(1172724, 1872968)], | |
| 'prime': [i for i in range(129375)] | |
| } | |
| try: | |
| # Input validation | |
| if dataset not in candidate_ids_dict: | |
| raise ValueError(f"Invalid dataset '{dataset}'") | |
| if split not in ['test', 'test-0.1', 'human_generated_eval']: | |
| raise ValueError(f"Invalid split '{split}'") | |
| # Load and validate CSV | |
| print(f"\nLoading data for {dataset} {split}") | |
| eval_csv = pd.read_csv(csv_path) | |
| required_columns = ['query_id', 'pred_rank'] | |
| if not all(col in eval_csv.columns for col in required_columns): | |
| raise ValueError(f"CSV must contain columns: {required_columns}") | |
| eval_csv = eval_csv[required_columns] | |
| # Initialize components | |
| evaluator = Evaluator(candidate_ids_dict[dataset]) | |
| eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr'] | |
| qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval') | |
| split_idx = qa_dataset.get_idx_split() | |
| all_indices = split_idx[split].tolist() | |
| print(f"Processing {len(all_indices)} instances with {num_workers} threads") | |
| # Process instances | |
| results_list = [] | |
| valid_count = 0 | |
| error_count = 0 | |
| with ThreadPoolExecutor(max_workers=num_workers) as executor: | |
| futures = [ | |
| executor.submit( | |
| process_single_instance, | |
| (idx, eval_csv, qa_dataset, evaluator, eval_metrics) | |
| ) | |
| for idx in all_indices | |
| ] | |
| with tqdm(total=len(futures), desc="Processing") as pbar: | |
| for future in as_completed(futures): | |
| try: | |
| result = future.result() | |
| if result is not None: | |
| results_list.append(result) | |
| valid_count += 1 | |
| else: | |
| error_count += 1 | |
| except Exception as e: | |
| print(f"Error in future: {str(e)}") | |
| error_count += 1 | |
| pbar.update(1) | |
| # Compute final metrics | |
| if not results_list: | |
| raise ValueError("No valid results were produced") | |
| print(f"\nProcessing complete. Valid: {valid_count}, Errors: {error_count}") | |
| results_df = pd.DataFrame(results_list) | |
| final_results = { | |
| metric: results_df[metric].mean() | |
| for metric in eval_metrics | |
| } | |
| elapsed_time = time.time() - start_time | |
| print(f"Completed in {elapsed_time:.2f} seconds") | |
| return final_results | |
| except Exception as error: | |
| elapsed_time = time.time() - start_time | |
| error_msg = f"Error in compute_metrics ({elapsed_time:.2f}s): {str(error)}" | |
| print(error_msg) | |
| return error_msg | |
| # Data dictionaries for leaderboard | |
| data_synthesized_full = { | |
| 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'AvaTaR(claude-3-opus)', 'AvaTaR(gpt-4-turbo)'], | |
| 'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10, 49.97, 48.82], | |
| 'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02, 69.16, 72.03], | |
| 'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44, 60.57, 56.04], | |
| 'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51, 58.70, 57.17], | |
| 'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18, 44.36, 46.08], | |
| 'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42, 59.66, 59.32], | |
| 'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94, 50.63, 49.70], | |
| 'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39, 51.15, 52.01], | |
| 'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75, 18.44, 20.10], | |
| 'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85, 36.73, 39.89], | |
| 'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04, 39.31, 42.23], | |
| 'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39, 26.73, 29.18] | |
| } | |
| data_synthesized_10 = { | |
| 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'], | |
| 'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79], | |
| 'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17], | |
| 'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35], | |
| 'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69], | |
| 'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90], | |
| 'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18], | |
| 'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60], | |
| 'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00], | |
| 'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28], | |
