Spaces:
Build error
Build error
Commit
·
01ad5b5
1
Parent(s):
ac1883f
Upload 5 files
Browse files- configs/__init__.py +0 -0
- configs/data_configs.py +48 -0
- configs/dataset_config.yml +60 -0
- configs/paths_config.py +25 -0
- configs/transforms_config.py +242 -0
configs/__init__.py
ADDED
|
File without changes
|
configs/data_configs.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from configs import transforms_config
|
| 2 |
+
from configs.paths_config import dataset_paths
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
DATASETS = {
|
| 6 |
+
'ffhq_encode': {
|
| 7 |
+
'transforms': transforms_config.EncodeTransforms,
|
| 8 |
+
'train_source_root': dataset_paths['ffhq'],
|
| 9 |
+
'train_target_root': dataset_paths['ffhq'],
|
| 10 |
+
'test_source_root': dataset_paths['ffhq_test'],
|
| 11 |
+
'test_target_root': dataset_paths['ffhq_test'],
|
| 12 |
+
},
|
| 13 |
+
'ffhq_sketch_to_face': {
|
| 14 |
+
'transforms': transforms_config.SketchToImageTransforms,
|
| 15 |
+
'train_source_root': dataset_paths['ffhq_train_sketch'],
|
| 16 |
+
'train_target_root': dataset_paths['ffhq'],
|
| 17 |
+
'test_source_root': dataset_paths['ffhq_test_sketch'],
|
| 18 |
+
'test_target_root': dataset_paths['ffhq_test'],
|
| 19 |
+
},
|
| 20 |
+
'ffhq_seg_to_face': {
|
| 21 |
+
'transforms': transforms_config.SegToImageTransforms,
|
| 22 |
+
'train_source_root': dataset_paths['ffhq_train_segmentation'],
|
| 23 |
+
'train_target_root': dataset_paths['ffhq'],
|
| 24 |
+
'test_source_root': dataset_paths['ffhq_test_segmentation'],
|
| 25 |
+
'test_target_root': dataset_paths['ffhq_test'],
|
| 26 |
+
},
|
| 27 |
+
'ffhq_super_resolution': {
|
| 28 |
+
'transforms': transforms_config.SuperResTransforms,
|
| 29 |
+
'train_source_root': dataset_paths['ffhq'],
|
| 30 |
+
'train_target_root': dataset_paths['ffhq1280'],
|
| 31 |
+
'test_source_root': dataset_paths['ffhq_test'],
|
| 32 |
+
'test_target_root': dataset_paths['ffhq1280_test'],
|
| 33 |
+
},
|
| 34 |
+
'toonify': {
|
| 35 |
+
'transforms': transforms_config.ToonifyTransforms,
|
| 36 |
+
'train_source_root': dataset_paths['toonify_in'],
|
| 37 |
+
'train_target_root': dataset_paths['toonify_out'],
|
| 38 |
+
'test_source_root': dataset_paths['toonify_test_in'],
|
| 39 |
+
'test_target_root': dataset_paths['toonify_test_out'],
|
| 40 |
+
},
|
| 41 |
+
'ffhq_edit': {
|
| 42 |
+
'transforms': transforms_config.EditingTransforms,
|
| 43 |
+
'train_source_root': dataset_paths['ffhq'],
|
| 44 |
+
'train_target_root': dataset_paths['ffhq'],
|
| 45 |
+
'test_source_root': dataset_paths['ffhq_test'],
|
| 46 |
+
'test_target_root': dataset_paths['ffhq_test'],
|
| 47 |
+
},
|
| 48 |
+
}
|
configs/dataset_config.yml
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# dataset and data loader settings
|
| 2 |
+
datasets:
|
| 3 |
+
train:
|
| 4 |
+
name: FFHQ
|
| 5 |
+
type: FFHQDegradationDataset
|
| 6 |
+
# dataroot_gt: datasets/ffhq/ffhq_512.lmdb
|
| 7 |
+
dataroot_gt: ../../../../share/shuaiyang/ffhq/realign1280x1280test/
|
| 8 |
+
io_backend:
|
| 9 |
+
# type: lmdb
|
| 10 |
+
type: disk
|
| 11 |
+
|
| 12 |
+
use_hflip: true
|
| 13 |
+
mean: [0.5, 0.5, 0.5]
|
| 14 |
+
std: [0.5, 0.5, 0.5]
|
| 15 |
+
out_size: 1280
|
| 16 |
+
scale: 4
|
| 17 |
+
|
| 18 |
+
blur_kernel_size: 41
|
| 19 |
+
kernel_list: ['iso', 'aniso']
|
| 20 |
+
kernel_prob: [0.5, 0.5]
|
| 21 |
+
blur_sigma: [0.1, 10]
|
| 22 |
+
downsample_range: [4, 40]
|
| 23 |
+
noise_range: [0, 20]
