import sys sys.path.append('CodeFormer') import os import cv2 import torch import torch.nn.functional as F import gradio as gr from torchvision.transforms.functional import normalize from basicsr.utils import imwrite, img2tensor, tensor2img from basicsr.utils.download_util import load_file_from_url from facelib.utils.face_restoration_helper import FaceRestoreHelper from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils.realesrgan_utils import RealESRGANer from facelib.utils.misc import is_gray from basicsr.utils.registry import ARCH_REGISTRY # Model weight URLs pretrain_model_url = { 'codeformer': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', 'detection': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth', 'parsing': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth', 'realesrgan': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth' } load_file_from_url( url='https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth', model_dir='CodeFormer/weights/CodeFormer', progress=True ) # Download weights if not already present for key, url in pretrain_model_url.items(): file_path = f"CodeFormer/weights/{key}/{url.split('/')[-1]}" if not os.path.exists(file_path): load_file_from_url(url=url, model_dir=os.path.dirname(file_path), progress=True) # Helper functions def imread(img_path): img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def set_realesrgan(): half = torch.cuda.is_available() model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) upsampler = RealESRGANer( scale=2, model_path="CodeFormer/weights/realesrgan/RealESRGAN_x2plus.pth", model=model, tile=400, tile_pad=40, pre_pad=0, half=half ) return upsampler # Model setup upsampler = set_realesrgan() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') codeformer_net = ARCH_REGISTRY.get("CodeFormer")( dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=["32", "64", "128", "256"] ).to(device) ckpt_path = "CodeFormer/weights/CodeFormer/codeformer.pth" checkpoint = torch.load(ckpt_path)["params_ema"] codeformer_net.load_state_dict(checkpoint) codeformer_net.eval() os.makedirs('output', exist_ok=True) # Inference function def inference(image, face_align=True, background_enhance=True, face_upsample=True, upscale=2, codeformer_fidelity=0.5): try: only_center_face = False detection_model = "retinaface_resnet50" # Load image and set parameters img = cv2.imread(str(image), cv2.IMREAD_COLOR) has_aligned = not face_align upscale = min(max(1, int(upscale)), 4) face_helper = FaceRestoreHelper( upscale, face_size=512, crop_ratio=(1, 1), det_model=detection_model, save_ext="png", use_parse=True, device=device ) bg_upsampler = upsampler if background_enhance else None face_upsampler = upsampler if face_upsample else None if has_aligned: img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) face_helper.is_gray = is_gray(img, threshold=5) face_helper.cropped_faces = [img] else: face_helper.read_image(img) num_det_faces = face_helper.get_face_landmarks_5(only_center_face=only_center_face, resize=640, eye_dist_threshold=5) face_helper.align_warp_face() for cropped_face in face_helper.cropped_faces: cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) with torch.no_grad(): output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0] restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) face_helper.add_restored_face(restored_face.astype("uint8"), cropped_face) restored_img = face_helper.paste_faces_to_input_image( upsample_img=bg_upsampler.enhance(img, outscale=upscale)[0] if bg_upsampler else None, face_upsampler=face_upsampler ) save_path = 'output/out.png' imwrite(restored_img, save_path) return cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB) except Exception as error: print('Error during inference:', error) return None # Gradio Interface demo = gr.Interface( fn=inference, inputs=[ gr.Image(type="filepath", label="Input"), gr.Checkbox(value=True, label="Pre_Face_Align"), gr.Checkbox(value=True, label="Background_Enhance"), gr.Checkbox(value=True, label="Face_Upsample"), gr.Number(value=2, label="Rescaling_Factor (up to 4)"), gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity') ], outputs=gr.Image(type="numpy", label="Output"), title="CodeFormer: Robust Face Restoration and Enhancement Network" ) demo.launch(debug=os.getenv('DEBUG') == '1', share=True)