File size: 3,130 Bytes
53f723c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
"""
Reference
- https://docs.streamlit.io/library/api-reference/layout
- https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/app.py
- https://huggingface.co/keremberke/yolov8m-valorant-detection/tree/main
- https://docs.ultralytics.com/usage/python/
"""
from pathlib import Path
import PIL

import streamlit as st
import torch
from ultralyticsplus import YOLO, render_result


def load_model(model_path):
    """load model from path"""
    model = YOLO(model_path)
    return model


def load_image(image_path):
    """load image from path"""
    image = PIL.Image.open(image_path)
    return image


# title
st.title("Braille Pattern Detection")

# sidebar
st.sidebar.header("Detection Config")

conf = float(st.sidebar.slider("Class Confidence", 10, 75, 15)) / 100
iou = float(st.sidebar.slider("IoU Threshold", 10, 75, 15)) / 100

model_path = "snoop2head/yolov8m-braille"

try:
    model = load_model(model_path)
    model.overrides["conf"] = conf  # NMS confidence threshold
    model.overrides["iou"] = iou  # NMS IoU threshold
    model.overrides["agnostic_nms"] = False  # NMS class-agnostic
    model.overrides["max_det"] = 1000  # maximum number of detections per image

except Exception as ex:
    print(ex)
    st.write(f"Unable to load model. Check the specified path: {model_path}")

source_img = None
st.sidebar.header("Image Config")

source_img = st.sidebar.file_uploader(
    "Choose an image...", type=("jpg", "jpeg", "png", "bmp", "webp")
)
c = st.container()

# left column of the page body

if source_img is None:
    default_image_path = "./images/example.jpeg"
    image = load_image(default_image_path)
    st.image(default_image_path, caption="Example Input Image", use_column_width=True)
else:
    image = load_image(source_img)
    st.image(source_img, caption="Uploaded Image", use_column_width=True)

# right column of the page body

if source_img is None:
    default_detected_image_path = "./images/example_detected.jpeg"
    image = load_image(default_detected_image_path)
    st.image(
        default_detected_image_path,
        caption="Example Detected Image",
        use_column_width=True,
    )
else:
    if st.sidebar.button("Click for Detection!"):
        with torch.no_grad():
            res = model.predict(
                image, save=True, save_txt=True, exist_ok=True, conf=conf
            )
            boxes = res[0].boxes
            res_plotted = res[0].plot()[:, :, ::-1]
            st.image(res_plotted, caption="Detected Image", use_column_width=True)
            IMAGE_DOWNLOAD_PATH = f"runs/detect/predict/image0.jpg"
            with open(IMAGE_DOWNLOAD_PATH, "rb") as fl:
                st.download_button(
                    "Download object-detected image",
                    data=fl,
                    file_name="image0.jpg",
                    mime="image/jpg",
                )
        try:
            with st.expander("Detection Results"):
                for box in boxes:
                    st.write(box.xywh)

        except Exception as ex:
            # st.write(ex)
            st.write("No image is uploaded yet!")