Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,45 @@
|
|
1 |
-
import sys
|
2 |
import os
|
3 |
-
|
4 |
-
# 依存関係のインストール
|
5 |
-
os.system("git clone https://github.com/sczhou/CodeFormer.git")
|
6 |
-
os.system("cd CodeFormer && pip install -r requirements.txt")
|
7 |
-
os.system("cd CodeFormer && python basicsr/setup.py develop")
|
8 |
-
sys.path.append(os.path.abspath('CodeFormer'))
|
9 |
-
sys.path.append(os.path.abspath('CodeFormer/CodeFormer'))
|
10 |
-
# ウェイトファイルをダウンロード(毎回消えるので毎回必ず実行。)
|
11 |
-
if not os.path.exists('realesr-general-x4v3.pth'):
|
12 |
-
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
13 |
-
if not os.path.exists('GFPGANv1.2.pth'):
|
14 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
|
15 |
-
if not os.path.exists('GFPGANv1.3.pth'):
|
16 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
|
17 |
-
if not os.path.exists('GFPGANv1.4.pth'):
|
18 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
|
19 |
-
if not os.path.exists('RestoreFormer.pth'):
|
20 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
|
21 |
-
if not os.path.exists('CodeFormer.pth'):
|
22 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
|
23 |
-
|
24 |
import cv2
|
25 |
import torch
|
26 |
-
from flask import Flask, request, jsonify, send_file
|
27 |
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
28 |
from gfpgan.utils import GFPGANer
|
29 |
from realesrgan.utils import RealESRGANer
|
30 |
-
import uuid
|
31 |
import tempfile
|
32 |
-
|
33 |
-
from torchvision import transforms
|
34 |
-
from PIL import Image
|
35 |
-
from basicsr.utils import img2tensor, tensor2img
|
36 |
-
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
37 |
-
from codeformer.archs.codeformer_arch import CodeFormer
|
38 |
|
39 |
app = Flask(__name__)
|
40 |
|
41 |
-
#
|
42 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
43 |
model_path = 'realesr-general-x4v3.pth'
|
44 |
half = True if torch.cuda.is_available() else False
|
45 |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
46 |
|
|
|
47 |
os.makedirs('output', exist_ok=True)
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
upscale_factor=scale, face_size=512, crop_ratio=(1, 1), use_parse=True,
|
60 |
-
device=device)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
face_helper.align_warp_face()
|
66 |
|
67 |
-
|
68 |
-
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=False, float32=True)
|
69 |
-
normalize(cropped_face_t, [0.5], [0.5], inplace=True)
|
70 |
-
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
|
71 |
-
with torch.no_grad():
|
72 |
-
output = net(cropped_face_t, w=weight, adain=True)[0]
|
73 |
-
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
74 |
-
face_helper.add_restored_face(restored_face)
|
75 |
-
|
76 |
-
restored_img = face_helper.paste_faces_to_input_image()
|
77 |
-
return cv2.cvtColor(restored_img, cv2.COLOR_RGB2BGR)
|
78 |
|
79 |
-
|
80 |
-
def restore_image():
|
81 |
try:
|
82 |
-
|
83 |
-
|
84 |
-
return jsonify({'error': 'No file uploaded'}), 400
|
85 |
-
|
86 |
-
file = request.files['file']
|
87 |
-
version = request.form.get('version', 'v1.4')
|
88 |
-
scale = float(request.form.get('scale', 2))
|
89 |
-
weight = float(request.form.get('weight', 0.5)) # CodeFormer用のweightパラメータ
|
90 |
-
|
91 |
-
# 一時ファイルに保存
|
92 |
-
temp_dir = tempfile.mkdtemp()
|
93 |
-
input_path = os.path.join(temp_dir, file.filename)
|
94 |
-
file.save(input_path)
|
95 |
-
|
96 |
-
# 画像処理
|
97 |
-
extension = os.path.splitext(os.path.basename(str(input_path)))[1]
|
98 |
-
img = cv2.imread(input_path, cv2.IMREAD_UNCHANGED)
|
99 |
|
100 |
if len(img.shape) == 3 and img.shape[2] == 4:
|
101 |
img_mode = 'RGBA'
|
@@ -109,56 +53,59 @@ def restore_image():
|
|
109 |
if h < 300:
|
110 |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
111 |
|
112 |
-
# バージョンに応じてモデルを選択
|
113 |
if version == 'v1.2':
|
114 |
face_enhancer = GFPGANer(
|
115 |
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
116 |
-
