soiz commited on
Commit
a9c6794
·
verified ·
1 Parent(s): 0fc7db4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -230
app.py CHANGED
@@ -1,8 +1,3 @@
1
- """
2
- This file is used for deploying hugging face demo:
3
- https://huggingface.co/spaces/sczhou/CodeFormer
4
- """
5
-
6
  import sys
7
  sys.path.append('CodeFormer')
8
  import os
@@ -12,90 +7,49 @@ import torch.nn.functional as F
12
  import gradio as gr
13
 
14
  from torchvision.transforms.functional import normalize
15
-
16
  from basicsr.utils import imwrite, img2tensor, tensor2img
17
  from basicsr.utils.download_util import load_file_from_url
18
  from facelib.utils.face_restoration_helper import FaceRestoreHelper
19
  from basicsr.archs.rrdbnet_arch import RRDBNet
20
  from basicsr.utils.realesrgan_utils import RealESRGANer
21
  from facelib.utils.misc import is_gray
22
-
23
  from basicsr.utils.registry import ARCH_REGISTRY
24
 
25
-
26
- os.system("pip freeze")
27
-
28
  pretrain_model_url = {
29
  'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
30
  'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
31
  'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
32
  'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
33
  }
34
- # download weights
35
- if not os.path.exists('CodeFormer/weights/CodeFormer/codeformer.pth'):
36
- load_file_from_url(url=pretrain_model_url['codeformer'], model_dir='CodeFormer/weights/CodeFormer', progress=True, file_name=None)
37
- if not os.path.exists('CodeFormer/weights/facelib/detection_Resnet50_Final.pth'):
38
- load_file_from_url(url=pretrain_model_url['detection'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
39
- if not os.path.exists('CodeFormer/weights/facelib/parsing_parsenet.pth'):
40
- load_file_from_url(url=pretrain_model_url['parsing'], model_dir='CodeFormer/weights/facelib', progress=True, file_name=None)
41
- if not os.path.exists('CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth'):
42
- load_file_from_url(url=pretrain_model_url['realesrgan'], model_dir='CodeFormer/weights/realesrgan', progress=True, file_name=None)
43
 
44
- # download images
45
- torch.hub.download_url_to_file(
46
- 'https://replicate.com/api/models/sczhou/codeformer/files/fa3fe3d1-76b0-4ca8-ac0d-0a925cb0ff54/06.png',
47
- '01.png')
48
- torch.hub.download_url_to_file(
49
- 'https://replicate.com/api/models/sczhou/codeformer/files/a1daba8e-af14-4b00-86a4-69cec9619b53/04.jpg',
50
- '02.jpg')
51
- torch.hub.download_url_to_file(
52
- 'https://replicate.com/api/models/sczhou/codeformer/files/542d64f9-1712-4de7-85f7-3863009a7c3d/03.jpg',
53
- '03.jpg')
54
- torch.hub.download_url_to_file(
55
- 'https://replicate.com/api/models/sczhou/codeformer/files/a11098b0-a18a-4c02-a19a-9a7045d68426/010.jpg',
56
- '04.jpg')
57
- torch.hub.download_url_to_file(
58
- 'https://replicate.com/api/models/sczhou/codeformer/files/7cf19c2c-e0cf-4712-9af8-cf5bdbb8d0ee/012.jpg',
59
- '05.jpg')
60
- torch.hub.download_url_to_file(
61
- 'https://raw.githubusercontent.com/sczhou/CodeFormer/master/inputs/cropped_faces/0729.png',
62
- '06.png')
63
 
 
64
  def imread(img_path):
65
  img = cv2.imread(img_path)
66
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
67
  return img
68
 
69
- # set enhancer with RealESRGAN
70
  def set_realesrgan():
71
- half = True if torch.cuda.is_available() else False
72
- model = RRDBNet(
73
- num_in_ch=3,
74
- num_out_ch=3,
75
- num_feat=64,
76
- num_block=23,
77
- num_grow_ch=32,
78
- scale=2,
79
- )
80
  upsampler = RealESRGANer(
81
- scale=2,
82
- model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
83
- model=model,
84
- tile=400,
85
- tile_pad=40,
86
- pre_pad=0,
87
- half=half,
88
  )
89
  return upsampler
90
 
 
91
  upsampler = set_realesrgan()
92
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
93
  codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
94
- dim_embd=512,
95
- codebook_size=1024,
96
- n_head=8,
97
- n_layers=9,
98
- connect_list=["32", "64", "128", "256"],
99
  ).to(device)
100
  ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
101
  checkpoint = torch.load(ckpt_path)["params_ema"]
@@ -104,205 +58,69 @@ codeformer_net.eval()
104
 