| 'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28], | |
| 'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05], | |
| 'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55] | |
| } | |
| data_human_generated = { | |
| 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker', 'AvaTaR(gpt-4-turbo)'], | |
| 'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62, 58.32], | |
| 'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31, 76.54], | |
| 'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46, 42.43], | |
| 'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06, 65.91], | |
| 'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90, 33.33], | |
| 'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43, 42.86], | |
| 'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95, 35.94], | |
| 'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65, 38.62], | |
| 'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57, 33.03], | |
| 'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90, 51.37], | |
| 'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61, 53.34], | |
| 'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82, 41.00] | |
| } | |
| # Initialize DataFrames | |
| df_synthesized_full = pd.DataFrame(data_synthesized_full) | |
| df_synthesized_10 = pd.DataFrame(data_synthesized_10) | |
| df_human_generated = pd.DataFrame(data_human_generated) | |
| # Model type definitions | |
| model_types = { | |
| 'Sparse Retriever': ['BM25'], | |
| 'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'], | |
| 'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'], | |
| 'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'], | |
| 'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker', 'AvaTaR(gpt-4-turbo)', 'AvaTaR(claude-3-opus)'], | |
| 'Others': [] # Will be populated dynamically with submitted models | |
| } | |
| # Submission form validation functions | |
| def validate_email(email_str): | |
| """Validate email format(s)""" | |
| emails = [e.strip() for e in email_str.split(';')] | |
| email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$') | |
| return all(email_pattern.match(email) for email in emails) | |
| def validate_github_url(url): | |
| """Validate GitHub URL format""" | |
| github_pattern = re.compile( | |
| r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$' | |
| ) | |
| return bool(github_pattern.match(url)) | |
| def validate_csv(file_obj): | |
| """Validate CSV file format and content""" | |
| try: | |
| df = pd.read_csv(file_obj.name) | |
| required_cols = ['query_id', 'pred_rank'] | |
| if not all(col in df.columns for col in required_cols): | |
| return False, "CSV must contain 'query_id' and 'pred_rank' columns" | |
| try: | |
| first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0] | |
| if not isinstance(first_rank, list) or len(first_rank) < 20: | |
| return False, "pred_rank must be a list with at least 20 candidates" | |
| except: | |
| return False, "Invalid pred_rank format" | |
| return True, "Valid CSV file" | |
| except Exception as e: | |
| return False, f"Error processing CSV: {str(e)}" | |
| def sanitize_name(name): | |
| """Sanitize name for file system use""" | |
| return re.sub(r'[^a-zA-Z0-9]', '_', name) | |
| def read_json_from_hub(api: HfApi, repo_id: str, file_path: str) -> dict: | |
| """ | |
| Read and parse JSON file from HuggingFace Hub. | |
| Args: | |
| api: HuggingFace API instance | |
| repo_id: Repository ID | |
| file_path: Path to file in repository | |
| Returns: | |
| dict: Parsed JSON content | |
| """ | |
| try: | |
| # Download the file content as bytes | |
| content = api.hf_hub_download( | |
| repo_id=repo_id, | |
| filename=file_path, | |
| repo_type="space" | |
| ) | |
| # Read and parse JSON | |
| with open(content, 'r') as f: | |
| return json.load(f) | |
| except Exception as e: | |
| print(f"Error reading JSON file {file_path}: {str(e)}") | |
| return None | |
| def scan_submissions_directory(): | |
| """ | |
| Scans the submissions directory and updates the model types dictionary | |
| with submitted models. | |
| """ | |
| try: | |
| # Initialize HuggingFace API | |
| api = HfApi() | |
| # Track submissions for each split | |
| submissions_by_split = { | |
