Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,225 +1,222 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import cv2
|
3 |
-
import numpy
|
4 |
import os
|
5 |
-
import
|
6 |
-
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
10 |
-
from
|
11 |
-
import
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
netscale = 4
|
27 |
-
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
|
28 |
-
elif model_name == 'RealESRNet_x4plus': # x4 RRDBNet model
|
29 |
-
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
30 |
-
netscale = 4
|
31 |
-
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
|
32 |
-
elif model_name == 'RealESRGAN_x4plus_anime_6B': # x4 RRDBNet model with 6 blocks
|
33 |
-
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
34 |
-
netscale = 4
|
35 |
-
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
|
36 |
-
elif model_name == 'RealESRGAN_x2plus': # x2 RRDBNet model
|
37 |
-
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
38 |
-
netscale = 2
|
39 |
-
file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
|
40 |
-
elif model_name == 'realesr-general-x4v3': # x4 VGG-style model (S size)
|
41 |
-
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
42 |
-
netscale = 4
|
43 |
-
file_url = [
|
44 |
-
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
|
45 |
-
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
|
46 |
-
]
|
47 |
-
|
48 |
-
# Determine model paths
|
49 |
-
model_path = os.path.join('weights', model_name + '.pth')
|
50 |
-
if not os.path.isfile(model_path):
|
51 |
-
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
52 |
-
for url in file_url:
|
53 |
-
# model_path will be updated
|
54 |
-
model_path = load_file_from_url(
|
55 |
-
url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)
|
56 |
-
|
57 |
-
# Use dni to control the denoise strength
|
58 |
-
dni_weight = None
|
59 |
-
if model_name == 'realesr-general-x4v3' and denoise_strength != 1:
|
60 |
-
wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
|
61 |
-
model_path = [model_path, wdn_model_path]
|
62 |
-
dni_weight = [denoise_strength, 1 - denoise_strength]
|
63 |
-
|
64 |
-
# Restorer Class
|
65 |
-
upsampler = RealESRGANer(
|
66 |
-
scale=netscale,
|
67 |
-
model_path=model_path,
|
68 |
-
dni_weight=dni_weight,
|
69 |
-
model=model,
|
70 |
-
tile=0,
|
71 |
-
tile_pad=10,
|
72 |
-
pre_pad=10,
|
73 |
-
half=False,
|
74 |
-
gpu_id=None
|
75 |
-
)
|
76 |
-
|
77 |
-
# Use GFPGAN for face enhancement
|
78 |
-
if face_enhance:
|
79 |
-
from gfpgan import GFPGANer
|
80 |
-
face_enhancer = GFPGANer(
|
81 |
-
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
|
82 |
-
upscale=outscale,
|
83 |
-
arch='clean',
|
84 |
-
channel_multiplier=2,
|
85 |
-
bg_upsampler=upsampler)
|
86 |
-
|
87 |
-
# Convert the input PIL image to cv2 image, so that it can be processed by realesrgan
|
88 |
-
cv_img = numpy.array(img)
|
89 |
-
img = cv2.cvtColor(cv_img, cv2.COLOR_RGBA2BGRA)
|
90 |
-
|
91 |
-
# Apply restoration
|
92 |
try:
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
else:
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
if img.mode == "P":
|
147 |
-
transparent = img.info.get("transparency", -1)
|
148 |
-
for _, index in img.getcolors():
|
149 |
-
if index == transparent:
|
150 |
-
return True
|
151 |
-
elif img.mode == "RGBA":
|
152 |
-
extrema = img.getextrema()
|
153 |
-
if extrema[3][0] < 255:
|
154 |
-
return True
|
155 |
-
return False
|
156 |
-
|
157 |
-
|
158 |
-
def image_properties(img):
|
159 |
-
"""Returns the dimensions (width and height) and color mode of the input image and
|
160 |
-
also sets the global img_mode variable to be used by the realesrgan function
|
161 |
-
"""
|
162 |
-
global img_mode
|
163 |
-
if img:
|
164 |
-
if has_transparency(img):
|
165 |
-
img_mode = "RGBA"
|
166 |
else:
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
def main():
|
173 |
-
# Gradio Interface
|
174 |
-
with gr.Blocks(title="Real-ESRGAN Gradio Demo", theme="dark") as demo:
|
175 |
-
|
176 |
-
gr.Markdown(
|
177 |
-
"""# <div align="center"> Ilaria Upscaler 💖 </div>
|
178 |
-
|
179 |
-
Do not use images over 750x750 especially with 4x the resolution upscaling, it will give you an error.
