File size: 17,711 Bytes
817ce26 5ed81fc 66d414f 2d3c1b3 d279f7c 66d414f 5242696 5ed81fc b00d4f1 bde0b19 5ed81fc bde0b19 5ed81fc 66d414f bde0b19 5ed81fc bde0b19 66d414f bde0b19 dcd87aa bde0b19 5ed81fc bde0b19 5ed81fc bde0b19 5ed81fc bde0b19 66d414f 5ed81fc bde0b19 66d414f 5ed81fc bde0b19 66d414f 5ed81fc bde0b19 66d414f 379bb4d 66d414f 379bb4d bde0b19 66d414f 5ed81fc bde0b19 5ed81fc bde0b19 5ed81fc bde0b19 04fc3c7 0610402 eda5c65 cee4a27 0610402 04fc3c7 0610402 bf149b3 0610402 66d414f cee4a27 0610402 cee4a27 0610402 d2f22ed 0610402 66d414f 0610402 66d414f 0610402 d2f22ed 0610402 d2f22ed 0610402 d2f22ed eab2a41 66d414f d2f22ed 66d414f d2f22ed 66d414f 0610402 d2f22ed 0610402 66d414f 0610402 66d414f 0610402 66d414f d2f22ed 66d414f d2f22ed 66d414f 0610402 d2f22ed 0610402 40f5d74 0610402 d2f22ed 0610402 d2f22ed 66d414f 0610402 66d414f 0610402 cee4a27 0610402 66d414f eda5c65 0610402 cee4a27 0610402 bde0b19 5ed81fc bde0b19 e76f661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import sys
import os
# 依存関係のインストール
os.system("git clone https://github.com/sczhou/CodeFormer.git")
os.system("cd CodeFormer && pip install -r requirements.txt")
os.system("cd CodeFormer && python basicsr/setup.py develop")
sys.path.append(os.path.abspath('CodeFormer'))
sys.path.append(os.path.abspath('CodeFormer/CodeFormer'))
# ウェイトファイルをダウンロード(毎回消えるので毎回必ず実行。)
if not os.path.exists('realesr-general-x4v3.pth'):
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
if not os.path.exists('GFPGANv1.2.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
if not os.path.exists('GFPGANv1.3.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
if not os.path.exists('GFPGANv1.4.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
if not os.path.exists('RestoreFormer.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
if not os.path.exists('CodeFormer.pth'):
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
import cv2
import torch
from flask import Flask, request, jsonify, send_file
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer
import uuid
import tempfile
from torchvision.transforms.functional import normalize
from torchvision import transforms
from PIL import Image
from basicsr.utils import img2tensor, tensor2img
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from codeformer.archs.codeformer_arch import CodeFormer
app = Flask(__name__)
# モデルの初期化
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'realesr-general-x4v3.pth'
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
os.makedirs('output', exist_ok=True)
def restore_with_codeformer(img, scale=2, weight=0.5):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = CodeFormer(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(device)
net.load_state_dict(torch.load('CodeFormer.pth')['params_ema'])
net.eval()
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = Image.fromarray(img)
face_helper = FaceRestoreHelper(
upscale_factor=scale, face_size=512, crop_ratio=(1, 1), use_parse=True,
device=device)
face_helper.clean_all()
face_helper.read_image(img)
face_helper.get_face_landmarks_5(only_center_face=False, resize=640)
face_helper.align_warp_face()
for idx, cropped_face in enumerate(face_helper.cropped_faces):
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=False, float32=True)
normalize(cropped_face_t, [0.5], [0.5], inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
with torch.no_grad():
output = net(cropped_face_t, w=weight, adain=True)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
face_helper.add_restored_face(restored_face)
restored_img = face_helper.paste_faces_to_input_image()
return cv2.cvtColor(restored_img, cv2.COLOR_RGB2BGR)
@app.route('/api/restore', methods=['POST'])
def restore_image():
try:
# リクエストからパラメータを取得
if 'file' not in request.files:
return jsonify({'error': 'No file uploaded'}), 400
file = request.files['file']
version = request.form.get('version', 'v1.4')
scale = float(request.form.get('scale', 2))
weight = float(request.form.get('weight', 0.5)) # CodeFormer用のweightパラメータ
# 一時ファイルに保存
temp_dir = tempfile.mkdtemp()
input_path = os.path.join(temp_dir, file.filename)
file.save(input_path)
# 画像処理
extension = os.path.splitext(os.path.basename(str(input_path)))[1]
img = cv2.imread(input_path, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2:
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