| 'test': [], | |
| 'test-0.1': [], | |
| 'human_generated_eval': [] | |
| } | |
| # Get all files from repository | |
| try: | |
| all_files = api.list_repo_files( | |
| repo_id=REPO_ID, | |
| repo_type="space" | |
| ) | |
| # Filter for files in submissions directory | |
| repo_files = [f for f in all_files if f.startswith('submissions/')] | |
| except Exception as e: | |
| print(f"Error listing repository contents: {str(e)}") | |
| return submissions_by_split | |
| # Group files by team folders | |
| folder_files = {} | |
| for filepath in repo_files: | |
| parts = filepath.split('/') | |
| if len(parts) < 3: # Need at least submissions/team_folder/file | |
| continue | |
| folder_name = parts[1] # team_folder name | |
| if folder_name not in folder_files: | |
| folder_files[folder_name] = [] | |
| folder_files[folder_name].append(filepath) | |
| # Process each team folder | |
| for folder_name, files in folder_files.items(): | |
| try: | |
| # Find latest.json in this folder | |
| latest_file = next((f for f in files if f.endswith('latest.json')), None) | |
| if not latest_file: | |
| print(f"No latest.json found in {folder_name}") | |
| continue | |
| # Read latest.json | |
| latest_info = read_json_from_hub(api, REPO_ID, latest_file) | |
| if not latest_info: | |
| print(f"Failed to read latest.json for {folder_name}") | |
| continue | |
| timestamp = latest_info.get('latest_submission') | |
| if not timestamp: | |
| print(f"No timestamp found in latest.json for {folder_name}") | |
| continue | |
| # Find metadata file for latest submission | |
| metadata_file = next( | |
| (f for f in files if f.endswith(f'metadata_{timestamp}.json')), | |
| None | |
| ) | |
| if not metadata_file: | |
| print(f"No matching metadata file found for {folder_name} timestamp {timestamp}") | |
| continue | |
| # Read metadata file | |
| submission_data = read_json_from_hub(api, REPO_ID, metadata_file) | |
| if not submission_data: | |
| print(f"Failed to read metadata for {folder_name}") | |
| continue | |
| if latest_info.get('status') != 'approved': | |
| print(f"Skipping unapproved submission in {folder_name}") | |
| continue | |
| # Add to submissions by split | |
| split = submission_data.get('Split') | |
| if split in submissions_by_split: | |
| submissions_by_split[split].append(submission_data) | |
| # Update model types if necessary | |
| method_name = submission_data.get('Method Name') | |
| model_type = submission_data.get('Model Type', 'Others') | |
| # Add to model type if it's a new method | |
| method_exists = any(method_name in methods for methods in model_types.values()) | |
| if not method_exists and model_type in model_types: | |
| model_types[model_type].append(method_name) | |
| except Exception as e: | |
| print(f"Error processing folder {folder_name}: {str(e)}") | |
| continue | |
| return submissions_by_split | |
| except Exception as e: | |
| print(f"Error scanning submissions directory: {str(e)}") | |
| return None | |
| def initialize_leaderboard(): | |
| """ | |
| Initialize the leaderboard with baseline results and submitted results. | |
| """ | |
| global df_synthesized_full, df_synthesized_10, df_human_generated | |
| try: | |
| # First, initialize with baseline results | |
| df_synthesized_full = pd.DataFrame(data_synthesized_full) | |
| df_synthesized_10 = pd.DataFrame(data_synthesized_10) | |
| df_human_generated = pd.DataFrame(data_human_generated) | |
| print("Initialized with baseline results") | |
| # Then scan and add submitted results | |
| submissions = scan_submissions_directory() | |
| if submissions: | |
| for split, split_submissions in submissions.items(): | |
| for submission in split_submissions: | |
| if submission.get('results'): # Make sure we have results | |
| # Update appropriate DataFrame based on split | |
| if split == 'test': | |
| df_to_update = df_synthesized_full | |
| elif split == 'test-0.1': | |
| df_to_update = df_synthesized_10 | |
| else: # human_generated_eval | |
| df_to_update = df_human_generated | |
| # Prepare new row data | |
| new_row = { | |
| 'Method': submission['Method Name'], | |
| f'STARK-{submission["Dataset"].upper()}_Hit@1': submission['results']['hit@1'], | |
| f'STARK-{submission["Dataset"].upper()}_Hit@5': submission['results']['hit@5'], | |
