Spaces:
Sleeping
Sleeping
add all files
Browse files- Dockerfile +16 -0
- app.py +51 -0
- requirements.txt +4 -0
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
# Install Python deps
|
| 6 |
+
COPY requirements.txt .
|
| 7 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 8 |
+
|
| 9 |
+
# Copy app code
|
| 10 |
+
COPY app.py .
|
| 11 |
+
|
| 12 |
+
# Expose port used by uvicorn
|
| 13 |
+
EXPOSE 7860
|
| 14 |
+
|
| 15 |
+
# Run FastAPI server
|
| 16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
app = FastAPI(
|
| 7 |
+
title="OpenAI-compatible Embedding API",
|
| 8 |
+
version="1.0.0",
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
# Load model from Hugging Face Hub
|
| 12 |
+
MODEL_NAME = "BAAI/bge-small-en-v1.5"
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 14 |
+
model = AutoModel.from_pretrained(MODEL_NAME)
|
| 15 |
+
model.eval()
|
| 16 |
+
|
| 17 |
+
class EmbeddingRequest(BaseModel):
|
| 18 |
+
input: list[str]
|
| 19 |
+
model: str
|
| 20 |
+
|
| 21 |
+
@app.get("/")
|
| 22 |
+
def root():
|
| 23 |
+
return {"message": "API is working"}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@app.post("/v1/embeddings")
|
| 27 |
+
def create_embeddings(request: EmbeddingRequest):
|
| 28 |
+
with torch.no_grad():
|
| 29 |
+
tokens = tokenizer(request.input, return_tensors="pt", padding=True, truncation=True)
|
| 30 |
+
output = model(**tokens)
|
| 31 |
+
cls_embeddings = output.last_hidden_state[:, 0]
|
| 32 |
+
norm_embeddings = torch.nn.functional.normalize(cls_embeddings, p=2, dim=1)
|
| 33 |
+
|
| 34 |
+
data = [
|
| 35 |
+
{
|
| 36 |
+
"object": "embedding",
|
| 37 |
+
"embedding": e.tolist(),
|
| 38 |
+
"index": i
|
| 39 |
+
}
|
| 40 |
+
for i, e in enumerate(norm_embeddings)
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
return {
|
| 44 |
+
"object": "list",
|
| 45 |
+
"data": data,
|
| 46 |
+
"model": request.model,
|
| 47 |
+
"usage": {
|
| 48 |
+
"prompt_tokens": sum(len(tokenizer.encode(x)) for x in request.input),
|
| 49 |
+
"total_tokens": sum(len(tokenizer.encode(x)) for x in request.input),
|
| 50 |
+
}
|
| 51 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
transformers
|
| 4 |
+
torch
|