Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,3 @@
|
|
1 |
-
"""
|
2 |
-
This file is used for deploying hugging face demo:
|
3 |
-
https://huggingface.co/spaces/sczhou/CodeFormer
|
4 |
-
"""
|
5 |
-
|
6 |
import sys
|
7 |
sys.path.append('CodeFormer')
|
8 |
import os
|
@@ -12,90 +7,49 @@ import torch.nn.functional as F
|
|
12 |
import gradio as gr
|
13 |
|
14 |
from torchvision.transforms.functional import normalize
|
15 |
-
|
16 |
from basicsr.utils import imwrite, img2tensor, tensor2img
|
17 |
from basicsr.utils.download_util import load_file_from_url
|
18 |
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
19 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
20 |
from basicsr.utils.realesrgan_utils import RealESRGANer
|
21 |
from facelib.utils.misc import is_gray
|
22 |
-
|
23 |
from basicsr.utils.registry import ARCH_REGISTRY
|
24 |
|
25 |
-
|
26 |
-
os.system("pip freeze")
|
27 |
-
|
28 |
pretrain_model_url = {
|
29 |
'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
|
30 |
'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
|
31 |
'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
|
32 |
'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
|
33 |
}
|
34 |
-
# download weights
|
35 |
-
if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'):
|
36 |
-
load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None)
|
37 |
-
if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'):
|
38 |
-
load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
|
39 |
-
if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'):
|
40 |
-
load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
|
41 |
-
if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'):
|
42 |
-
load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None)
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg',
|
50 |
-
'02.jpg')
|
51 |
-
torch.hub.download_url_to_file(
|
52 |
-
'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg',
|
53 |
-
'03.jpg')
|
54 |
-
torch.hub.download_url_to_file(
|
55 |
-
'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg',
|
56 |
-
'04.jpg')
|
57 |
-
torch.hub.download_url_to_file(
|
58 |
-
'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg',
|
59 |
-
'05.jpg')
|
60 |
-
torch.hub.download_url_to_file(
|
61 |
-
'https://raw.githubusercontent.com/sczhou/CodeFormer/master/inputs/cropped_faces/0729.png',
|
62 |
-
'06.png')
|
63 |
|
|
|
64 |
def imread(img_path):
|
65 |
img = cv2.imread(img_path)
|
66 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
67 |
return img
|
68 |
|
69 |
-
# set enhancer with RealESRGAN
|
70 |
def set_realesrgan():
|
71 |
-
half =
|
72 |
-
model = RRDBNet(
|
73 |
-
num_in_ch=3,
|
74 |
-
num_out_ch=3,
|
75 |
-
num_feat=64,
|
76 |
-
num_block=23,
|
77 |
-
num_grow_ch=32,
|
78 |
-
scale=2,
|
79 |
-
)
|
80 |
upsampler = RealESRGANer(
|
81 |
-
scale=2,
|
82 |
-
|
83 |
-
model=model,
|
84 |
-
tile=400,
|
85 |
-
tile_pad=40,
|
86 |
-
pre_pad=0,
|
87 |
-
half=half,
|
88 |
)
|
89 |
return upsampler
|
90 |
|
|
|
91 |
upsampler = set_realesrgan()
|
92 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
93 |
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
|
94 |
-
dim_embd=512,
|
95 |
-
|
96 |
-
n_head=8,
|
97 |
-
n_layers=9,
|
98 |
-
connect_list=["32", "64", "128", "256"],
|
99 |
).to(device)
|
100 |
ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
|
101 |
checkpoint = torch.load(ckpt_path)["params_ema"]
|
@@ -104,205 +58,69 @@ codeformer_net.eval()
|
|
104 |
|
105 |
os.makedirs('output', exist_ok=True)
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
try:
|
110 |
-
# take the default setting for the demo
|
111 |
only_center_face = False
|
112 |
-
draw_box = False
|
113 |
detection_model = "retinaface_resnet50"
|
114 |
-
|
115 |
-
|
116 |
-
face_align = face_align if face_align is not None else True
|
117 |
-
background_enhance = background_enhance if background_enhance is not None else True
|
118 |
-
face_upsample = face_upsample if face_upsample is not None else True
|
119 |
-
upscale = upscale if (upscale is not None and upscale > 0) else 2
