soiz1 commited on
Commit
95403ff
·
verified ·
1 Parent(s): 1637b5c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +215 -218
app.py CHANGED
@@ -1,225 +1,222 @@
1
- import gradio as gr
2
- import cv2
3
- import numpy
4
  import os
5
- import random
6
- from basicsr.archs.rrdbnet_arch import RRDBNet
7
- from basicsr.utils.download_util import load_file_from_url
8
- from realesrgan import RealESRGANer
9
- from realesrgan.archs.srvgg_arch import SRVGGNetCompact
10
- from torchvision.transforms.functional import rgb_to_grayscale
11
- import spaces
12
-
13
- last_file = None
14
- img_mode = "RGBA"
15
-
16
- @spaces.GPU(duration=120)
17
- def realesrgan(img, model_name, denoise_strength, face_enhance, outscale):
18
- """Real-ESRGAN function to restore (and upscale) images.
19
- """
20
- if not img:
21
- return
22
-
23
- # Define model parameters
24
- if model_name == 'RealESRGAN_x4plus': # x4 RRDBNet model
25
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
26
- netscale = 4
27
- file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
28
- elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
29
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
30
- netscale = 4
31
- file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
32
- elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
33
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
34
- netscale = 4
35
- file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
36
- elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
37
- model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
38
- netscale = 2
39
- file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
40
- elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
41
- model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
42
- netscale = 4
43
- file_url = [
44
- 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
45
- 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
46
- ]
47
-
48
- # Determine model paths
49
- model_path = os.path.join('weights', model_name + '.pth')
50
- if not os.path.isfile(model_path):
51
- ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
52
- for url in file_url:
53
- # model_path will be updated
54
- model_path = load_file_from_url(
55
- url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
56
-
57
- # Use dni to control the denoise strength
58
- dni_weight = None
59
- if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
60
- wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
61
- model_path = [model_path, wdn_model_path]
62
- dni_weight = [denoise_strength, 1 - denoise_strength]
63
-
64
- # Restorer Class
65
- upsampler = RealESRGANer(
66
- scale=netscale,
67
- model_path=model_path,
68
- dni_weight=dni_weight,
69
- model=model,
70
- tile=0,
71
- tile_pad=10,
72
- pre_pad=10,
73
- half=False,
74
- gpu_id=None
75
- )
76
-
77
- # Use GFPGAN for face enhancement
78
- if face_enhance:
79
- from gfpgan import GFPGANer
80
- face_enhancer = GFPGANer(
81
- model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
82
- upscale=outscale,
83
- arch='clean',
84
- channel_multiplier=2,
85
- bg_upsampler=upsampler)
86
-
87
- # Convert the input PIL image to cv2 image, so that it can be processed by realesrgan
88
- cv_img = numpy.array(img)
89
- img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
90
-
91
- # Apply restoration
92
  try:
93
- if face_enhance:
94
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
95
- else:
96
- output, _ = upsampler.enhance(img, outscale=outscale)
97
- except RuntimeError as error:
98
- print('Error', error)
99
- print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
100
- else:
101
- # Save restored image and return it to the output Image component
102
- if img_mode == 'RGBA': # RGBA images should be saved in png format
103
- extension = 'png'
 
 
 
 
 
 
 
 
 
 
 