# バージョンに応じてモデルを選択
if version == 'v1.2':
face_enhancer = GFPGANer(
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
elif version == 'v1.3':
face_enhancer = GFPGANer(
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
elif version == 'v1.4':
face_enhancer = GFPGANer(
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
elif version == 'RestoreFormer':
face_enhancer = GFPGANer(
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
elif version == 'CodeFormer':
output = restore_with_codeformer(img, scale=scale, weight=weight)
elif version == 'RealESR-General-x4v3':
face_enhancer = GFPGANer(
model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler, map_location=torch.device('cpu'))
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
# スケール調整
if scale != 2:
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
h, w = img.shape[0:2]
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
# 出力ファイルを保存
output_filename = f'output_{uuid.uuid4().hex}'
if img_mode == 'RGBA':
output_path = os.path.join('output', f'{output_filename}.png')
cv2.imwrite(output_path, output)
mimetype = 'image/png'
else:
output_path = os.path.join('output', f'{output_filename}.jpg')
cv2.imwrite(output_path, output)
mimetype = 'image/jpeg'
# 結果を返す
return send_file(output_path, mimetype=mimetype, as_attachment=True, download_name=os.path.basename(output_path))
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/')
def index():
return """
<!DOCTYPE html>
<html>
<head>
<title>Image Upscaling & Restoration API</title>
<style>
body { font-family: Arial, sans-serif; max-width: 800px; margin: 0 auto; padding: 20px; }
.container { border: 1px solid #ddd; padding: 20px; border-radius: 5px; }
.form-group { margin-bottom: 15px; }
label { display: block; margin-bottom: 5px; }
input, select { width: 100%; padding: 8px; box-sizing: border-box; }
button { background-color: #4CAF50; color: white; padding: 10px 15px; border: none; border-radius: 4px; cursor: pointer; }
button:hover { background-color: #45a049; }
#result { margin-top: 20px; }
#preview { max-width: 100%; margin-top: 10px; }
#apiUsage { background-color: #f5f5f5; padding: 15px; border-radius: 5px; margin-top: 20px; font-family: monospace; white-space: pre-wrap; }
#apiUsage h3 { margin-top: 0; }
#formDataPreview { max-height: 200px; overflow-y: auto; margin-bottom: 10px; }
.code-block { background-color: #f8f8f8; padding: 10px; border-radius: 4px; border-left: 3px solid #4CAF50; }
.comment { color: #666; font-style: italic; }
.loader {
width: 48px;
height: 48px;
border: 5px solid #4CAF50;
border-bottom-color: transparent;
border-radius: 50%;
display: inline-block;
box-sizing: border-box;
animation: rotation 1s linear infinite;
margin: 20px auto;
display: none; /* 初期状態では非表示 */
}
@keyframes rotation {
0% {
transform: rotate(0deg);
}
100% {
transform: rotate(360deg);
}
}
</style>
</head>
<body>
<h1>Image Upscaling & Restoration API</h1>
<div class="container">
<form id="uploadForm" enctype="multipart/form-data">
<div class="form-group">
<label for="file">Upload Image:</label>
<input type="file" id="file" name="file" required>
</div>
<div class="form-group">
<label for="version">Version:</label>
<select id="version" name="version">
<option value="v1.2">GFPGANv1.2</option>
<option value="v1.3">GFPGANv1.3</option>
<option value="v1.4" selected>GFPGANv1.4</option>
<option value="RestoreFormer">RestoreFormer</option>
<option value="CodeFormer">CodeFormer</option>
<option value="RealESR-General-x4v3">RealESR-General-x4v3</option>
</select>
</div>
<div class="form-group">
<label for="scale">Rescaling factor:</label>
<input type="number" id="scale" name="scale" value="2" step="0.1" min="1" max="4" required>
</div>
<div class="form-group" id="weightGroup" style="display: none;">
<label for="weight">CodeFormer Weight (0-1):</label>
<input type="number" id="weight" name="weight" value="0.5" step="0.1" min="0" max="1">
</div>
<button type="submit" id="submitButton">Process Image</button>
</form>
<div id="loading" class="loader"></div>
<div id="result">
<h3>Result:</h3>
<div id="outputContainer" style="display: none;">
<img id="preview" src="" alt="Processed Image">
<a id="downloadLink" href="#" download>Download Image</a>
</div>
</div>
<div id="apiUsage">
<h3>API Usage:</h3>
<div id="fetchCode" class="code-block">