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
117 |
elif version == 'v1.3':
|
118 |
face_enhancer = GFPGANer(
|
119 |
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
120 |
-
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
121 |
elif version == 'v1.4':
|
122 |
face_enhancer = GFPGANer(
|
123 |
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
124 |
-
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
125 |
elif version == 'RestoreFormer':
|
126 |
face_enhancer = GFPGANer(
|
127 |
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
128 |
-
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
129 |
elif version == 'CodeFormer':
|
130 |
-
|
|
|
131 |
elif version == 'RealESR-General-x4v3':
|
132 |
face_enhancer = GFPGANer(
|
133 |
-
model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
# 出力ファイルを保存
|
143 |
-
output_filename = f'output_{uuid.uuid4().hex}'
|
144 |
if img_mode == 'RGBA':
|
145 |
-
output_path
|
146 |
-
cv2.imwrite(output_path, output)
|
147 |
-
mimetype = 'image/png'
|
148 |
else:
|
149 |
-
output_path
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
except Exception as e:
|
157 |
-
return jsonify({'error': str(e)}), 500
|
158 |
|
159 |
@app.route('/')
|
160 |
def index():
|
161 |
-
return
|
162 |
<!DOCTYPE html>
|
163 |
<html>
|
164 |
<head>
|
@@ -278,9 +225,9 @@ def index():
|
|
278 |
reader.onload = function(e) {
|
279 |
const dataURL = e.target.result;
|
280 |
if (dataURL.length > 40) {
|
281 |
-
filePreview = "${dataURL.substring(0, 20)}...${dataURL.substring(dataURL.length - 20)}"
|
282 |
} else {
|
283 |
-
filePreview = "${dataURL}"
|
284 |
}
|
285 |
updateFetchCode(apiUrl, version, scale, weight, filePreview);
|
286 |
};
|
@@ -393,7 +340,42 @@ fetch('${apiUrl}', {
|
|
393 |
</script>
|
394 |
</body>
|
395 |
</html>
|
396 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
|
398 |
if __name__ == '__main__':
|
399 |
-
app.run(host='0.0.0.0', port=
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import cv2
|
3 |
import torch
|
4 |
+
from flask import Flask, request, jsonify, send_file, render_template_string
|
5 |
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
6 |
from gfpgan.utils import GFPGANer
|
7 |
from realesrgan.utils import RealESRGANer
|
|
|
8 |
import tempfile
|
9 |
+
import uuid
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
app = Flask(__name__)
|
12 |
|
13 |
+
# Initialize models
|
14 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
15 |
model_path = 'realesr-general-x4v3.pth'
|
16 |
half = True if torch.cuda.is_available() else False
|
17 |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
18 |
|
19 |
+
# Ensure output directory exists
|
20 |
os.makedirs('output', exist_ok=True)
|
21 |
|
22 |
+
# Download weights if not exists
|
23 |
+
def download_weights():
|
24 |
+
weights = {
|
25 |
+
'realesr-general-x4v3.pth': 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth',
|
26 |
+
'GFPGANv1.2.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth',
|
27 |
+
'GFPGANv1.3.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
|
28 |
+
'GFPGANv1.4.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
|
29 |
+
'RestoreFormer.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth',
|
30 |
+
'CodeFormer.pth': 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth'
|
31 |
+
}
|
|
|
|
|
32 |
|
33 |
+
for weight_file, url in weights.items():
|
34 |
+
if not os.path.exists(weight_file):
|
35 |
+
os.system(f"wget {url} -O {weight_file}")
|
|
|
36 |
|
37 |
+
download_weights()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
def process_image(img_path, version, scale, weight=0.5):
|
|
|
40 |
try:
|
41 |
+
extension = os.path.splitext(os.path.basename(str(img_path)))[1]
|
42 |
+
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
if len(img.shape) == 3 and img.shape[2] == 4:
|
45 |
img_mode = 'RGBA'
|
|
|
53 |
if h < 300:
|
54 |
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
55 |
|
|
|
56 |
if version == 'v1.2':
|
57 |
face_enhancer = GFPGANer(
