Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
# Hugging Faceの互換性のあるモデルをロード(image-to-textタスク用) | |
model_name = "Salesforce/blip-image-captioning-base" | |
image_to_text = pipeline("image-to-text", model=model_name) | |
# Gradioの関数定義 | |
def generate_text_from_image(image): | |
# 画像からテキストを生成 | |
result = image_to_text(image) | |
return result[0]["generated_text"] | |
# Gradioインターフェースの設定 | |
iface = gr.Interface( | |
fn=generate_text_from_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Image to Text with BLIP Model", | |
description="Upload an image to get a descriptive text generated by the BLIP image captioning model." | |
) | |
# Gradioアプリケーションの起動 | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |