Spaces:
Running
on
Zero
Running
on
Zero
Nithya
commited on
Commit
·
3d6b478
1
Parent(s):
0821a2f
updated the models
Browse files- .gitattributes +2 -0
- app.py +30 -14
- models/diffusion_pitch/{last.ckpt → model.ckpt} +0 -0
- models/transformer_pitch/config.gin +61 -0
- models/transformer_pitch/model.ckpt +3 -0
- requirements.txt +1 -1
.gitattributes
CHANGED
|
@@ -5,3 +5,5 @@ models/pitch_to_audio/last.ckpt filter=lfs diff=lfs merge=lfs -text
|
|
| 5 |
models/diffusion_pitch/qt.joblib filter=lfs diff=lfs merge=lfs -text
|
| 6 |
models/pitch_to_audio/qt.joblib filter=lfs diff=lfs merge=lfs -text
|
| 7 |
examples/** filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 5 |
models/diffusion_pitch/qt.joblib filter=lfs diff=lfs merge=lfs -text
|
| 6 |
models/pitch_to_audio/qt.joblib filter=lfs diff=lfs merge=lfs -text
|
| 7 |
examples/** filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
models/diffusion_pitch/model.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
models/transformer_pitch/model.ckpt filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -41,7 +41,10 @@ from gamadhani.utils.utils import get_device
|
|
| 41 |
import copy
|
| 42 |
|
| 43 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', force=True)
|
| 44 |
-
pitch_paths = {
|
|
|
|
|
|
|
|
|
|
| 45 |
model_loaded = None
|
| 46 |
audio_path = 'models/pitch_to_audio/'
|
| 47 |
device = get_device()
|
|
@@ -110,10 +113,13 @@ def generate_pitch_reinterp(pitch, pitch_model, invert_pitch_fn, num_samples, nu
|
|
| 110 |
|
| 111 |
return samples, inverted_pitches
|
| 112 |
|
| 113 |
-
def generate_pitch_response(pitch, pitch_model, invert_pitch_fn, num_samples, num_steps):
|
| 114 |
'''Generate pitch values for the call and response task'''
|
| 115 |
pitch = pitch[:, :, -400:] # consider only the last 4 s of the pitch contour
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 117 |
inverted_pitches = invert_pitch_fn(f0=samples.clone().detach().cpu().numpy()[0]).flatten() # pitch values in Hz
|
| 118 |
|
| 119 |
return samples, inverted_pitches
|
|
@@ -127,7 +133,7 @@ def generate_audio(audio_model, f0s, invert_audio_fn, singers=[3], num_steps=100
|
|
| 127 |
return audio
|
| 128 |
|
| 129 |
@spaces.GPU(duration=30)
|
| 130 |
-
def generate(pitch, num_samples=1, num_steps=100, singers=[3], outfolder='temp', audio_seq_len=750, pitch_qt=None, type='response', invert_pitch_fn=None, t0=0.5):
|
| 131 |
global pitch_model, audio_model
|
| 132 |
# move the models to device
|
| 133 |
pitch_model = pitch_model.to(device)
|
|
@@ -135,10 +141,11 @@ def generate(pitch, num_samples=1, num_steps=100, singers=[3], outfolder='temp',
|
|
| 135 |
logging.log(logging.INFO, 'Generate function')
|
| 136 |
# load pitch values onto GPU
|
| 137 |
pitch = torch.tensor(pitch).float().unsqueeze(0).unsqueeze(0).to(device)
|
| 138 |
-
pitch_qt
|
|
|
|
| 139 |
logging.log(logging.INFO, 'Generating pitch')
|
| 140 |
if type == 'response':
|
| 141 |
-
pitch, inverted_pitch = generate_pitch_response(pitch, pitch_model, invert_pitch_fn, num_samples=num_samples, num_steps=100)