105
  os.makedirs('output', exist_ok=True)
106
 
107
- def inference(image, face_align, background_enhance, face_upsample, upscale, codeformer_fidelity):
108
- """Run a single prediction on the model"""
109
- try: # global try
110
- # take the default setting for the demo
111
  only_center_face = False
112
- draw_box = False
113
  detection_model = "retinaface_resnet50"
114
-
115
- print('Inp:', image, background_enhance, face_upsample, upscale, codeformer_fidelity)
116
- face_align = face_align if face_align is not None else True
117
- background_enhance = background_enhance if background_enhance is not None else True
118
- face_upsample = face_upsample if face_upsample is not None else True
119
- upscale = upscale if (upscale is not None and upscale > 0) else 2
120
-
121
- has_aligned = not face_align
122
- upscale = 1 if has_aligned else upscale
123
-
124
  img = cv2.imread(str(image), cv2.IMREAD_COLOR)
125
- print('\timage size:', img.shape)
126
-
127
- upscale = int(upscale) # convert type to int
128
- if upscale > 4: # avoid memory exceeded due to too large upscale
129
- upscale = 4
130
- if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
131
- upscale = 2
132
- if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
133
- upscale = 1
134
- background_enhance = False
135
- face_upsample = False
136
 
137
  face_helper = FaceRestoreHelper(
138
- upscale,
139
- face_size=512,
140
- crop_ratio=(1, 1),
141
- det_model=detection_model,
142
- save_ext="png",
143
- use_parse=True,
144
- device=device,
145
  )
 
146
  bg_upsampler = upsampler if background_enhance else None
147
  face_upsampler = upsampler if face_upsample else None
148
 
149
  if has_aligned:
150
- # the input faces are already cropped and aligned
151
  img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
152
  face_helper.is_gray = is_gray(img, threshold=5)
153
- if face_helper.is_gray:
154
- print('\tgrayscale input: True')
155
  face_helper.cropped_faces = [img]
156
  else:
157
  face_helper.read_image(img)
158
- # get face landmarks for each face
159
- num_det_faces = face_helper.get_face_landmarks_5(
160
- only_center_face=only_center_face, resize=640, eye_dist_threshold=5
161
- )
162
- print(f'\tdetect {num_det_faces} faces')
163
- # align and warp each face
164
  face_helper.align_warp_face()
165
 
166
- # face restoration for each cropped face
167
- for idx, cropped_face in enumerate(face_helper.cropped_faces):
168
- # prepare data
169
  cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
170
  normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
171
  cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
172
 
173
- try:
174
- with torch.no_grad():
175
- output = codeformer_net(
176
- cropped_face_t, w=codeformer_fidelity, adain=True
177
- )[0]
178
- restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
179
- del output
180
- torch.cuda.empty_cache()
181
- except RuntimeError as error:
182
- print(f"Failed inference for CodeFormer: {error}")
183
- restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
184
 
185
- restored_face = restored_face.astype("uint8")
186
- face_helper.add_restored_face(restored_face, cropped_face)
187
-
188
- # paste_back
189
- if not has_aligned:
190
- # upsample the background
191
- if bg_upsampler is not None:
192
- # Now only support RealESRGAN for upsampling background
193
- bg_img = bg_upsampler.enhance(img, outscale=upscale)[0]
194
- else:
195
- bg_img = None
196
- face_helper.get_inverse_affine(None)
197
- # paste each restored face to the input image
198
- if face_upsample and face_upsampler is not None:
199
- restored_img = face_helper.paste_faces_to_input_image(
200
- upsample_img=bg_img,
201
- draw_box=draw_box,
202
- face_upsampler=face_upsampler,
203
- )
204
- else:
205
- restored_img = face_helper.paste_faces_to_input_image(
206
- upsample_img=bg_img, draw_box=draw_box
207
- )
208
- else:
209
- restored_img = restored_face
210
-
211
- # save restored img
212
- save_path = f'output/out.png'
213
- imwrite(restored_img, str(save_path))
214
 
215
- restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
216
- return restored_img
 