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
-
if __name__ ==
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
from flask import Flask, request, jsonify, send_file
|
5 |
+
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
6 |
+
from gfpgan.utils import GFPGANer
|
7 |
+
from realesrgan.utils import RealESRGANer
|
8 |
+
import uuid
|
9 |
+
import tempfile
|
10 |
+
|
11 |
+
app = Flask(__name__)
|
12 |
+
|
13 |
+
# モデルの初期化
|
14 |
+
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
15 |
+
model_path = 'realesr-general-x4v3.pth'
|
16 |
+
half = True if torch.cuda.is_available() else False
|
17 |
+
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
18 |
+
|
19 |
+
os.makedirs('output', exist_ok=True)
|
20 |
+
|
21 |
+
@app.route('/api/restore', methods=['POST'])
|
22 |
+
def restore_image():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
try:
|
24 |
+
# リクエストからパラメータを取得
|
25 |
+
if 'file' not in request.files:
|
26 |
+
return jsonify({'error': 'No file uploaded'}), 400
|
27 |
+
|
28 |
+
file = request.files['file']
|
29 |
+
version = request.form.get('version', 'v1.4')
|
30 |
+
scale = float(request.form.get('scale', 2))
|
31 |
+
# weight = float(request.form.get('weight', 50)) / 100 # CodeFormer用のweightパラメータが必要な場合
|
32 |
+
|
33 |
+
# 一時ファイルに保存
|
34 |
+
temp_dir = tempfile.mkdtemp()
|
35 |
+
input_path = os.path.join(temp_dir, file.filename)
|
36 |
+
file.save(input_path)
|
37 |
+
|
38 |
+
# 画像処理
|
39 |
+
extension = os.path.splitext(os.path.basename(str(input_path)))[1]
|
40 |
+
img = cv2.imread(input_path, cv2.IMREAD_UNCHANGED)
|
41 |
+
|
42 |
+
if len(img.shape) == 3 and img.shape[2] == 4:
|
43 |
+
img_mode = 'RGBA'
|
44 |
+
elif len(img.shape) == 2:
|
45 |
+
img_mode = None
|
46 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
47 |
else:
|
48 |
+
img_mode = None
|
49 |
+
|
50 |
+
h, w = img.shape[0:2]
|
51 |
+
if h < 300:
|
52 |
+
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
53 |
+
|
54 |
+
# バージョンに応じてモデルを選択
|
55 |
+
if version == 'v1.2':
|
56 |
+
face_enhancer = GFPGANer(
|
57 |
+
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
58 |
+
elif version == 'v1.3':
|
59 |
+
face_enhancer = GFPGANer(
|
60 |
+
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
61 |
+
elif version == 'v1.4':
|
62 |
+
face_enhancer = GFPGANer(
|
63 |
+
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
64 |
+
elif version == 'RestoreFormer':
|
65 |
+
face_enhancer = GFPGANer(
|
66 |
+
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
67 |
+
elif version == 'CodeFormer':
|
68 |
+
face_enhancer = GFPGANer(
|
69 |
+
model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
70 |
+
elif version == 'RealESR-General-x4v3':
|
71 |
+
face_enhancer = GFPGANer(
|
72 |
+
model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler)
|
73 |
+
|
74 |
+
# 画像を拡張
|
75 |
+
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
76 |
+
|
77 |
+
# スケール調整
|
78 |
+
if scale != 2:
|
79 |
+
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
80 |
+
h, w = img.shape[0:2]
|
81 |
+
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
82 |
+
|
83 |
+
# 出力ファイルを保存
|
84 |
+
output_filename = f'output_{uuid.uuid4().hex}'
|
85 |
+
if img_mode == 'RGBA':
|
86 |
+
output_path = os.path.join('output', f'{output_filename}.png')
|
87 |
+
cv2.imwrite(output_path, output)
|
88 |
+
mimetype = 'image/png'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
else:
|
90 |
+
output_path = os.path.join('output', f'{output_filename}.jpg')
|
91 |
+
cv2.imwrite(output_path, output)
|
92 |
+
mimetype = 'image/jpeg'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# 結果を返す
|
95 |
+
return send_file(output_path, mimetype=mimetype, as_attachment=True, download_name=os.path.basename(output_path))
|
96 |
+
|
97 |
+
except Exception as e:
|
98 |
+
return jsonify({'error': str(e)}), 500
|
99 |
+
|
100 |
+
@app.route('/')
|
101 |
+
def index():
|
102 |
+
return """
|
103 |
+
<!DOCTYPE html>
|
104 |
+
<html>
|
105 |
+
<head>
|
106 |
+
<title>Image Upscaling & Restoration API</title>
|
107 |
+
<style>
|
108 |
+
body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
|
109 |
+
.container { border: 1px solid #ddd; padding: 20px; border-radius: 5px; }
|
110 |
+
.form-group { margin-bottom: 15px; }
|
111 |
+
label { display: block; margin-bottom: 5px; }
|
112 |
+
input, select { width: 100%; padding: 8px; box-sizing: border-box; }
|
113 |
+
button { background-color: #4CAF50; color: white; padding: 10px 15px; border: none; border-radius: 4px; cursor: pointer; }
|
114 |
+