|
| 24 |
+
jpeg_range: [60, 100]
|
| 25 |
+
|
| 26 |
+
# color jitter and gray
|
| 27 |
+
#color_jitter_prob: 0.3
|
| 28 |
+
#color_jitter_shift: 20
|
| 29 |
+
#color_jitter_pt_prob: 0.3
|
| 30 |
+
#gray_prob: 0.01
|
| 31 |
+
|
| 32 |
+
# If you do not want colorization, please set
|
| 33 |
+
color_jitter_prob: ~
|
| 34 |
+
color_jitter_pt_prob: ~
|
| 35 |
+
gray_prob: 0.01
|
| 36 |
+
gt_gray: True
|
| 37 |
+
|
| 38 |
+
crop_components: true
|
| 39 |
+
component_path: ./pretrained_models/FFHQ_eye_mouth_landmarks_512.pth
|
| 40 |
+
eye_enlarge_ratio: 1.4
|
| 41 |
+
|
| 42 |
+
# data loader
|
| 43 |
+
use_shuffle: true
|
| 44 |
+
num_worker_per_gpu: 6
|
| 45 |
+
batch_size_per_gpu: 4
|
| 46 |
+
dataset_enlarge_ratio: 1
|
| 47 |
+
prefetch_mode: ~
|
| 48 |
+
|
| 49 |
+
val:
|
| 50 |
+
# Please modify accordingly to use your own validation
|
| 51 |
+
# Or comment the val block if do not need validation during training
|
| 52 |
+
name: validation
|
| 53 |
+
type: PairedImageDataset
|
| 54 |
+
dataroot_lq: datasets/faces/validation/input
|
| 55 |
+
dataroot_gt: datasets/faces/validation/reference
|
| 56 |
+
io_backend:
|
| 57 |
+
type: disk
|
| 58 |
+
mean: [0.5, 0.5, 0.5]
|
| 59 |
+
std: [0.5, 0.5, 0.5]
|
| 60 |
+
scale: 1
|
configs/paths_config.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dataset_paths = {
|
| 2 |
+
'ffhq': 'data/train/ffhq/realign320x320/',
|
| 3 |
+
'ffhq_test': 'data/train/ffhq/realign320x320test/',
|
| 4 |
+
'ffhq1280': 'data/train/ffhq/realign1280x1280/',
|
| 5 |
+
'ffhq1280_test': 'data/train/ffhq/realign1280x1280test/',
|
| 6 |
+
'ffhq_train_sketch': 'data/train/ffhq/realign640x640sketch/',
|
| 7 |
+
'ffhq_test_sketch': 'data/train/ffhq/realign640x640sketchtest/',
|
| 8 |
+
'ffhq_train_segmentation': 'data/train/ffhq/realign320x320mask/',
|
| 9 |
+
'ffhq_test_segmentation': 'data/train/ffhq/realign320x320masktest/',
|
| 10 |
+
'toonify_in': 'data/train/pixar/trainA/',
|
| 11 |
+
'toonify_out': 'data/train/pixar/trainB/',
|
| 12 |
+
'toonify_test_in': 'data/train/pixar/testA/',
|
| 13 |
+
'toonify_test_out': 'data/train/testB/',
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
model_paths = {
|
| 17 |
+
'stylegan_ffhq': 'pretrained_models/stylegan2-ffhq-config-f.pt',
|
| 18 |
+
'ir_se50': 'pretrained_models/model_ir_se50.pth',
|
| 19 |
+
'circular_face': 'pretrained_models/CurricularFace_Backbone.pth',
|
| 20 |
+
'mtcnn_pnet': 'pretrained_models/mtcnn/pnet.npy',
|
| 21 |
+
'mtcnn_rnet': 'pretrained_models/mtcnn/rnet.npy',
|
| 22 |
+
'mtcnn_onet': 'pretrained_models/mtcnn/onet.npy',
|
| 23 |
+
'shape_predictor': 'shape_predictor_68_face_landmarks.dat',
|
| 24 |
+
'moco': 'pretrained_models/moco_v2_800ep_pretrain.pth.tar'
|
| 25 |
+
}
|
configs/transforms_config.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import abstractmethod
|
| 2 |
+
import torchvision.transforms as transforms
|
| 3 |
+
from datasets import augmentations
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class TransformsConfig(object):
|
| 7 |
+
|
| 8 |
+
def __init__(self, opts):
|
| 9 |
+
self.opts = opts
|
| 10 |
+
|
| 11 |
+
@abstractmethod
|
| 12 |
+
def get_transforms(self):
|
| 13 |
+
pass
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class EncodeTransforms(TransformsConfig):
|
| 17 |
+
|
| 18 |
+
def __init__(self, opts):
|
| 19 |
+
super(EncodeTransforms, self).__init__(opts)
|
| 20 |
+
|
| 21 |
+
def get_transforms(self):
|
| 22 |
+
transforms_dict = {