217
  except Exception as error:
218
- print('Global exception', error)
219
- return None, None
220
-
221
-
222
- title = "CodeFormer: Robust Face Restoration and Enhancement Network"
223
-
224
- description = r"""<center><img src='https://user-images.githubusercontent.com/14334509/189166076-94bb2cac-4f4e-40fb-a69f-66709e3d98f5.png' alt='CodeFormer logo'></center>
225
- <br>
226
- <b>Official Gradio demo</b> for <a href='https://github.com/sczhou/CodeFormer' target='_blank'><b>Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)</b></a><br>
227
- 🔥 CodeFormer is a robust face restoration algorithm for old photos or AI-generated faces.<br>
228
- 🤗 Try CodeFormer for improved stable-diffusion generation!<br>
229
- """
230
-
231
- article = r"""
232
- If CodeFormer is helpful, please help to ⭐ the <a href='https://github.com/sczhou/CodeFormer' target='_blank'>Github Repo</a>. Thanks!
233
- [![GitHub Stars](https://img.shields.io/github/stars/sczhou/CodeFormer?style=social)](https://github.com/sczhou/CodeFormer)
234
-
235
- ---
236
-
237
- 📝 **Citation**
238
-
239
- If our work is useful for your research, please consider citing:
240
- ```bibtex
241
- @inproceedings{zhou2022codeformer,
242
- author = {Zhou, Shangchen and Chan, Kelvin C.K. and Li, Chongyi and Loy, Chen Change},
243
- title = {Towards Robust Blind Face Restoration with Codebook Lookup TransFormer},
244
- booktitle = {NeurIPS},
245
- year = {2022}
246
- }
247
- ```
248
-
249
- 📋 **License**
250
-
251
- This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>.
252
- Redistribution and use for non-commercial purposes should follow this license.
253
-
254
- 📧 **Contact**
255
-
256
- If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
257
-
258
- 🤗 **Find Me:**
259
- <style type="text/css">
260
- td {
261
- padding-right: 0px !important;
262
- }
263
-
264
- .gradio-container-4-37-2 .prose table, .gradio-container-4-37-2 .prose tr, .gradio-container-4-37-2 .prose td, .gradio-container-4-37-2 .prose th {
265
- border: 0px solid #ffffff;
266
- border-bottom: 0px solid #ffffff;
267
- }
268
-
269
- </style>
270
-
271
- <table>
272
- <tr>
273
- <td><a href="https://github.com/sczhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a></td>
274
- <td><a href="https://twitter.com/ShangchenZhou"><img style="margin:-0.8em 0 2em 0" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a></td>
275
- </tr>
276
- </table>
277
-
278
- <center><img src='https://api.infinitescript.com/badgen/count?name=sczhou/CodeFormer&ltext=Visitors&color=6dc9aa' alt='visitors'></center>
279
- """
280
 
 
281
  demo = gr.Interface(
282
- inference, [
 
283
  gr.Image(type="filepath", label="Input"),
284
  gr.Checkbox(value=True, label="Pre_Face_Align"),
285
  gr.Checkbox(value=True, label="Background_Enhance"),
286
  gr.Checkbox(value=True, label="Face_Upsample"),
287
  gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
288
- gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
289
- ], [
290
- gr.Image(type="numpy", label="Output")
291
- ],
292
- title=title,
293
- description=description,
294
- article=article,
295
- examples=[
296
- ['01.png', True, True, True, 2, 0.7],
297
- ['02.jpg', True, True, True, 2, 0.7],
298
- ['03.jpg', True, True, True, 2, 0.7],
299
- ['04.jpg', True, True, True, 2, 0.1],
300
- ['05.jpg', True, True, True, 2, 0.1],
301
- ['06.png', False, True, True, 1, 0.5]
302
- ],
303
- concurrency_limit=2
304
- )
305
 
306
- DEBUG = os.getenv('DEBUG') == '1'
307
- # demo.launch(debug=DEBUG)
308
- demo.launch(debug=DEBUG, share=True)
 
 
 
 
 
 
1
  import sys
2
  sys.path.append('CodeFormer')
3
  import os
 
7
  import gradio as gr
8
 
9
  from torchvision.transforms.functional import normalize
 
10
  from basicsr.utils import imwrite, img2tensor, tensor2img
11
  from basicsr.utils.download_util import load_file_from_url
12
  from facelib.utils.face_restoration_helper import FaceRestoreHelper
13
  from basicsr.archs.rrdbnet_arch import RRDBNet
14
  from basicsr.utils.realesrgan_utils import RealESRGANer
15
  from facelib.utils.misc import is_gray
 