| f'STARK-{submission["Dataset"].upper()}_R@20': submission['results']['recall@20'], | |
| f'STARK-{submission["Dataset"].upper()}_MRR': submission['results']['mrr'] | |
| } | |
| # Update existing row or add new one | |
| method_mask = df_to_update['Method'] == submission['Method Name'] | |
| if method_mask.any(): | |
| for col in new_row: | |
| df_to_update.loc[method_mask, col] = new_row[col] | |
| else: | |
| df_to_update.loc[len(df_to_update)] = new_row | |
| print("Leaderboard initialization complete") | |
| except Exception as e: | |
| print(f"Error initializing leaderboard: {str(e)}") | |
| def get_file_content(file_path): | |
| """ | |
| Helper function to safely read file content from HuggingFace repository | |
| """ | |
| try: | |
| api = HfApi() | |
| content_path = api.hf_hub_download( | |
| repo_id=REPO_ID, | |
| filename=file_path, | |
| repo_type="space" | |
| ) | |
| with open(content_path, 'r') as f: | |
| return f.read() | |
| except Exception as e: | |
| print(f"Error reading file {file_path}: {str(e)}") | |
| return None | |
| def save_submission(submission_data, csv_file): | |
| """ | |
| Save submission data and CSV file using model_name_team_name format | |
| Args: | |
| submission_data (dict): Metadata and results for the submission | |
| csv_file: The uploaded CSV file object | |
| """ | |
| # Create folder name from model name and team name | |
| model_name_clean = sanitize_name(submission_data['Method Name']) | |
| team_name_clean = sanitize_name(submission_data['Team Name']) | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| # Create folder name: model_name_team_name | |
| folder_name = f"{model_name_clean}_{team_name_clean}" | |
| submission_id = f"{folder_name}_{timestamp}" | |
| # Create submission directory structure | |
| base_dir = "submissions" | |
| submission_dir = os.path.join(base_dir, folder_name) | |
| os.makedirs(submission_dir, exist_ok=True) | |
| # Save CSV file with timestamp to allow multiple submissions | |
| csv_filename = f"predictions_{timestamp}.csv" | |
| csv_path = os.path.join(submission_dir, csv_filename) | |
| if hasattr(csv_file, 'name'): | |
| with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target: | |
| target.write(source.read()) | |
| # Add file paths to submission data | |
| submission_data.update({ | |
| "csv_path": csv_path, | |
| "submission_id": submission_id, | |
| "folder_name": folder_name | |
| }) | |
| # Save metadata as JSON with timestamp | |
| metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json") | |
| with open(metadata_path, 'w') as f: | |
| json.dump(submission_data, f, indent=4) | |
| # Update latest.json to track most recent submission | |
| latest_path = os.path.join(submission_dir, "latest.json") | |
| with open(latest_path, 'w') as f: | |
| json.dump({ | |
| "latest_submission": timestamp, | |
| "status": "pending_review", | |
| "method_name": submission_data['Method Name'] | |
| }, f, indent=4) | |
| return submission_id | |
| def update_leaderboard_data(submission_data): | |
| """ | |
| Update leaderboard data with new submission results | |
| Only uses model name in the displayed table | |
| """ | |
| global df_synthesized_full, df_synthesized_10, df_human_generated | |
| # Determine which DataFrame to update based on split | |
| split_to_df = { | |
| 'test': df_synthesized_full, | |
| 'test-0.1': df_synthesized_10, | |
| 'human_generated_eval': df_human_generated | |
| } | |
| df_to_update = split_to_df[submission_data['Split']] | |
| submitted_dataset = submission_data['Dataset'].upper() | |
| # Prepare new row data | |
| new_row = { | |
| 'Method': submission_data['Method Name'], | |
| f'STARK-{submitted_dataset}_Hit@1': submission_data['results']['hit@1'], | |
| f'STARK-{submitted_dataset}_Hit@5': submission_data['results']['hit@5'], | |
| f'STARK-{submitted_dataset}_R@20': submission_data['results']['recall@20'], | |
| f'STARK-{submitted_dataset}_MRR': submission_data['results']['mrr'] | |
| } | |
| # Check if method already exists | |
| method_mask = df_to_update['Method'] == submission_data['Method Name'] | |
| if method_mask.any(): | |
| # Update existing row | |
| for col in new_row: | |
| df_to_update.loc[method_mask, col] = new_row[col] | |
| else: | |