 
104
  else:
105
- extension = 'jpg'
106
-
107
- out_filename = f"output_{rnd_string(8)}.{extension}"
108
- cv2.imwrite(out_filename, output)
109
- global last_file
110
- last_file = out_filename
111
- return out_filename
112
-
113
-
114
- def rnd_string(x):
115
- """Returns a string of 'x' random characters
116
- """
117
- characters = "abcdefghijklmnopqrstuvwxyz_0123456789"
118
- result = "".join((random.choice(characters)) for i in range(x))
119
- return result
120
-
121
-
122
- def reset():
123
- """Resets the Image components of the Gradio interface and deletes
124
- the last processed image
125
- """
126
- global last_file
127
- if last_file:
128
- print(f"Deleting {last_file} ...")
129
- os.remove(last_file)
130
- last_file = None
131
- return gr.update(value=None), gr.update(value=None)
132
-
133
-
134
- def has_transparency(img):
135
- """This function works by first checking to see if a "transparency" property is defined
136
- in the image's info -- if so, we return "True". Then, if the image is using indexed colors
137
- (such as in GIFs), it gets the index of the transparent color in the palette
138
- (img.info.get("transparency", -1)) and checks if it's used anywhere in the canvas
139
- (img.getcolors()). If the image is in RGBA mode, then presumably it has transparency in
140
- it, but it double-checks by getting the minimum and maximum values of every color channel
141
- (img.getextrema()), and checks if the alpha channel's smallest value falls below 255.
142
- https://stackoverflow.com/questions/43864101/python-pil-check-if-image-is-transparent
143
- """
144
- if img.info.get("transparency", None) is not None:
145
- return True
146
- if img.mode == "P":
147
- transparent = img.info.get("transparency", -1)
148
- for _, index in img.getcolors():
149
- if index == transparent:
150
- return True
151
- elif img.mode == "RGBA":
152
- extrema = img.getextrema()
153
- if extrema[3][0] < 255:
154
- return True
155
- return False
156
-
157
-
158
- def image_properties(img):
159
- """Returns the dimensions (width and height) and color mode of the input image and
160
- also sets the global img_mode variable to be used by the realesrgan function
161
- """
162
- global img_mode
163
- if img:
164
- if has_transparency(img):
165
- img_mode = "RGBA"
166
  else:
167
- img_mode = "RGB"
168
- properties = f"Resolution: Width: {img.size[0]}, Height: {img.size[1]} | Color Mode: {img_mode}"
169
- return properties
170
-
171
-
172
- def main():
173
- # Gradio Interface
174
- with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="dark") as demo:
175
-
176
- gr.Markdown(
177
- """# <div align="center"> Ilaria Upscaler 💖 </div>
178
-
179
- Do not use images over 750x750 especially with 4x the resolution upscaling, it will give you an error.
180
 
181
- Hugginface port of [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN).
182
- """
183
- )
184
-
185
- with gr.Accordion("Upscaling option"):
186
- with gr.Row():
187
- model_name = gr.Dropdown(label="Upscaler model",
188
- choices=["RealESRGAN_x4plus", "RealESRNet_x4plus", "RealESRGAN_x4plus_anime_6B",
189
- "RealESRGAN_x2plus", "realesr-general-x4v3"],
190
- value="RealESRGAN_x4plus_anime_6B", show_label=True)
191
- denoise_strength = gr.Slider(label="Denoise Strength",
192
- minimum=0, maximum=1, step=0.1, value=0.5)
193
- outscale = gr.Slider(label="Resolution upscale",
194
- minimum=1, maximum=6, step=1, value=4, show_label=True)
195
- face_enhance = gr.Checkbox(label="Face Enhancement (GFPGAN)",
196
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
 
198
- with gr.Row():
199
- with gr.Group():
200
- input_image = gr.Image(label="Input Image", type="pil", image_mode="RGBA")
201
- input_image_properties = gr.Textbox(label="Image Properties", max_lines=1)
202
- output_image = gr.Image(label="Output Image", image_mode="RGBA")
203
- with gr.Row():
204
- reset_btn = gr.Button("Remove images")
205
- restore_btn = gr.Button("Upscale")
206
-
207
- # Event listeners:
208
- input_image.change(fn=image_properties, inputs=input_image, outputs=input_image_properties)
209
- restore_btn.click(fn=realesrgan,
210
- inputs=[input_image, model_name, denoise_strength, face_enhance, outscale],
211
- outputs=output_image)
212
- reset_btn.click(fn=reset, inputs=[], outputs=[output_image, input_image])
213
- # reset_btn.click(None, inputs=[], outputs=[input_image], _js="() => (null)\n")
214
- # Undocumented method to clear a component's value using Javascript
215
-
216
- gr.Markdown(
217
- """Made with love by Ilaria 💖 | Support me on [Ko-Fi](https://ko-fi.com/ilariaowo) | Join [AI Hub](https://discord.gg/aihub)
218
- """
219
- )
220
-
221
- demo.launch()
222
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
 