16
  from basicsr.utils.registry import ARCH_REGISTRY
17
 
18
+ # Model weight URLs
 
 
19
  pretrain_model_url = {
20
  'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
21
  'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth',
22
  'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth',
23
  'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth'
24
  }
 
 
 
 
 
 
 
 
 
25
 
26
+ # Download weights if not already present
27
+ for key, url in pretrain_model_url.items():
28
+ file_path = f"CodeFormer/weights/{key}/{url.split('/')[-1]}"
29
+ if not os.path.exists(file_path):
30
+ load_file_from_url(url=url, model_dir=os.path.dirname(file_path), progress=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ # Helper functions
33
  def imread(img_path):
34
  img = cv2.imread(img_path)
35
  img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
36
  return img
37
 
 
38
  def set_realesrgan():
39
+ half = torch.cuda.is_available()
40
+ model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
 
 
 
 
 
 
 
41
  upsampler = RealESRGANer(
42
+ scale=2, model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth",
43
+ model=model, tile=400, tile_pad=40, pre_pad=0, half=half
 
 
 
 
 
44
  )
45
  return upsampler
46
 
47
+ # Model setup
48
  upsampler = set_realesrgan()
49
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
50
  codeformer_net = ARCH_REGISTRY.get("CodeFormer")(
51
+ dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
52
+ connect_list=["32", "64", "128", "256"]
 
 
 
53
  ).to(device)
54
  ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth"
55
  checkpoint = torch.load(ckpt_path)["params_ema"]
 
58
 
59
  os.makedirs('output', exist_ok=True)
60
 
61
+ # Inference function
62
+ def inference(image, face_align=True, background_enhance=True, face_upsample=True, upscale=2, codeformer_fidelity=0.5):
63
+ try:
 
64
  only_center_face = False
 
65
  detection_model = "retinaface_resnet50"
66
+
67
+ # Load image and set parameters
 
 
 
 
 
 
 
 
68
  img = cv2.imread(str(image), cv2.IMREAD_COLOR)
69
+ has_aligned = not face_align
70
+ upscale = min(max(1, int(upscale)), 4)
 
 
 
 
 
 
 
 
 
71
 
72
  face_helper = FaceRestoreHelper(
73
+ upscale, face_size=512, crop_ratio=(1, 1), det_model=detection_model,
74
+ save_ext="png", use_parse=True, device=device
 
 
 
 
 
75
  )
76
+
77
  bg_upsampler = upsampler if background_enhance else None
78
  face_upsampler = upsampler if face_upsample else None
79
 
80
  if has_aligned:
 
81
  img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
82
  face_helper.is_gray = is_gray(img, threshold=5)
 
 
83
  face_helper.cropped_faces = [img]
84
  else:
85
  face_helper.read_image(img)
86
+ num_det_faces = face_helper.get_face_landmarks_5(only_center_face=only_center_face, resize=640, eye_dist_threshold=5)
 
 
 
 
 
87
  face_helper.align_warp_face()
88
 
89
+ for cropped_face in face_helper.cropped_faces:
 
 
90
  cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
91
  normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
92
  cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
93
 
94
+ with torch.no_grad():
95
+ output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0]
96
+ restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
97
+ face_helper.add_restored_face(restored_face.astype("uint8"), cropped_face)
 
 
 
 
 
 
 
98
 
99
+ restored_img = face_helper.paste_faces_to_input_image(
100
+ upsample_img=bg_upsampler.enhance(img, outscale=upscale)[0] if bg_upsampler else None,
101
+ face_upsampler=face_upsampler
102
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
+ save_path = 'output/out.png'
105
+ imwrite(restored_img, save_path)
106
+ return cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
107
  except Exception as error:
108
+ print('Error during inference:', error)
109
+ return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
+ # Gradio Interface
112
  demo = gr.Interface(
113
+ fn=inference,
114
+ inputs=[
115
  gr.Image(type="filepath", label="Input"),
116
  gr.Checkbox(value=True, label="Pre_Face_Align"),
117
  gr.Checkbox(value=True, label="Background_Enhance"),
118
  gr.Checkbox(value=True, label="Face_Upsample"),
119
  gr.Number(value=2, label="Rescaling_Factor (up to 4)"),
120
+ gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity')
121
+ ],
122
+ outputs=gr.Image(type="numpy", label="Output"),
123
+ title="CodeFormer: Robust Face Restoration and Enhancement Network"
124
+ )
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
+ demo.launch(debug=os.getenv('DEBUG') == '1', share=True)