| # For new method, create row with NaN for other datasets | |
| all_columns = df_to_update.columns | |
| full_row = {col: None for col in all_columns} # Initialize with NaN | |
| full_row.update(new_row) # Update with the submitted dataset's values | |
| df_to_update.loc[len(df_to_update)] = full_row | |
| # Function to get emails from meta_data | |
| def get_emails_from_metadata(meta_data): | |
| """ | |
| Extracts emails from the meta_data dictionary. | |
| Args: | |
| meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field. | |
| Returns: | |
| list: A list of email addresses. | |
| """ | |
| return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")] | |
| # Function to format meta_data as an HTML table (without Prediction CSV) | |
| def format_metadata_as_table(meta_data): | |
| """ | |
| Formats metadata dictionary into an HTML table for the email. | |
| Handles multiple contact emails separated by a semicolon. | |
| Args: | |
| meta_data (dict): Dictionary containing submission metadata. | |
| Returns: | |
| str: HTML string representing the metadata table. | |
| """ | |
| table_rows = "" | |
| for key, value in meta_data.items(): | |
| if key == "Contact Email(s)": | |
| # Ensure that contact emails are split by semicolon | |
| emails = value.split(';') | |
| formatted_emails = "; ".join([email.strip() for email in emails]) | |
| table_rows += f"<tr><td><b>{key}</b></td><td>{formatted_emails}</td></tr>" | |
| elif key != "Prediction CSV": # Exclude the Prediction CSV field | |
| table_rows += f"<tr><td><b>{key}</b></td><td>{value}</td></tr>" | |
| table_html = f""" | |
| <table border="1" cellpadding="5" cellspacing="0"> | |
| {table_rows} | |
| </table> | |
| """ | |
| return table_html | |
| # Function to get emails from meta_data | |
| def get_emails_from_metadata(meta_data): | |
| """ | |
| Extracts emails from the meta_data dictionary. | |
| Args: | |
| meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field. | |
| Returns: | |
| list: A list of email addresses. | |
| """ | |
| return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")] | |
| def format_evaluation_results(results): | |
| """ | |
| Formats the evaluation results dictionary into a readable string. | |
| Args: | |
| results (dict): Dictionary containing evaluation metrics and their values. | |
| Returns: | |
| str: Formatted string of evaluation results. | |
| """ | |
| result_lines = [f"{metric}: {value}" for metric, value in results.items()] | |
| return "\n".join(result_lines) | |
| def get_model_type_for_method(method_name): | |
| """ | |
| Find the model type category for a given method name. | |
| Returns 'Others' if not found in predefined categories. | |
| """ | |
| for type_name, methods in model_types.items(): | |
| if method_name in methods: | |
| return type_name | |
| return 'Others' | |
| def validate_model_type(method_name, selected_type): | |
| """ | |
| Validate if the selected model type is appropriate for the method name. | |
| Returns (is_valid, message). | |
| """ | |
| # Check if method exists in any category | |
| existing_type = None | |
| for type_name, methods in model_types.items(): | |
| if method_name in methods: | |
| existing_type = type_name | |
| break | |
| # If method exists, it must be submitted under its predefined category | |
| if existing_type: | |
| if existing_type != selected_type: | |
| return False, f"This method name is already registered under '{existing_type}'. Please use the correct category." | |
| return True, "Valid model type" | |
| # For new methods, any category is valid | |
| return True, "Valid model type" | |
| def process_submission( | |
| method_name, team_name, dataset, split, contact_email, | |
| code_repo, csv_file, model_description, hardware, paper_link, model_type, honor_code | |
| ): | |
| """Process and validate submission""" | |
| if not honor_code: | |
| return "Error: Please accept the honor code to submit" | |
| temp_files = [] | |
| try: | |
| # Input validation | |
| if not all([method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_type]): | |
| return "Error: Please fill in all required fields" | |
| # Validate model type | |
| is_valid, message = validate_model_type(method_name, model_type) | |
| if not is_valid: | |
| return f"Error: {message}" | |