// JavaScript fetch code will appear here
</div>
</div>
</div>
<script>
// CodeFormerが選択された時にweightパラメータを表示
document.getElementById('version').addEventListener('change', function() {
const weightGroup = document.getElementById('weightGroup');
if (this.value === 'CodeFormer') {
weightGroup.style.display = 'block';
} else {
weightGroup.style.display = 'none';
}
updateApiUsage();
});
// フォームの変更を監視してAPI使用例を更新
function updateApiUsage() {
const fileInput = document.getElementById('file');
const version = document.getElementById('version').value;
const scale = document.getElementById('scale').value;
const weight = document.getElementById('weight').value;
// 現在のURLからベースURLを取得(パス、パラメータ、ハッシュを含めない)
const baseUrl = window.location.origin;
const apiUrl = baseUrl + '/api/restore';
// ファイルのプレビュー用文字列を準備
let filePreview = '"img-dataURL"';
if (fileInput.files.length > 0) {
const file = fileInput.files[0];
const reader = new FileReader();
reader.onload = function(e) {
const dataURL = e.target.result;
if (dataURL.length > 40) {
filePreview = "${dataURL.substring(0, 20)}...${dataURL.substring(dataURL.length - 20)}";
} else {
filePreview = "${dataURL}";
}
updateFetchCode(apiUrl, version, scale, weight, filePreview);
};
reader.readAsDataURL(file);
} else {
updateFetchCode(apiUrl, version, scale, weight, filePreview);
}
}
function updateFetchCode(apiUrl, version, scale, weight, filePreview) {
const fetchCodeDiv = document.getElementById('fetchCode');
let code = `// JavaScript fetch example:
const formData = new FormData();
formData.append('file', ${filePreview});
formData.append('version', '${version}');
formData.append('scale', ${scale});`;
if (version === 'CodeFormer') {
code += `
formData.append('weight', ${weight});`;
}
code += `
fetch('${apiUrl}', {
method: 'POST',
body: formData
})
.then(response => {
if (!response.ok) {
return response.json().then(err => { throw new Error(err.error || 'Unknown error'); });
}
return response.blob();
})
.then(blob => {
// Process the returned image blob
const url = URL.createObjectURL(blob);
console.log('Image processed successfully', url);
// Example: document.getElementById('resultImage').src = url;
})
.catch(error => {
console.error('Error:', error.message);
});`;
fetchCodeDiv.innerHTML = code;
}
// フォーム要素の変更を監視
document.getElementById('file').addEventListener('change', updateApiUsage);
document.getElementById('version').addEventListener('change', updateApiUsage);
document.getElementById('scale').addEventListener('input', updateApiUsage);
document.getElementById('weight').addEventListener('input', updateApiUsage);
// 初期表示
updateApiUsage();
document.getElementById('uploadForm').addEventListener('submit', function(e) {
e.preventDefault();
// ボタンを無効化し、ローディングを表示
const submitButton = document.getElementById('submitButton');
const loadingElement = document.getElementById('loading');
submitButton.disabled = true;
loadingElement.style.display = 'block';
const formData = new FormData();
formData.append('file', document.getElementById('file').files[0]);
formData.append('version', document.getElementById('version').value);
formData.append('scale', document.getElementById('scale').value);
// CodeFormerが選択されている場合はweightも追加
if (document.getElementById('version').value === 'CodeFormer') {
formData.append('weight', document.getElementById('weight').value);
}
// 現在のURLからベースURLを取得(パス、パラメータ、ハッシュを含めない)
const baseUrl = window.location.origin;
const apiUrl = baseUrl + '/api/restore';
fetch(apiUrl, {
method: 'POST',
body: formData
})
.then(response => {
if (!response.ok) {
return response.json().then(err => { throw new Error(err.error || 'Unknown error'); });
}
return response.blob();
})
.then(blob => {
const url = URL.createObjectURL(blob);
const preview = document.getElementById('preview');
const downloadLink = document.getElementById('downloadLink');
const outputContainer = document.getElementById('outputContainer');
preview.src = url;
downloadLink.href = url;
downloadLink.download = 'restored_' + document.getElementById('file').files[0].name;
outputContainer.style.display = 'block';
})
.catch(error => {
alert('Error: ' + error.message);
})
.finally(() => {
// 処理が終わったらローディングを非表示にし、ボタンを再有効化
loadingElement.style.display = 'none';
submitButton.disabled = false;
});
});
</script>
</body>
</html>
"""
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=True) |