File size: 4,275 Bytes
affe6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import base64
from io import BytesIO

import gradio as gr
import PIL.Image
import torch
from diffusers import StableDiffusionPipeline, AutoencoderKL, AutoencoderTiny

device = "mps"   # Linux & Windows
weight_type = torch.float16  # torch.float16 works as well, but pictures seem to be a bit worse

pipe = StableDiffusionPipeline.from_pretrained("IDKiro/sdxs-512-dreamshaper", torch_dtype=weight_type)
pipe.to(torch_device=device, torch_dtype=weight_type)

vae_tiny = AutoencoderTiny.from_pretrained("IDKiro/sdxs-512-dreamshaper", subfolder="vae")
vae_tiny.to(device, dtype=weight_type)

vae_large = AutoencoderKL.from_pretrained("IDKiro/sdxs-512-dreamshaper", subfolder="vae_large")
vae_tiny.to(device, dtype=weight_type)

def pil_image_to_data_url(img, format="PNG"):
    buffered = BytesIO()
    img.save(buffered, format=format)
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return f"data:image/{format.lower()};base64,{img_str}"


def run(
    prompt: str,
    device_type="GPU",
    vae_type=None,
    param_dtype='torch.float16',
) -> PIL.Image.Image:
    if vae_type == "tiny vae":
        pipe.vae = vae_tiny
    elif vae_type == "large vae":
        pipe.vae = vae_large

    if device_type == "CPU":
        device = "cpu" 
        param_dtype = 'torch.float32'
    else:
        device = "cuda"
    
    pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32)

    result = pipe(
        prompt=prompt,
        guidance_scale=0.0,
        num_inference_steps=1,
        output_type="pil",
    ).images[0]

    result_url = pil_image_to_data_url(result)

    return (result, result_url)


examples = [
    "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]

with gr.Blocks(css="style.css") as demo:
    gr.Markdown("# SDXS-512-DreamShaper")
    with gr.Group():
        with gr.Row():
            with gr.Column(min_width=685):
                with gr.Row():
                    prompt = gr.Text(
                        label="Prompt",
                        show_label=False,
                        max_lines=1,
                        placeholder="Enter your prompt",
                        container=False,
                    )
                    run_button = gr.Button("Run", scale=0)
                    
                device_choices = ['GPU','CPU']
                device_type = gr.Radio(device_choices, label='Device',  
                                            value=device_choices[0],
                                            interactive=True,
                                            info='Please choose GPU if you have a GPU.')

                vae_choices = ['tiny vae','large vae']
                vae_type = gr.Radio(vae_choices, label='Image Decoder Type',  
                                            value=vae_choices[0],
                                            interactive=True,
                                            info='To save GPU memory, use tiny vae. For better quality, use large vae.')

                dtype_choices = ['torch.float16','torch.float32']
                param_dtype = gr.Radio(dtype_choices,label='torch.weight_type',  
                                            value=dtype_choices[0],
                                            interactive=True,
                                            info='To save GPU memory, use torch.float16. For better quality, use torch.float32.')
                
                download_output = gr.Button("Download output", elem_id="download_output")

            with gr.Column(min_width=512):
                result = gr.Image(label="Result", height=512, width=512, elem_id="output_image", show_label=False, show_download_button=True)

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=result,
        fn=run
    )

    demo.load(None,None,None)

    inputs = [prompt, device_type, vae_type, param_dtype]
    outputs = [result, download_output]
    prompt.submit(fn=run, inputs=inputs, outputs=outputs)
    run_button.click(fn=run, inputs=inputs, outputs=outputs)

if __name__ == "__main__":
    # demo.queue().launch(debug=True, server_port=8080)
    demo.queue().launch(debug=True, server_port=8080)