| # Create metadata | |
| meta_data = { | |
| "Method Name": method_name, | |
| "Team Name": team_name, | |
| "Dataset": dataset, | |
| "Split": split, | |
| "Contact Email(s)": contact_email, | |
| "Code Repository": code_repo, | |
| "Model Description": model_description, | |
| "Hardware": hardware, | |
| "(Optional) Paper link": paper_link, | |
| "Model Type": model_type | |
| } | |
| # Generate folder name and timestamp | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| folder_name = f"{sanitize_name(method_name)}_{sanitize_name(team_name)}" | |
| # Process CSV file | |
| csv_content = None | |
| if isinstance(csv_file, str): | |
| with open(csv_file, 'r') as f: | |
| csv_content = f.read() | |
| elif hasattr(csv_file, 'name'): | |
| with open(csv_file.name, 'r') as f: | |
| csv_content = f.read() | |
| else: | |
| return "Error: Invalid CSV file", forum.format_posts_for_display() | |
| # Compute metrics | |
| results = compute_metrics( | |
| csv_path=csv_file if isinstance(csv_file, str) else csv_file.name, | |
| dataset=dataset.lower(), | |
| split=split, | |
| num_workers=4 | |
| ) | |
| if isinstance(results, str): | |
| return f"Evaluation error: {results}", forum.format_posts_for_display() | |
| # Process results | |
| processed_results = { | |
| "hit@1": round(results['hit@1'] * 100, 2), | |
| "hit@5": round(results['hit@5'] * 100, 2), | |
| "recall@20": round(results['recall@20'] * 100, 2), | |
| "mrr": round(results['mrr'] * 100, 2) | |
| } | |
| meta_data = { | |
| "Method Name": method_name, | |
| "Team Name": team_name, | |
| "Dataset": dataset, | |
| "Split": split, | |
| "Contact Email(s)": contact_email, | |
| "Code Repository": code_repo, | |
| "Model Description": model_description, | |
| "Hardware": hardware, | |
| "(Optional) Paper link": paper_link, | |
| "Model Type": model_type, | |
| "results": processed_results, | |
| "status": "pending_review", | |
| "submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| } | |
| # Save files to HuggingFace Hub | |
| try: | |
| # 1. Save CSV file | |
| csv_filename = f"predictions_{timestamp}.csv" | |
| csv_path_in_repo = f"submissions/{folder_name}/{csv_filename}" | |
| hub_storage.save_to_hub( | |
| file_content=csv_content, | |
| path_in_repo=csv_path_in_repo, | |
| commit_message=f"Add submission: {method_name} by {team_name}" | |
| ) | |
| meta_data["csv_path"] = csv_path_in_repo | |
| # 2. Save metadata | |
| metadata_path = f"submissions/{folder_name}/metadata_{timestamp}.json" | |
| metadata_content = json.dumps(meta_data, indent=4) | |
| hub_storage.save_to_hub( | |
| file_content=metadata_content, # Pass JSON string directly | |
| path_in_repo=metadata_path, | |
| commit_message=f"Add metadata: {method_name} by {team_name}" | |
| ) | |
| # 3. Create or update latest.json | |
| latest_info = { | |
| "latest_submission": timestamp, | |
| "status": "pending_review", # or "approved" | |
| "method_name": method_name, | |
| "team_name": team_name | |
| } | |
| latest_path = f"submissions/{folder_name}/latest.json" | |
| latest_content = json.dumps(latest_info, indent=4) | |
| hub_storage.save_to_hub( | |
| file_content=latest_content, # Pass JSON string directly | |
| path_in_repo=latest_path, | |
| commit_message=f"Update latest submission info for {method_name}" | |
| ) | |
| except Exception as e: | |
| raise RuntimeError(f"Failed to save files to HuggingFace Hub: {str(e)}") | |
| # Send confirmation email and update leaderboard data | |
| # send_submission_confirmation(meta_data, processed_results) | |
| update_leaderboard_data(meta_data) | |
| forum.add_submission_post(method_name, dataset, split) | |
| forum_display = forum.format_posts_for_display() | |
| # Return success message | |
| return f""" | |
| Submission successful! | |
| Evaluation Results: | |
| Hit@1: {processed_results['hit@1']:.2f}% | |
| Hit@5: {processed_results['hit@5']:.2f}% | |
| Recall@20: {processed_results['recall@20']:.2f}% | |
| MRR: {processed_results['mrr']:.2f}% | |
| Your submission has been saved and a confirmation email has been sent to {contact_email}. | |
| Once approved, your results will appear in the leaderboard under: {method_name} | |
| You can find your submission at: | |
| https://huggingface.co/spaces/{REPO_ID}/tree/main/submissions/{folder_name} | |