|
| 142 |
elif type == 'reinterp':
|
| 143 |
pitch, inverted_pitch = generate_pitch_reinterp(pitch, pitch_model, invert_pitch_fn, num_samples=num_samples, num_steps=100, t0=t0)
|
| 144 |
|
|
@@ -151,9 +158,10 @@ def generate(pitch, num_samples=1, num_steps=100, singers=[3], outfolder='temp',
|
|
| 151 |
pitch= pitch_qt.inverse_transform(x).squeeze(0) # qt transform expects shape (bs, seq_len, 1)
|
| 152 |
pitch = torch.round(pitch) # round to nearest integer, done in preprocessing of pitch contour fed into model
|
| 153 |
pitch[pitch < 200] = np.nan
|
|
|
|
| 154 |
return pitch
|
| 155 |
pitch = undo_qt(pitch)
|
| 156 |
-
interpolated_pitch = p2a.interpolate_pitch(pitch=pitch
|
| 157 |
interpolated_pitch = torch.nan_to_num(interpolated_pitch, nan=196) # replace nan values with silent token
|
| 158 |
interpolated_pitch = interpolated_pitch.squeeze(1) # to match input size by removing the extra dimension
|
| 159 |
logging.log(logging.INFO, 'Generating audio')
|
|
@@ -178,12 +186,12 @@ audio_model, audio_qt, audio_seq_len, invert_audio_fn = load_audio_fns(
|
|
| 178 |
|
| 179 |
def load_pitch_model(model_selection):
|
| 180 |
global device
|
| 181 |
-
pitch_path = pitch_paths[model_selection]
|
| 182 |
pitch_model, pitch_qt, pitch_task_fn, invert_pitch_fn, _ = load_pitch_fns(
|
| 183 |
-
os.path.join(pitch_path, '
|
| 184 |
-
model_type =
|
| 185 |
config_path = os.path.join(pitch_path, 'config.gin'), \
|
| 186 |
-
qt_path = os.path.join(pitch_path, 'qt.joblib'), \
|
| 187 |
device = 'cpu'
|
| 188 |
)
|
| 189 |
return pitch_model, pitch_qt, pitch_task_fn, invert_pitch_fn
|
|
@@ -239,9 +247,9 @@ def container_generate(model_selection, task_selection, audio, singer_id, t0):
|
|
| 239 |
elif singer_id == 'Singer 2':
|
| 240 |
singer = [27]
|
| 241 |
if task_selection == 'Call and Response':
|
| 242 |
-
partial_generate = partial(generate, num_samples=1, num_steps=100, singers=singer, outfolder=None, pitch_qt=pitch_qt, type='response', invert_pitch_fn=invert_pitch_fn)
|
| 243 |
else:
|
| 244 |
-
partial_generate = partial(generate, num_samples=1, num_steps=100, singers=singer, outfolder=None, pitch_qt=pitch_qt, type='reinterp', invert_pitch_fn=invert_pitch_fn, t0=t0)
|
| 245 |
audio, output_plot = partial_generate(f0)
|
| 246 |
return audio, user_input_plot, output_plot
|
| 247 |
|
|
@@ -260,6 +268,13 @@ def toggle_visibility(selection):
|
|
| 260 |
return gr.update(visible=True)
|
| 261 |
else:
|
| 262 |
return gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
with gr.Blocks(css=css) as demo:
|
| 265 |
gr.Markdown("# GaMaDHaNi: Hierarchical Generative Modeling of Melodic Vocal Contours in Hindustani Classical Music", elem_classes="center-text")
|
|
@@ -291,8 +306,9 @@ with gr.Blocks(css=css) as demo:
|
|
| 291 |
gr.Markdown("""
|
| 292 |
*Last note, I promise: There are some example audio samples at the bottom of the page. You can start with those if you'd like!*
|
| 293 |
""")
|
| 294 |
-
model_dropdown = gr.Dropdown(["Diffusion Pitch Generator"], label="Select a model type")