224
- if __name__ == "__main__":
225
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import cv2
3
+ import torch
4
+ from flask import Flask, request, jsonify, send_file
5
+ from basicsr.archs.srvgg_arch import SRVGGNetCompact
6
+ from gfpgan.utils import GFPGANer
7
+ from realesrgan.utils import RealESRGANer
8
+ import uuid
9
+ import tempfile
10
+
11
+ app = Flask(__name__)
12
+
13
+ # モデルの初期化
14
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
15
+ model_path = 'realesr-general-x4v3.pth'
16
+ half = True if torch.cuda.is_available() else False
17
+ upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
18
+
19
+ os.makedirs('output', exist_ok=True)
20
+
21
+ @app.route('/api/restore', methods=['POST'])
22
+ def restore_image():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  try:
24
+ # リクエストからパラメータを取得
25
+ if 'file' not in request.files:
26
+ return jsonify({'error': 'No file uploaded'}), 400
27
+
28
+ file = request.files['file']
29
+ version = request.form.get('version', 'v1.4')
30
+ scale = float(request.form.get('scale', 2))
31
+ # weight = float(request.form.get('weight', 50)) / 100 # CodeFormer用のweightパラメータが必要な場合
32
+
33
+ # 一時ファイルに保存
34
+ temp_dir = tempfile.mkdtemp()
35
+ input_path = os.path.join(temp_dir, file.filename)
36
+ file.save(input_path)
37
+
38
+ # 画像処理
39
+ extension = os.path.splitext(os.path.basename(str(input_path)))[1]
40
+ img = cv2.imread(input_path, cv2.IMREAD_UNCHANGED)
41
+
42
+ if len(img.shape) == 3 and img.shape[2] == 4:
43
+ img_mode = 'RGBA'
44
+ elif len(img.shape) == 2:
45
+ img_mode = None
46
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
47
  else:
48
+ img_mode = None
49
+
50
+ h, w = img.shape[0:2]
51
+ if h < 300:
52
+ img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
53
+
54
+ # バージョンに応じてモデルを選択
55
+ if version == 'v1.2':
56
+ face_enhancer = GFPGANer(
57
+ model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
58
+ elif version == 'v1.3':
59
+ face_enhancer = GFPGANer(
60
+ model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
61
+ elif version == 'v1.4':
62
+ face_enhancer = GFPGANer(
63
+ model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
64
+ elif version == 'RestoreFormer':
65
+ face_enhancer = GFPGANer(
66
+ model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
67
+ elif version == 'CodeFormer':
68
+ face_enhancer = GFPGANer(
69
+ model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
70
+ elif version == 'RealESR-General-x4v3':
71
+ face_enhancer = GFPGANer(
72
+ model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler)
73
+
74
+ # 画像を拡張
75
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
76
+
77
+ # スケール調整
78
+ if scale != 2:
79
+ interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
80
+ h, w = img.shape[0:2]
81
+ output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
82
+
83
+ # 出力ファイルを保存
84
+ output_filename = f'output_{uuid.uuid4().hex}'
85
+ if img_mode == 'RGBA':
86
+ output_path = os.path.join('output', f'{output_filename}.png')
87
+ cv2.imwrite(output_path, output)
88
+ mimetype = 'image/png'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  else:
90
+ output_path = os.path.join('output', f'{output_filename}.jpg')
91
+ cv2.imwrite(output_path, output)
92
+ mimetype = 'image/jpeg'
 
 
 
 
 
 
 
 
 