|
| 23 |
+
'transform_gt_train': transforms.Compose([
|
| 24 |
+
transforms.Resize((320, 320)),
|
| 25 |
+
transforms.RandomHorizontalFlip(0.5),
|
| 26 |
+
transforms.ToTensor(),
|
| 27 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 28 |
+
'transform_source': None,
|
| 29 |
+
'transform_test': transforms.Compose([
|
| 30 |
+
transforms.Resize((320, 320)),
|
| 31 |
+
transforms.ToTensor(),
|
| 32 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 33 |
+
'transform_inference': transforms.Compose([
|
| 34 |
+
transforms.Resize((320, 320)),
|
| 35 |
+
transforms.ToTensor(),
|
| 36 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
| 37 |
+
}
|
| 38 |
+
return transforms_dict
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class FrontalizationTransforms(TransformsConfig):
|
| 42 |
+
|
| 43 |
+
def __init__(self, opts):
|
| 44 |
+
super(FrontalizationTransforms, self).__init__(opts)
|
| 45 |
+
|
| 46 |
+
def get_transforms(self):
|
| 47 |
+
transforms_dict = {
|
| 48 |
+
'transform_gt_train': transforms.Compose([
|
| 49 |
+
transforms.Resize((256, 256)),
|
| 50 |
+
transforms.RandomHorizontalFlip(0.5),
|
| 51 |
+
transforms.ToTensor(),
|
| 52 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 53 |
+
'transform_source': transforms.Compose([
|
| 54 |
+
transforms.Resize((256, 256)),
|
| 55 |
+
transforms.RandomHorizontalFlip(0.5),
|
| 56 |
+
transforms.ToTensor(),
|
| 57 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 58 |
+
'transform_test': transforms.Compose([
|
| 59 |
+
transforms.Resize((256, 256)),
|
| 60 |
+
transforms.ToTensor(),
|
| 61 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 62 |
+
'transform_inference': transforms.Compose([
|
| 63 |
+
transforms.Resize((256, 256)),
|
| 64 |
+
transforms.ToTensor(),
|
| 65 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
| 66 |
+
}
|
| 67 |
+
return transforms_dict
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class SketchToImageTransforms(TransformsConfig):
|
| 71 |
+
|
| 72 |
+
def __init__(self, opts):
|
| 73 |
+
super(SketchToImageTransforms, self).__init__(opts)
|
| 74 |
+
|
| 75 |
+
def get_transforms(self):
|
| 76 |
+
transforms_dict = {
|
| 77 |
+
'transform_gt_train': transforms.Compose([
|
| 78 |
+
transforms.Resize((320, 320)),
|
| 79 |
+
transforms.ToTensor(),
|
| 80 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 81 |
+
'transform_source': transforms.Compose([
|
| 82 |
+
transforms.Resize((320, 320)),
|
| 83 |
+
transforms.ToTensor()]),
|
| 84 |
+
'transform_test': transforms.Compose([
|
| 85 |
+
transforms.Resize((320, 320)),
|
| 86 |
+
transforms.ToTensor(),
|
| 87 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 88 |
+
'transform_inference': transforms.Compose([
|
| 89 |
+
transforms.Resize((320, 320)),
|
| 90 |
+
transforms.ToTensor()]),
|
| 91 |
+
}
|
| 92 |
+
return transforms_dict
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class SegToImageTransforms(TransformsConfig):
|
| 96 |
+
|
| 97 |
+
def __init__(self, opts):
|
| 98 |
+
super(SegToImageTransforms, self).__init__(opts)
|
| 99 |
+
|
| 100 |
+
def get_transforms(self):
|
| 101 |
+
transforms_dict = {
|
| 102 |
+
'transform_gt_train': transforms.Compose([
|
| 103 |
+
transforms.Resize((320, 320)),
|
| 104 |
+
transforms.ToTensor(),
|
| 105 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 106 |
+
'transform_source': transforms.Compose([
|
| 107 |
+
transforms.Resize((320, 320)),
|
| 108 |