|
| 295 |
task_dropdown = gr.Dropdown(label="Select a task", choices=["Call and Response", "Melodic Reinterpretation"])
|
|
|
|
| 296 |
t0 = gr.Slider(label="Faithfulness to the input (For melodic reinterpretation task only)", minimum=0.0, maximum=1.0, step=0.01, value=0.3, visible=False)
|
| 297 |
task_dropdown.change(toggle_visibility, inputs=task_dropdown, outputs=t0)
|
| 298 |
singer_dropdown = gr.Dropdown(label="Select a singer", choices=["Singer 1", "Singer 2"])
|
|
|
|
| 41 |
import copy
|
| 42 |
|
| 43 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', force=True)
|
| 44 |
+
pitch_paths = {
|
| 45 |
+
'Diffusion Pitch Generator': ('diffusion', 'models/diffusion_pitch/'),
|
| 46 |
+
'Autoregressive Pitch Generator': ('transformer', 'models/transformer_pitch/')
|
| 47 |
+
}
|
| 48 |
model_loaded = None
|
| 49 |
audio_path = 'models/pitch_to_audio/'
|
| 50 |
device = get_device()
|
|
|
|
| 113 |
|
| 114 |
return samples, inverted_pitches
|
| 115 |
|
| 116 |
+
def generate_pitch_response(pitch, pitch_model, invert_pitch_fn, num_samples, num_steps, model_type='diffusion'):
|
| 117 |
'''Generate pitch values for the call and response task'''
|
| 118 |
pitch = pitch[:, :, -400:] # consider only the last 4 s of the pitch contour
|
| 119 |
+
if model_type == 'diffusion':
|
| 120 |
+
samples = pitch_model.sample_fn(num_samples, num_steps, prime=pitch)
|
| 121 |
+
else:
|
| 122 |
+
samples = pitch_model.sample_fn(batch_size=num_samples, seq_len=800, prime=pitch)
|
| 123 |
inverted_pitches = invert_pitch_fn(f0=samples.clone().detach().cpu().numpy()[0]).flatten() # pitch values in Hz
|
| 124 |
|
| 125 |
return samples, inverted_pitches
|
|
|
|
| 133 |
return audio
|
| 134 |
|
| 135 |
@spaces.GPU(duration=30)
|
| 136 |
+
def generate(pitch, num_samples=1, num_steps=100, singers=[3], outfolder='temp', audio_seq_len=750, pitch_qt=None, type='response', invert_pitch_fn=None, t0=0.5, model_type='diffusion'):
|
| 137 |
global pitch_model, audio_model
|
| 138 |
# move the models to device
|
| 139 |
pitch_model = pitch_model.to(device)
|
|
|
|
| 141 |
logging.log(logging.INFO, 'Generate function')
|
| 142 |
# load pitch values onto GPU
|
| 143 |
pitch = torch.tensor(pitch).float().unsqueeze(0).unsqueeze(0).to(device)
|
| 144 |
+
if pitch_qt is not None:
|
| 145 |
+
pitch_qt = p2a.GPUQuantileTransformer(pitch_qt, device=device)
|
| 146 |
logging.log(logging.INFO, 'Generating pitch')
|
| 147 |
if type == 'response':
|
| 148 |
+
pitch, inverted_pitch = generate_pitch_response(pitch, pitch_model, invert_pitch_fn, num_samples=num_samples, num_steps=100, model_type=model_type)
|
| 149 |
elif type == 'reinterp':
|
| 150 |
pitch, inverted_pitch = generate_pitch_reinterp(pitch, pitch_model, invert_pitch_fn, num_samples=num_samples, num_steps=100, t0=t0)
|
| 151 |
|
|
|
|
| 158 |
pitch= pitch_qt.inverse_transform(x).squeeze(0) # qt transform expects shape (bs, seq_len, 1)
|
| 159 |
pitch = torch.round(pitch) # round to nearest integer, done in preprocessing of pitch contour fed into model
|
| 160 |
pitch[pitch < 200] = np.nan