|
120 |
-
|
121 |
-
has_aligned = not face_align
|
122 |
-
upscale = 1 if has_aligned else upscale
|
123 |
-
|
124 |
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
125 |
-
|
126 |
-
|
127 |
-
upscale = int(upscale) # convert type to int
|
128 |
-
if upscale > 4: # avoid memory exceeded due to too large upscale
|
129 |
-
upscale = 4
|
130 |
-
if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
|
131 |
-
upscale = 2
|
132 |
-
if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
|
133 |
-
upscale = 1
|
134 |
-
background_enhance = False
|
135 |
-
face_upsample = False
|
136 |
|
137 |
face_helper = FaceRestoreHelper(
|
138 |
-
upscale,
|
139 |
-
|
140 |
-
crop_ratio=(1, 1),
|
141 |
-
det_model=detection_model,
|
142 |
-
save_ext="png",
|
143 |
-
use_parse=True,
|
144 |
-
device=device,
|
145 |
)
|
|
|
146 |
bg_upsampler = upsampler if background_enhance else None
|
147 |
face_upsampler = upsampler if face_upsample else None
|
148 |
|
149 |
if has_aligned:
|
150 |
-
# the input faces are already cropped and aligned
|
151 |
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
152 |
face_helper.is_gray = is_gray(img, threshold=5)
|
153 |
-
if face_helper.is_gray:
|
154 |
-
print('\tgrayscale input: True')
|
155 |
face_helper.cropped_faces = [img]
|
156 |
else:
|
157 |
face_helper.read_image(img)
|
158 |
-
|
159 |
-
num_det_faces = face_helper.get_face_landmarks_5(
|
160 |
-
only_center_face=only_center_face, resize=640, eye_dist_threshold=5
|
161 |
-
)
|
162 |
-
print(f'\tdetect {num_det_faces} faces')
|
163 |
-
# align and warp each face
|
164 |
face_helper.align_warp_face()
|
165 |
|
166 |
-
|
167 |
-
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
168 |
-
# prepare data
|
169 |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
170 |
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
171 |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
)[0]
|
178 |
-
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
179 |
-
del output
|
180 |
-
torch.cuda.empty_cache()
|
181 |
-
except RuntimeError as error:
|
182 |
-
print(f"Failed inference for CodeFormer: {error}")
|
183 |
-
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
if not has_aligned:
|
190 |
-
# upsample the background
|
191 |
-
if bg_upsampler is not None:
|
192 |
-
# Now only support RealESRGAN for upsampling background
|
193 |
-
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
|
194 |
-
else:
|
195 |
-
bg_img = None
|
196 |
-
face_helper.get_inverse_affine(None)
|
197 |
-
# paste each restored face to the input image
|
198 |
-
if face_upsample and face_upsampler is not None:
|
199 |
-
restored_img = face_helper.paste_faces_to_input_image(
|
200 |
-
upsample_img=bg_img,
|
201 |
-
draw_box=draw_box,
|
202 |
-
face_upsampler=face_upsampler,
|
203 |
-
)
|
204 |
-
else:
|
205 |
-
restored_img = face_helper.paste_faces_to_input_image(
|
206 |
-
upsample_img=bg_img, draw_box=draw_box
|
207 |
-
)
|
208 |
-
else:
|
209 |
-
restored_img = restored_face
|
210 |
-
|
211 |
-
# save restored img
|
212 |
-
save_path = f'output/out.png'
|
213 |
-
imwrite(restored_img, str(save_path))
|
214 |
|
215 |
-
|
216 |
-
|
|
|
217 |
except Exception as error:
|
218 |
-
print('
|
219 |
-
return None
|
220 |
-
|
221 |
-
|
222 |
-
title = "CodeFormer: Robust Face Restoration and Enhancement Network"
|
223 |
-
|
224 |
-
description = r"""<center><img src='https://user-images.githubusercontent.com/14334509/189166076-94bb2cac-4f4e-40fb-a69f-66709e3d98f5.png' alt='CodeFormer logo'></center>
|
225 |
-
<br>
|
226 |
-
<b>Official Gradio demo</b> for <a href='https://github.com/sczhou/CodeFormer' target='_blank'><b>Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)</b></a><br>
|
227 |
-
🔥 CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.<br>
|
228 |
-
🤗 Try CodeFormer for improved stable-diffusion generation!<br>
|
229 |
-
"""
|
230 |
-
|
231 |
-
article = r"""
|
232 |
-
If CodeFormer is helpful, please help to ⭐ the <a href='https://github.com/sczhou/CodeFormer' target='_blank'>Github Repo</a>. Thanks!