| Please refresh the page to see your submission in the leaderboard. | |
| """, forum_display | |
| except Exception as e: | |
| error_message = f"Error processing submission: {str(e)}" | |
| # send_error_notification(meta_data, error_message) | |
| return error_message, forum.format_posts_for_display() | |
| finally: | |
| # Clean up temporary files | |
| for temp_file in temp_files: | |
| try: | |
| if os.path.exists(temp_file): | |
| os.unlink(temp_file) | |
| except Exception as e: | |
| print(f"Warning: Failed to delete temporary file {temp_file}: {str(e)}") | |
| # Modify the review script to add forum posts for status updates | |
| def update_json_file(file_path: str, content: dict, method_name: str = None, new_status: str = None) -> bool: | |
| """Update local JSON file and add forum post if status changed""" | |
| try: | |
| with open(file_path, 'w') as f: | |
| json.dump(content, f, indent=4) | |
| # Add forum post if this is a status update | |
| if method_name and new_status: | |
| forum.add_status_update(method_name, new_status) | |
| return True | |
| except Exception as e: | |
| print(f"Error updating {file_path}: {str(e)}") | |
| return False | |
| def filter_by_model_type(df, selected_types): | |
| """ | |
| Filter DataFrame by selected model types, including submitted models. | |
| """ | |
| if not selected_types: | |
| return df.head(0) | |
| # Get all models from selected types | |
| selected_models = [] | |
| for type_name in selected_types: | |
| selected_models.extend(model_types[type_name]) | |
| # Filter DataFrame to include only selected models | |
| return df[df['Method'].isin(selected_models)] | |
| def format_dataframe(df, dataset): | |
| """ | |
| Format DataFrame for display, removing rows with no data for the specified dataset. | |
| """ | |
| # Get relevant columns | |
| columns = ['Method'] + [col for col in df.columns if dataset in col] | |
| filtered_df = df[columns].copy() | |
| # Remove rows where all metric columns are NaN | |
| metric_columns = [col for col in filtered_df.columns if col != 'Method'] | |
| filtered_df = filtered_df.dropna(subset=metric_columns, how='all') | |
| # Rename columns to remove dataset prefix | |
| filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns] | |
| # Sort by MRR | |
| filtered_df = filtered_df.sort_values('MRR', ascending=False) | |
| return filtered_df | |
| def update_tables(selected_types): | |
| """ | |
| Update tables based on selected model types. | |
| Include all models from selected categories. | |
| """ | |
| if not selected_types: | |
| return [df.head(0) for df in [df_synthesized_full, df_synthesized_10, df_human_generated]] | |
| filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types) | |
| filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types) | |
| filtered_df_human = filter_by_model_type(df_human_generated, selected_types) | |
| outputs = [] | |
| for df in [filtered_df_full, filtered_df_10, filtered_df_human]: | |
| for dataset in ['AMAZON', 'MAG', 'PRIME']: | |
| outputs.append(format_dataframe(df, f"STARK-{dataset}")) | |
| return outputs | |
| css = """ | |
| table > thead { | |
| white-space: normal | |
| } | |
| table { | |
| --cell-width-1: 250px | |
| } | |
| table > tbody > tr > td:nth-child(2) > div { | |
| overflow-x: auto | |
| } | |
| .tab-nav { | |
| border-bottom: 1px solid rgba(255, 255, 255, 0.1); | |
| margin-bottom: 1rem; | |
| } | |
| """ | |
| # Main application | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown("# Semi-structured Retrieval Benchmark (STaRK) Leaderboard") | |
| gr.Markdown("Refer to the [STaRK paper](https://arxiv.org/pdf/2404.13207) for details on metrics, tasks and models.") | |
| # Initialize leaderboard at startup | |
| print("Starting leaderboard initialization...") | |
| initialize_leaderboard() | |
| print("Leaderboard initialization finished") | |
| # Model type filter | |
| model_type_filter = gr.CheckboxGroup( | |
| choices=list(model_types.keys()), | |
| value=list(model_types.keys()), | |
| label="Model types", | |
| interactive=True | |
| ) | |
| # Initialize dataframes list | |
| all_dfs = [] | |
| # Create nested tabs structure | |
| with gr.Tabs() as outer_tabs: | |
| with gr.TabItem("Synthesized (full)"): | |