|
58 |
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
|
|
59 |
elif version == 'v1.3':
|
60 |
face_enhancer = GFPGANer(
|
61 |
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
|
|
62 |
elif version == 'v1.4':
|
63 |
face_enhancer = GFPGANer(
|
64 |
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
|
|
65 |
elif version == 'RestoreFormer':
|
66 |
face_enhancer = GFPGANer(
|
67 |
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
|
|
68 |
elif version == 'CodeFormer':
|
69 |
+
face_enhancer = GFPGANer(
|
70 |
+
model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
71 |
elif version == 'RealESR-General-x4v3':
|
72 |
face_enhancer = GFPGANer(
|
73 |
+
model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler)
|
74 |
+
|
75 |
+
try:
|
76 |
+
if version == 'CodeFormer':
|
77 |
+
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
78 |
+
else:
|
79 |
+
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
80 |
+
except RuntimeError as error:
|
81 |
+
print('Error', error)
|
82 |
+
raise Exception(f"Enhancement error: {str(error)}")
|
83 |
|
84 |
+
try:
|
85 |
+
if scale != 2:
|
86 |
+
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
87 |
+
h, w = img.shape[0:2]
|
88 |
+
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
89 |
+
except Exception as error:
|
90 |
+
print('wrong scale input.', error)
|
91 |
+
|
92 |
+
# Save to temporary file
|
93 |
+
output_filename = f"output_{uuid.uuid4().hex}.jpg"
|
94 |
+
output_path = os.path.join('output', output_filename)
|
95 |
|
|
|
|
|
96 |
if img_mode == 'RGBA':
|
97 |
+
cv2.imwrite(output_path, output, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
|
|
|
|
|
98 |
else:
|
99 |
+
cv2.imwrite(output_path, output, [int(cv2.IMWRITE_JPEG_QUALITY), 95])
|
100 |
+
|
101 |
+
return output_path
|
102 |
+
except Exception as error:
|
103 |
+
print('Global exception', error)
|
104 |
+
raise Exception(f"Processing error: {str(error)}")
|
|
|
|
|
|
|
105 |
|
106 |
@app.route('/')
|
107 |
def index():
|
108 |
+
return render_template_string('''
|
109 |
<!DOCTYPE html>
|
110 |
<html>
|
111 |
<head>
|
|
|
225 |
reader.onload = function(e) {
|
226 |
const dataURL = e.target.result;
|
227 |
if (dataURL.length > 40) {
|
228 |
+
filePreview = `"${dataURL.substring(0, 20)}...${dataURL.substring(dataURL.length - 20)}"`;
|
229 |
} else {
|
230 |
+
filePreview = `"${dataURL}"`;
|
231 |
}
|
232 |
updateFetchCode(apiUrl, version, scale, weight, filePreview);
|
233 |
};
|
|
|
340 |
</script>
|
341 |
</body>
|
342 |
</html>
|
343 |
+
''')
|
344 |
+
|
345 |
+
@app.route('/api/restore', methods=['POST'])
|
346 |
+
def api_restore():
|
347 |
+
if 'file' not in request.files:
|
348 |
+
return jsonify({'error': 'No file uploaded'}), 400
|
349 |
+
|
350 |
+
file = request.files['file']
|
351 |
+
version = request.form.get('version', 'v1.4')
|
352 |
+
scale = float(request.form.get('scale', 2))
|
353 |
+
weight = float(request.form.get('weight', 0.5)) if version == 'CodeFormer' else None
|
354 |
+
|
355 |
+
if file.filename == '':
|
356 |
+
return jsonify({'error': 'No selected file'}), 400
|
357 |
+
|
358 |
+
try:
|
359 |
+
# Save uploaded file to temp location
|
360 |
+
temp_dir = tempfile.mkdtemp()
|
361 |
+
input_path = os.path.join(temp_dir, file.filename)
|
362 |
+
file.save(input_path)
|
363 |
+
|
364 |
+
# Process image
|
365 |
+
output_path = process_image(input_path, version, scale, weight)
|
366 |
+
|
367 |
+
# Return the processed image
|
368 |
+
return send_file(output_path, mimetype='image/jpeg')
|
369 |
+
|
370 |
+
except Exception as e:
|
371 |
+
return jsonify({'error': str(e)}), 500
|
372 |
+
|
373 |
+
finally:
|
374 |
+
# Clean up temp files
|
375 |
+
if 'input_path' in locals() and os.path.exists(input_path):
|
376 |
+
os.remove(input_path)
|
377 |
+
if 'temp_dir' in locals() and os.path.exists(temp_dir):
|
378 |
+
os.rmdir(temp_dir)
|
379 |
|
380 |
if __name__ == '__main__':
|
381 |
+
app.run(host='0.0.0.0', port=5000, debug=True)
|