|
233 |
-
[](https://github.com/sczhou/CodeFormer)
|
234 |
-
|
235 |
-
---
|
236 |
-
|
237 |
-
📝 **Citation**
|
238 |
-
|
239 |
-
If our work is useful for your research, please consider citing:
|
240 |
-
```bibtex
|
241 |
-
@inproceedings{zhou2022codeformer,
|
242 |
-
author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
|
243 |
-
title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
|
244 |
-
booktitle = {NeurIPS},
|
245 |
-
year = {2022}
|
246 |
-
}
|
247 |
-
```
|
248 |
-
|
249 |
-
📋 **License**
|
250 |
-
|
251 |
-
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>.
|
252 |
-
Redistribution and use for non-commercial purposes should follow this license.
|
253 |
-
|
254 |
-
📧 **Contact**
|
255 |
-
|
256 |
-
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
|
257 |
-
|
258 |
-
🤗 **Find Me:**
|
259 |
-
<style type="text/css">
|
260 |
-
td {
|
261 |
-
padding-right: 0px !important;
|
262 |
-
}
|
263 |
-
|
264 |
-
.gradio-container-4-37-2 .prose table, .gradio-container-4-37-2 .prose tr, .gradio-container-4-37-2 .prose td, .gradio-container-4-37-2 .prose th {
|
265 |
-
border: 0px solid #ffffff;
|
266 |
-
border-bottom: 0px solid #ffffff;
|
267 |
-
}
|
268 |
-
|
269 |
-
</style>
|
270 |
-
|
271 |
-
<table>
|
272 |
-
<tr>
|
273 |
-
<td><a href="https://github.com/sczhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a></td>
|
274 |
-
<td><a href="https://twitter.com/ShangchenZhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a></td>
|
275 |
-
</tr>
|
276 |
-
</table>
|
277 |
-
|
278 |
-
<center><img src='https://api.infinitescript.com/badgen/count?name=sczhou/CodeFormer<ext=Visitors&color=6dc9aa' alt='visitors'></center>
|
279 |
-
"""
|
280 |
|
|
|
281 |
demo = gr.Interface(
|
282 |
-
inference,
|
|
|
283 |
gr.Image(type="filepath", label="Input"),
|
284 |
gr.Checkbox(value=True, label="Pre_Face_Align"),
|
285 |
gr.Checkbox(value=True, label="Background_Enhance"),
|
286 |
gr.Checkbox(value=True, label="Face_Upsample"),
|
287 |
gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
|
288 |
-
gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity
|
289 |
-
],
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
description=description,
|
294 |
-
article=article,
|
295 |
-
examples=[
|
296 |
-
['01.png', True, True, True, 2, 0.7],
|
297 |
-
['02.jpg', True, True, True, 2, 0.7],
|
298 |
-
['03.jpg', True, True, True, 2, 0.7],
|
299 |
-
['04.jpg', True, True, True, 2, 0.1],
|
300 |
-
['05.jpg', True, True, True, 2, 0.1],
|
301 |
-
['06.png', False, True, True, 1, 0.5]
|
302 |
-
],
|
303 |
-
concurrency_limit=2
|
304 |
-
)
|
305 |
|
306 |
-
|
307 |
-
# demo.launch(debug=DEBUG)
|
308 |
-
demo.launch(debug=DEBUG, share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import sys
|
2 |
sys.path.append('CodeFormer')
|
3 |
import os
|
|
|
7 |
import gradio as gr
|
8 |
|
9 |
from torchvision.transforms.functional import normalize
|
|
|
10 |
from basicsr.utils import imwrite, img2tensor, tensor2img
|
11 |
from basicsr.utils.download_util import load_file_from_url
|
12 |
from facelib.utils.face_restoration_helper import FaceRestoreHelper
|
13 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
14 |
from basicsr.utils.realesrgan_utils import RealESRGANer
|
15 |
from facelib.utils.misc import is_gray
|
|
|
16 |
from basicsr.utils.registry import ARCH_REGISTRY
|
17 |
|
18 |
+
# Model weight URLs
|
|
|
|
|
19 |
pretrain_model_url = {
|
20 |
'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
|
21 |
'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
|
22 |
'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
|
23 |
'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
|
24 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Download weights if not already present
|
27 |
+
for key, url in pretrain_model_url.items():
|
28 |
+
file_path = f"CodeFormer/weights/{key}/{url.split('/')[-1]}"
|
29 |
+
if not os.path.exists(file_path):
|
30 |
+
load_file_from_url(url=url, model_dir=os.path.dirname(file_path), progress=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Helper functions
|
33 |
def imread(img_path):
|
34 |