| with gr.Tabs() as inner_tabs1: | |
| for dataset in ['AMAZON', 'MAG', 'PRIME']: | |
| with gr.TabItem(dataset): | |
| all_dfs.append(gr.DataFrame(interactive=False)) | |
| with gr.TabItem("Synthesized (10%)"): | |
| with gr.Tabs() as inner_tabs2: | |
| for dataset in ['AMAZON', 'MAG', 'PRIME']: | |
| with gr.TabItem(dataset): | |
| all_dfs.append(gr.DataFrame(interactive=False)) | |
| with gr.TabItem("Human-Generated"): | |
| with gr.Tabs() as inner_tabs3: | |
| for dataset in ['AMAZON', 'MAG', 'PRIME']: | |
| with gr.TabItem(dataset): | |
| all_dfs.append(gr.DataFrame(interactive=False)) | |
| # Submission section | |
| gr.Markdown("---") | |
| gr.Markdown("## Submit Your Results") | |
| gr.Markdown(""" | |
| Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements. | |
| For questions, contact [email protected]. Detailed instructions can be referred at [submission instructions](https://docs.google.com/document/d/11coGjTmOEi9p9-PUq1oy0eTOj8f_8CVQhDl5_0FKT14/edit?usp=sharing). | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| method_name = gr.Textbox( | |
| label="Method Name (max 25 chars)*", | |
| placeholder="e.g., MyRetrievalModel-v1" | |
| ) | |
| dataset = gr.Dropdown( | |
| choices=["amazon", "mag", "prime"], | |
| label="Dataset*", | |
| value="prime" | |
| ) | |
| split = gr.Dropdown( | |
| choices=["test", "test-0.1", "human_generated_eval"], | |
| label="Split*", | |
| value="human_generated_eval" | |
| ) | |
| team_name = gr.Textbox( | |
| label="Team Name (max 25 chars)*", | |
| placeholder="e.g., Stanford NLP" | |
| ) | |
| contact_email = gr.Textbox( | |
| label="Contact Email(s)*", | |
| placeholder="[email protected]; [email protected]" | |
| ) | |
| model_type = gr.Dropdown( | |
| choices=list(model_types.keys()), | |
| label="Model Type*", | |
| value="Others", | |
| info="Select the appropriate category for your model" | |
| ) | |
| model_description = gr.Textbox( | |
| label="Model Description*", | |
| lines=2, | |
| placeholder="Briefly describe how your retriever model works..." | |
| ) | |
| with gr.Column(): | |
| code_repo = gr.Textbox( | |
| label="Code Repository*", | |
| placeholder="https://github.com/snap-stanford/stark-leaderboard" | |
| ) | |
| hardware = gr.Textbox( | |
| label="Hardware Specifications*", | |
| placeholder="e.g., 4x NVIDIA A100 80GB" | |
| ) | |
| with gr.Row(): | |
| honor_code = gr.Checkbox( | |
| label="By submitting these results, you confirm that they are truthful and reproducible, and you verify the integrity of your submission.", | |
| value=False) | |
| csv_file = gr.File( | |
| label="Prediction CSV*", | |
| file_types=[".csv"], | |
| type="filepath" | |
| ) | |
| paper_link = gr.Textbox( | |
| label="Paper Link (Optional)", | |
| placeholder="https://arxiv.org/abs/..." | |
| ) | |
| def update_submit_button(honor_checked): | |
| """Update submit button state based on honor code checkbox""" | |
| return gr.Button.update(interactive=honor_checked) | |
| submit_btn = gr.Button("Submit", variant="primary") | |
| result = gr.Textbox(label="Submission Status", interactive=False) | |
| # Set up event handlers | |
| model_type_filter.change( | |
| update_tables, | |
| inputs=[model_type_filter], | |
| outputs=all_dfs | |
| ) | |
| # Add forum section | |
| gr.Markdown("---") | |
| gr.Markdown("## Recent Submissions and Updates") | |
| forum_display = gr.Markdown(forum.format_posts_for_display()) | |
| refresh_btn = gr.Button("Refresh Forum") | |
| # Event handler for forum refresh | |
| refresh_btn.click( | |
| lambda: forum.format_posts_for_display(), | |
| inputs=[], | |
| outputs=[forum_display] | |
| ) | |
| # Event handler for submission button | |
| submit_btn.click( | |
| fn=process_submission, | |
| inputs=[ | |
| method_name, team_name, dataset, split, contact_email, | |
| code_repo, csv_file, model_description, hardware, paper_link, model_type, honor_code | |
| ], | |
| outputs=[result, forum_display] | |
| ).then( # Chain the forum refresh after submission | |
| fn=lambda: forum.format_posts_for_display(), | |
| inputs=[], | |
| outputs=[forum_display] | |
| ) | |
| # Initial table update | |
| demo.load( | |
| update_tables, | |
| inputs=[model_type_filter], | |
| outputs=all_dfs | |
| ) | |
| # Launch the application | |
| demo.launch() |