Spaces:
Sleeping
Sleeping
File size: 8,190 Bytes
a0cfb47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import streamlit as st
import requests
import openai
from io import BytesIO
from PIL import Image
import os
from dotenv import load_dotenv
# Set page configuration as the first Streamlit command
st.set_page_config(page_title="Eco-Symphony", page_icon="๐ฑ", layout="centered")
# Load environment variables from .env file
load_dotenv()
# Set API keys from environment
openai.api_key = os.getenv("OPENAI_API_KEY")
OPENWEATHER_API_KEY = os.getenv("OPENWEATHER_API_KEY")
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
# Hugging Face API URLs
MUSICGEN_API_URL = "https://api-inference.huggingface.co/models/facebook/musicgen-small"
IMAGEGEN_API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2"
# Headers for Hugging Face API requests
headers = {"Authorization": f"Bearer {HUGGINGFACE_API_KEY}"}
# Inject custom CSS for green theme
st.markdown("""
<style>
body {
background-color: #ffffff;
}
.stApp {
color: #2e7d32;
font-family: 'Arial', sans-serif;
}
.stButton>button {
background-color: #66bb6a;
color: #fff;
font-weight: bold;
}
.stTextInput>div>input {
background-color: #e8f5e9;
color: #2e7d32;
}
.stMarkdown h1, .stMarkdown h2, .stMarkdown h3, .stMarkdown p {
color: #388e3c;
}
.stMarkdown h2 {
font-weight: bold;
}
</style>
""", unsafe_allow_html=True)
# Function to fetch weather data
def fetch_real_data(city: str) -> dict:
weather_url = f'https://api.openweathermap.org/data/2.5/weather?q={city}&appid={OPENWEATHER_API_KEY}&units=metric'
weather_response = requests.get(weather_url)
if weather_response.status_code != 200:
st.error("Error fetching weather data.")
return {}
weather_data = weather_response.json()
return {
"temperature": weather_data['main'].get('temp', 'Data not available'),
"humidity": weather_data['main'].get('humidity', 'Data not available'),
"weather_condition": weather_data['weather'][0].get('main', 'Data not available')
}
# Function to determine mood based on weather data
def determine_mood(data: dict) -> str:
weather_condition = data["weather_condition"].lower()
temperature = data["temperature"]
if "rain" in weather_condition:
return "rainy"
elif "clear" in weather_condition and temperature > 25:
return "sunny"
elif "cloud" in weather_condition:
return "cloudy"
elif temperature < 15:
return "cool"
else:
return "neutral"
# Function to create a narrative
def create_narrative(city: str, data: dict) -> str:
return f"In {city}, the weather is {data['weather_condition']} with a temperature of {data['temperature']}ยฐC."
# Function to generate a story using OpenAI
def generate_story_with_ai(narrative: str, mood: str) -> str:
messages = [
{"role": "system", "content": "You are a creative storyteller using characters and imagery."},
{"role": "user", "content": f"{narrative} The mood is '{mood}', write a story about how the environment feels in 50 words."}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=150,
temperature=0.7
)
return response.choices[0].message['content'].strip()
# Function to generate simulated environmental data
def generate_simulated_data(city: str) -> dict:
prompt = (
f"Generate simulated environmental data for {city} in JSON format with fields:\n"
f"1. AQI\n2. Deforestation Rate\n3. Water Quality\n4. Biodiversity Impact"
)
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
max_tokens=100,
temperature=0.8
)
response_content = response.choices[0].message['content'].strip()
try:
return eval(response_content)
except Exception as e:
st.error(f"Error parsing simulated data: {e}")
return {}
# Function to generate music from Hugging Face API
def generate_music(description: str) -> bytes:
payload = {"inputs": description}
response = requests.post(MUSICGEN_API_URL, headers=headers, json=payload)
if response.status_code != 200:
st.error(f"Error generating music: {response.status_code} {response.text}")
return None
return response.content
# Function to generate an image based on the story
def generate_image(description: str) -> bytes:
payload = {"inputs": description}
response = requests.post(IMAGEGEN_API_URL, headers=headers, json=payload)
if response.status_code != 200:
st.error(f"Error generating image: {response.status_code} {response.text}")
return None
return response.content
# Function to create a dynamic music description
def create_music_description(data):
mood = data["mood"]
weather_condition = data["real_data"]["weather_condition"].lower()
temperature = data["real_data"]["temperature"]
description = f"{mood} mood with {weather_condition} weather"
if temperature < 10:
description += " and a cold ambiance"
elif 10 <= temperature <= 20:
description += " and a cool feel"
elif 20 < temperature <= 30:
description += " and a warm, lively environment"
else:
description += " and a hot, energetic vibe"
return description
# Streamlit UI
st.title("๐ฟ Eco-Symphony ๐ถ")
st.write("Enter a city to explore real-time environmental data, generate AI-created music, and see an AI-generated image based on the story.")
# Input box for city
city = st.text_input("Enter City Name:", placeholder="Type the name of a city...")
# Generate Button
if st.button("Generate Environmental Narrative, Music, and Image"):
# Fetch real weather data
real_data = fetch_real_data(city)
if real_data:
# Generate narrative and mood
narrative = create_narrative(city, real_data)
mood = determine_mood(real_data)
# Generate AI story
story = generate_story_with_ai(narrative, mood)
# Generate Music and Image Based on Story and Mood
music_description = create_music_description({"mood": mood, "real_data": real_data})
st.subheader("๐ถ Generated Music")
st.write(f"Generating music based on: {music_description}")
music_bytes = generate_music(music_description)
if music_bytes:
audio_data = BytesIO(music_bytes)
st.audio(audio_data, format="audio/wav")
st.subheader("๐ผ๏ธ Generated Image")
st.write("Generating image based on the story...")
image_bytes = generate_image(story)
if image_bytes:
image = Image.open(BytesIO(image_bytes))
st.image(image, caption="Generated Image based on Story", use_column_width=True)
# Display Environmental Narrative and Data
st.subheader("๐ Environmental Narrative")
st.write(narrative)
st.subheader("๐ญ Mood")
st.write(f"**Mood**: {mood}")
st.subheader("๐ AI-Generated Story")
st.write(story)
# Generate and Display Simulated Environmental Data
simulated_data = generate_simulated_data(city)
simulated_inner_data = simulated_data.get("data", {})
st.subheader("๐ Real Weather Data")
st.write("Temperature (ยฐC):", real_data.get("temperature", "Data not available"))
st.write("Humidity (%):", real_data.get("humidity", "Data not available"))
st.write("Weather Condition:", real_data.get("weather_condition", "Data not available"))
st.subheader("๐งช Simulated Environmental Data")
st.write("AQI:", simulated_inner_data.get("AQI", "Data not available"))
st.write("Deforestation Rate:", simulated_inner_data.get("Deforestation Rate", "Data not available"))
st.write("Water Quality:", simulated_inner_data.get("Water Quality", "Data not available"))
st.write("Biodiversity Impact:", simulated_inner_data.get("Biodiversity Impact", "Data not available"))
|