button:hover { background-color: #45a049; }
|
115 |
+
#result { margin-top: 20px; }
|
116 |
+
#preview { max-width: 100%; margin-top: 10px; }
|
117 |
+
</style>
|
118 |
+
</head>
|
119 |
+
<body>
|
120 |
+
<h1>Image Upscaling & Restoration API</h1>
|
121 |
+
<div class="container">
|
122 |
+
<form id="uploadForm" enctype="multipart/form-data">
|
123 |
+
<div class="form-group">
|
124 |
+
<label for="file">Upload Image:</label>
|
125 |
+
<input type="file" id="file" name="file" required>
|
126 |
+
</div>
|
127 |
+
<div class="form-group">
|
128 |
+
<label for="version">Version:</label>
|
129 |
+
<select id="version" name="version">
|
130 |
+
<option value="v1.2">v1.2</option>
|
131 |
+
<option value="v1.3">v1.3</option>
|
132 |
+
<option value="v1.4" selected>v1.4</option>
|
133 |
+
<option value="RestoreFormer">RestoreFormer</option>
|
134 |
+
<option value="CodeFormer">CodeFormer</option>
|
135 |
+
<option value="RealESR-General-x4v3">RealESR-General-x4v3</option>
|
136 |
+
</select>
|
137 |
+
</div>
|
138 |
+
<div class="form-group">
|
139 |
+
<label for="scale">Rescaling factor:</label>
|
140 |
+
<input type="number" id="scale" name="scale" value="2" step="0.1" min="1" max="4" required>
|
141 |
+
</div>
|
142 |
+
<!-- CodeFormer用のweightパラメータが必要な場合 -->
|
143 |
+
<!--
|
144 |
+
<div class="form-group">
|
145 |
+
<label for="weight">Weight (only for CodeFormer):</label>
|
146 |
+
<input type="range" id="weight" name="weight" min="0" max="100" value="50">
|
147 |
+
<span id="weightValue">50</span>
|
148 |
+
</div>
|
149 |
+
-->
|
150 |
+
<button type="submit">Process Image</button>
|
151 |
+
</form>
|
152 |
+
|
153 |
+
<div id="result">
|
154 |
+
<h3>Result:</h3>
|
155 |
+
<div id="outputContainer" style="display: none;">
|
156 |
+
<img id="preview" src="" alt="Processed Image">
|
157 |
+
<a id="downloadLink" href="#" download>Download Image</a>
|
158 |
+
</div>
|
159 |
+
</div>
|
160 |
+
</div>
|
161 |
+
|
162 |
+
<script>
|
163 |
+
document.getElementById('uploadForm').addEventListener('submit', function(e) {
|
164 |
+
e.preventDefault();
|
165 |
|
166 |
+
const formData = new FormData();
|
167 |
+
formData.append('file', document.getElementById('file').files[0]);
|
168 |
+
formData.append('version', document.getElementById('version').value);
|
169 |
+
formData.append('scale', document.getElementById('scale').value);
|
170 |
+
// formData.append('weight', document.getElementById('weight').value); // CodeFormer用
|
171 |
+
|
172 |
+
fetch('/api/restore', {
|
173 |
+
method: 'POST',
|
174 |
+
body: formData
|
175 |
+
})
|
176 |
+
.then(response => {
|
177 |
+
if (!response.ok) {
|
178 |
+
return response.json().then(err => { throw new Error(err.error || 'Unknown error'); });
|
179 |
+
}
|
180 |
+
return response.blob();
|
181 |
+
})
|
182 |
+
.then(blob => {
|
183 |
+
const url = URL.createObjectURL(blob);
|
184 |
+
const preview = document.getElementById('preview');
|
185 |
+
const downloadLink = document.getElementById('downloadLink');
|
186 |
+
const outputContainer = document.getElementById('outputContainer');
|
187 |
+
|
188 |
+
preview.src = url;
|
189 |
+
downloadLink.href = url;
|
190 |
+
downloadLink.download = 'restored_' + document.getElementById('file').files[0].name;
|
191 |
+
outputContainer.style.display = 'block';
|
192 |
+
})
|
193 |
+
.catch(error => {
|
194 |
+
alert('Error: ' + error.message);
|
195 |
+
});
|
196 |
+
});
|
197 |
+
|
198 |
+
// CodeFormer用のweightパラメータが必要な場合
|
199 |
+
// document.getElementById('weight').addEventListener('input', function() {
|
200 |
+
// document.getElementById('weightValue').textContent = this.value;
|
201 |
+
// });
|
202 |
+
</script>
|
203 |
+
</body>
|
204 |
+
</html>
|
205 |
+
"""
|
206 |
|
207 |
+
if __name__ == '__main__':
|
208 |
+
# ウェイトファイルをダウンロード(存在しない場合)
|
209 |
+
if not os.path.exists('realesr-general-x4v3.pth'):
|
210 |
+
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
211 |
+
if not os.path.exists('GFPGANv1.2.pth'):
|
212 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
|
213 |
+
if not os.path.exists('GFPGANv1.3.pth'):
|
214 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
|
215 |
+
if not os.path.exists('GFPGANv1.4.pth'):
|
216 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
|
217 |
+
if not os.path.exists('RestoreFormer.pth'):
|
218 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
|
219 |
+
if not os.path.exists('CodeFormer.pth'):
|
220 |
+
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
|
221 |
+
|
222 |
+
app.run(host='0.0.0.0', port=5000, debug=True)
|