 
93
 
94
+ # 結果を返す
95
+ return send_file(output_path, mimetype=mimetype, as_attachment=True, download_name=os.path.basename(output_path))
96
+
97
+ except Exception as e:
98
+ return jsonify({'error': str(e)}), 500
99
+
100
+ @app.route('/')
101
+ def index():
102
+ return """
103
+ <!DOCTYPE html>
104
+ <html>
105
+ <head>
106
+ <title>Image Upscaling & Restoration API</title>
107
+ <style>
108
+ body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
109
+ .container { border: 1px solid #ddd; padding: 20px; border-radius: 5px; }
110
+ .form-group { margin-bottom: 15px; }
111
+ label { display: block; margin-bottom: 5px; }
112
+ input, select { width: 100%; padding: 8px; box-sizing: border-box; }
113
+ button { background-color: #4CAF50; color: white; padding: 10px 15px; border: none; border-radius: 4px; cursor: pointer; }
114
+ button:hover { background-color: #45a049; }
115
+ #result { margin-top: 20px; }
116
+ #preview { max-width: 100%; margin-top: 10px; }
117
+ </style>
118
+ </head>
119
+ <body>
120
+ <h1>Image Upscaling & Restoration API</h1>
121
+ <div class="container">
122
+ <form id="uploadForm" enctype="multipart/form-data">
123
+ <div class="form-group">
124
+ <label for="file">Upload Image:</label>
125
+ <input type="file" id="file" name="file" required>
126
+ </div>
127
+ <div class="form-group">
128
+ <label for="version">Version:</label>
129
+ <select id="version" name="version">
130
+ <option value="v1.2">v1.2</option>
131
+ <option value="v1.3">v1.3</option>
132
+ <option value="v1.4" selected>v1.4</option>
133
+ <option value="RestoreFormer">RestoreFormer</option>
134
+ <option value="CodeFormer">CodeFormer</option>
135
+ <option value="RealESR-General-x4v3">RealESR-General-x4v3</option>
136
+ </select>
137
+ </div>
138
+ <div class="form-group">
139
+ <label for="scale">Rescaling factor:</label>
140
+ <input type="number" id="scale" name="scale" value="2" step="0.1" min="1" max="4" required>
141
+ </div>
142
+ <!-- CodeFormer用のweightパラメータが必要な場合 -->
143
+ <!--
144
+ <div class="form-group">
145
+ <label for="weight">Weight (only for CodeFormer):</label>
146
+ <input type="range" id="weight" name="weight" min="0" max="100" value="50">
147
+ <span id="weightValue">50</span>
148
+ </div>
149
+ -->
150
+ <button type="submit">Process Image</button>
151
+ </form>
152
+
153
+ <div id="result">
154
+ <h3>Result:</h3>
155
+ <div id="outputContainer" style="display: none;">
156
+ <img id="preview" src="" alt="Processed Image">
157
+ <a id="downloadLink" href="#" download>Download Image</a>
158
+ </div>
159
+ </div>
160
+ </div>
161
+
162
+ <script>
163
+ document.getElementById('uploadForm').addEventListener('submit', function(e) {
164
+ e.preventDefault();
165
 
166
+ const formData = new FormData();
167
+ formData.append('file', document.getElementById('file').files[0]);
168
+ formData.append('version', document.getElementById('version').value);
169
+ formData.append('scale', document.getElementById('scale').value);
170
+ // formData.append('weight', document.getElementById('weight').value); // CodeFormer用
171
+
172
+ fetch('/api/restore', {
173
+ method: 'POST',
174
+ body: formData
175
+ })
176
+ .then(response => {
177
+ if (!response.ok) {
178
+ return response.json().then(err => { throw new Error(err.error || 'Unknown error'); });
179
+ }
180
+ return response.blob();
181
+ })
182
+ .then(blob => {
183
+ const url = URL.createObjectURL(blob);
184
+ const preview = document.getElementById('preview');
185
+ const downloadLink = document.getElementById('downloadLink');
186
+ const outputContainer = document.getElementById('outputContainer');
187
+
188
+ preview.src = url;
189
+ downloadLink.href = url;
190
+ downloadLink.download = 'restored_' + document.getElementById('file').files[0].name;
191
+ outputContainer.style.display = 'block';
192
+ })
193
+ .catch(error => {
194
+ alert('Error: ' + error.message);
195
+ });
196
+ });
197
+
198
+ // CodeFormer用のweightパラメータが必要な場合
199
+ // document.getElementById('weight').addEventListener('input', function() {
200
+ // document.getElementById('weightValue').textContent = this.value;
201
+ // });
202
+ </script>
203
+ </body>
204
+ </html>
205
+ """
206
 
207
+ if __name__ == '__main__':
208
+ # ウェイトファイルをダウンロード(存在しない場合)
209
+ if not os.path.exists('realesr-general-x4v3.pth'):
210
+ os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
211
+ if not os.path.exists('GFPGANv1.2.pth'):
212
+ os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
213
+ if not os.path.exists('GFPGANv1.3.pth'):
214
+ os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
215
+ if not os.path.exists('GFPGANv1.4.pth'):
216
+ os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
217
+ if not os.path.exists('RestoreFormer.pth'):
218
+ os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
219
+ if not os.path.exists('CodeFormer.pth'):
220
+ os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
221
+
222
+ app.run(host='0.0.0.0', port=5000, debug=True)