|
| 161 |
+
pitch = pitch.unsqueeze(0)
|
| 162 |
return pitch
|
| 163 |
pitch = undo_qt(pitch)
|
| 164 |
+
interpolated_pitch = p2a.interpolate_pitch(pitch=pitch, audio_seq_len=audio_seq_len).squeeze(0) # interpolate pitch values to match the audio model's input size
|
| 165 |
interpolated_pitch = torch.nan_to_num(interpolated_pitch, nan=196) # replace nan values with silent token
|
| 166 |
interpolated_pitch = interpolated_pitch.squeeze(1) # to match input size by removing the extra dimension
|
| 167 |
logging.log(logging.INFO, 'Generating audio')
|
|
|
|
| 186 |
|
| 187 |
def load_pitch_model(model_selection):
|
| 188 |
global device
|
| 189 |
+
model_type, pitch_path = pitch_paths[model_selection]
|
| 190 |
pitch_model, pitch_qt, pitch_task_fn, invert_pitch_fn, _ = load_pitch_fns(
|
| 191 |
+
os.path.join(pitch_path, 'model.ckpt'), \
|
| 192 |
+
model_type = model_type, \
|
| 193 |
config_path = os.path.join(pitch_path, 'config.gin'), \
|
| 194 |
+
qt_path = os.path.join(pitch_path, 'qt.joblib') if model_type == 'diffusion' else None, \
|
| 195 |
device = 'cpu'
|
| 196 |
)
|
| 197 |
return pitch_model, pitch_qt, pitch_task_fn, invert_pitch_fn
|
|
|
|
| 247 |
elif singer_id == 'Singer 2':
|
| 248 |
singer = [27]
|
| 249 |
if task_selection == 'Call and Response':
|
| 250 |
+
partial_generate = partial(generate, num_samples=1, num_steps=100, singers=singer, outfolder=None, pitch_qt=pitch_qt, type='response', invert_pitch_fn=invert_pitch_fn, model_type=model_selection)
|
| 251 |
else:
|
| 252 |
+
partial_generate = partial(generate, num_samples=1, num_steps=100, singers=singer, outfolder=None, pitch_qt=pitch_qt, type='reinterp', invert_pitch_fn=invert_pitch_fn, t0=t0, model_type=model_selection)
|
| 253 |
audio, output_plot = partial_generate(f0)
|
| 254 |
return audio, user_input_plot, output_plot
|
| 255 |
|
|
|
|
| 268 |
return gr.update(visible=True)
|
| 269 |
else:
|
| 270 |
return gr.update(visible=False)
|
| 271 |
+
|
| 272 |
+
def toggle_options(selection, options = ['Call and Response', 'Melodic Reinterpretation']):
|
| 273 |
+
# Show element if selection is "Show", otherwise hide it
|
| 274 |
+
if selection == "Melodic Reinterpretation":
|
| 275 |
+
return gr.update(choices=options)
|
| 276 |
+
else:
|
| 277 |
+
return gr.update(choices=options[:-1])
|
| 278 |
|
| 279 |
with gr.Blocks(css=css) as demo:
|
| 280 |
gr.Markdown("# GaMaDHaNi: Hierarchical Generative Modeling of Melodic Vocal Contours in Hindustani Classical Music", elem_classes="center-text")
|
|
|
|
| 306 |
gr.Markdown("""
|
| 307 |
*Last note, I promise: There are some example audio samples at the bottom of the page. You can start with those if you'd like!*
|
| 308 |
""")
|
| 309 |
+
model_dropdown = gr.Dropdown(["Diffusion Pitch Generator", "Autoregressive Pitch Generator"], label="Select a model type")
|
| 310 |
task_dropdown = gr.Dropdown(label="Select a task", choices=["Call and Response", "Melodic Reinterpretation"])
|
| 311 |
+
model_dropdown.change(toggle_options, outputs=task_dropdown)
|
| 312 |
t0 = gr.Slider(label="Faithfulness to the input (For melodic reinterpretation task only)", minimum=0.0, maximum=1.0, step=0.01, value=0.3, visible=False)
|
| 313 |
task_dropdown.change(toggle_visibility, inputs=task_dropdown, outputs=t0)
|
| 314 |
singer_dropdown = gr.Dropdown(label="Select a singer", choices=["Singer 1", "Singer 2"])
|
models/diffusion_pitch/{last.ckpt → model.ckpt}
RENAMED
|
File without changes
|
models/transformer_pitch/config.gin
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __gin__ import dynamic_registration
|
| 2 |
+
from gamadhani import src
|
| 3 |
+
from gamadhani.src import dataset
|
| 4 |
+
from gamadhani.src import model_transformer
|
| 5 |
+
from gamadhani.src import task_functions
|
| 6 |
+
from gamadhani.utils import utils
|
| 7 |
+
import torch.optim
|
| 8 |
+
|
| 9 |
+
MODEL_DIM = 512
|
| 10 |
+
EMB_DIM = 512
|
| 11 |
+
NUM_TOKENS = 7928
|
| 12 |
+
NUM_QUANTIZERS = 1
|
| 13 |
+
DROPOUT_RATE = 0.3
|
| 14 |
+
NUM_HEADS = 8
|
| 15 |
+
SEQ_LEN = 1200
|
| 16 |
+
HEAD_DIM = 32
|
| 17 |
+
NUM_LAYERS = 8
|
| 18 |
+
LR = 1e-3
|
| 19 |
+
|
| 20 |
+
model_transformer.XTransformerPrior:
|
| 21 |
+
num_tokens = %NUM_TOKENS
|
| 22 |
+
seq_len = %SEQ_LEN
|
| 23 |
+
model_dim = %MODEL_DIM
|
| 24 |
+
emb_dim = %EMB_DIM
|
| 25 |
+
head_dim = %HEAD_DIM
|
| 26 |
+
num_layers = %NUM_LAYERS
|
| 27 |
+
num_heads = %NUM_HEADS
|
| 28 |
+
dropout_rate = %DROPOUT_RATE
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
src.dataset.Task:
|
| 32 |
+
read_fn = @src.task_functions.pitch_read_downsample
|
| 33 |
+
invert_fn = @src.task_functions.invert_pitch_read_downsample
|
| 34 |
+
kwargs = {"seq_len": %SEQ_LEN,
|
| 35 |
+
"decoder_key": "pitch",
|
| 36 |
+
"min_norm_pitch": -4915,
|
| 37 |
+
"time_downsample": 2,
|
| 38 |
+
"pitch_downsample": 10,
|
| 39 |
+
"base_tonic": 440.}
|
| 40 |
+
|
| 41 |
+
src.dataset.SequenceDataset:
|
| 42 |
+
task = @dataset.Task()
|
| 43 |
+
apply_transform = False
|
| 44 |
+
|
| 45 |
+
model_transformer.XTransformerPrior.configure_optimizers:
|
| 46 |
+
optimizer_cls = @torch.optim.AdamW
|
| 47 |
+
scheduler_cls = @utils.build_warmed_exponential_lr_scheduler
|
| 48 |
+
|
| 49 |
+
utils.build_warmed_exponential_lr_scheduler:
|
| 50 |
+
start_factor = .01
|
| 51 |
+
peak_iteration = 10000
|
| 52 |
+
cycle_length = 394600
|
| 53 |
+
eta_min = 0.1
|
| 54 |
+
eta_max = %LR
|
| 55 |
+
|
| 56 |
+
utils.set_seed:
|
| 57 |
+
seed = 2023
|
| 58 |
+
|
| 59 |
+
torch.optim.AdamW:
|
| 60 |
+
lr = %LR
|
| 61 |
+
betas = (.9, .98)
|
models/transformer_pitch/model.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d849eaca79a0bc390d0550b8187d47a843bdb3a6c81b9401e5e925ae1220acc4
|
| 3 |
+
size 356915980
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
crepe==0.0.15
|
| 2 |
hmmlearn==0.3.2
|
| 3 |
tensorflow==2.17.0
|
| 4 |
-
GaMaDHaNi @ git+https://github.com/snnithya/GaMaDHaNi.git@
|
|
|
|
| 1 |
crepe==0.0.15
|
| 2 |
hmmlearn==0.3.2
|
| 3 |
tensorflow==2.17.0
|
| 4 |
+
GaMaDHaNi @ git+https://github.com/snnithya/GaMaDHaNi.git@055df71380e0feced7e409470ffc8603f1cfa926
|