img = cv2.imread(img_path)
|
35 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
36 |
return img
|
37 |
|
|
|
38 |
def set_realesrgan():
|
39 |
+
half = torch.cuda.is_available()
|
40 |
+
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
upsampler = RealESRGANer(
|
42 |
+
scale=2, model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
|
43 |
+
model=model, tile=400, tile_pad=40, pre_pad=0, half=half
|
|
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
return upsampler
|
46 |
|
47 |
+
# Model setup
|
48 |
upsampler = set_realesrgan()
|
49 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
50 |
codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
|
51 |
+
dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
|
52 |
+
connect_list=["32", "64", "128", "256"]
|
|
|
|
|
|
|
53 |
).to(device)
|
54 |
ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
|
55 |
checkpoint = torch.load(ckpt_path)["params_ema"]
|
|
|
58 |
|
59 |
os.makedirs('output', exist_ok=True)
|
60 |
|
61 |
+
# Inference function
|
62 |
+
def inference(image, face_align=True, background_enhance=True, face_upsample=True, upscale=2, codeformer_fidelity=0.5):
|
63 |
+
try:
|
|
|
64 |
only_center_face = False
|
|
|
65 |
detection_model = "retinaface_resnet50"
|
66 |
+
|
67 |
+
# Load image and set parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
img = cv2.imread(str(image), cv2.IMREAD_COLOR)
|
69 |
+
has_aligned = not face_align
|
70 |
+
upscale = min(max(1, int(upscale)), 4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
face_helper = FaceRestoreHelper(
|
73 |
+
upscale, face_size=512, crop_ratio=(1, 1), det_model=detection_model,
|
74 |
+
save_ext="png", use_parse=True, device=device
|
|
|
|
|
|
|
|
|
|
|
75 |
)
|
76 |
+
|
77 |
bg_upsampler = upsampler if background_enhance else None
|
78 |
face_upsampler = upsampler if face_upsample else None
|
79 |
|
80 |
if has_aligned:
|
|
|
81 |
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
|
82 |
face_helper.is_gray = is_gray(img, threshold=5)
|
|
|
|
|
83 |
face_helper.cropped_faces = [img]
|
84 |
else:
|
85 |
face_helper.read_image(img)
|
86 |
+
num_det_faces = face_helper.get_face_landmarks_5(only_center_face=only_center_face, resize=640, eye_dist_threshold=5)
|
|
|
|
|
|
|
|
|
|
|
87 |
face_helper.align_warp_face()
|
88 |
|
89 |
+
for cropped_face in face_helper.cropped_faces:
|
|
|
|
|
90 |
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
91 |
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
92 |
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
93 |
|
94 |
+
with torch.no_grad():
|
95 |
+
output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0]
|
96 |
+
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
97 |
+
face_helper.add_restored_face(restored_face.astype("uint8"), cropped_face)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
restored_img = face_helper.paste_faces_to_input_image(
|
100 |
+
upsample_img=bg_upsampler.enhance(img, outscale=upscale)[0] if bg_upsampler else None,
|
101 |
+
face_upsampler=face_upsampler
|
102 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
save_path = 'output/out.png'
|
105 |
+
imwrite(restored_img, save_path)
|
106 |
+
return cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
|
107 |
except Exception as error:
|
108 |
+
print('Error during inference:', error)
|
109 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
# Gradio Interface
|
112 |
demo = gr.Interface(
|
113 |
+
fn=inference,
|
114 |
+
inputs=[
|
115 |
gr.Image(type="filepath", label="Input"),
|
116 |
gr.Checkbox(value=True, label="Pre_Face_Align"),
|
117 |
gr.Checkbox(value=True, label="Background_Enhance"),
|
118 |
gr.Checkbox(value=True, label="Face_Upsample"),
|
119 |
gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
|
120 |
+
gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity')
|
121 |
+
],
|
122 |
+
outputs=gr.Image(type="numpy", label="Output"),
|
123 |
+
title="CodeFormer: Robust Face Restoration and Enhancement Network"
|
124 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
demo.launch(debug=os.getenv('DEBUG') == '1', share=True)
|
|
|
|