+
augmentations.ToOneHot(self.opts.label_nc),
|
| 109 |
+
transforms.ToTensor()]),
|
| 110 |
+
'transform_test': transforms.Compose([
|
| 111 |
+
transforms.Resize((320, 320)),
|
| 112 |
+
transforms.ToTensor(),
|
| 113 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 114 |
+
'transform_inference': transforms.Compose([
|
| 115 |
+
transforms.Resize((320, 320)),
|
| 116 |
+
augmentations.ToOneHot(self.opts.label_nc),
|
| 117 |
+
transforms.ToTensor()])
|
| 118 |
+
}
|
| 119 |
+
return transforms_dict
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class SuperResTransforms(TransformsConfig):
|
| 123 |
+
|
| 124 |
+
def __init__(self, opts):
|
| 125 |
+
super(SuperResTransforms, self).__init__(opts)
|
| 126 |
+
|
| 127 |
+
def get_transforms(self):
|
| 128 |
+
if self.opts.resize_factors is None:
|
| 129 |
+
self.opts.resize_factors = '1,2,4,8,16,32'
|
| 130 |
+
factors = [int(f) for f in self.opts.resize_factors.split(",")]
|
| 131 |
+
print("Performing down-sampling with factors: {}".format(factors))
|
| 132 |
+
transforms_dict = {
|
| 133 |
+
'transform_gt_train': transforms.Compose([
|
| 134 |
+
transforms.Resize((1280, 1280)),
|
| 135 |
+
transforms.ToTensor(),
|
| 136 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 137 |
+
'transform_source': transforms.Compose([
|
| 138 |
+
transforms.Resize((320, 320)),
|
| 139 |
+
augmentations.BilinearResize(factors=factors),
|
| 140 |
+
transforms.Resize((320, 320)),
|
| 141 |
+
transforms.ToTensor(),
|
| 142 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 143 |
+
'transform_test': transforms.Compose([
|
| 144 |
+
transforms.Resize((1280, 1280)),
|
| 145 |
+
transforms.ToTensor(),
|
| 146 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 147 |
+
'transform_inference': transforms.Compose([
|
| 148 |
+
transforms.Resize((320, 320)),
|
| 149 |
+
augmentations.BilinearResize(factors=factors),
|
| 150 |
+
transforms.Resize((320, 320)),
|
| 151 |
+
transforms.ToTensor(),
|
| 152 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
| 153 |
+
}
|
| 154 |
+
return transforms_dict
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class SuperResTransforms_320(TransformsConfig):
|
| 158 |
+
|
| 159 |
+
def __init__(self, opts):
|
| 160 |
+
super(SuperResTransforms_320, self).__init__(opts)
|
| 161 |
+
|
| 162 |
+
def get_transforms(self):
|
| 163 |
+
if self.opts.resize_factors is None:
|
| 164 |
+
self.opts.resize_factors = '1,2,4,8,16,32'
|
| 165 |
+
factors = [int(f) for f in self.opts.resize_factors.split(",")]
|
| 166 |
+
print("Performing down-sampling with factors: {}".format(factors))
|
| 167 |
+
transforms_dict = {
|
| 168 |
+
'transform_gt_train': transforms.Compose([
|
| 169 |
+
transforms.Resize((320, 320)),
|
| 170 |
+
transforms.ToTensor(),
|
| 171 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 172 |
+
'transform_source': transforms.Compose([
|
| 173 |
+
transforms.Resize((320, 320)),
|
| 174 |
+
augmentations.BilinearResize(factors=factors),
|
| 175 |
+
transforms.Resize((320, 320)),
|
| 176 |
+
transforms.ToTensor(),
|
| 177 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 178 |
+
'transform_test': transforms.Compose([
|
| 179 |
+
transforms.Resize((320, 320)),
|
| 180 |
+
transforms.ToTensor(),
|
| 181 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 182 |
+
'transform_inference': transforms.Compose([
|
| 183 |
+
transforms.Resize((320, 320)),
|
| 184 |
+
augmentations.BilinearResize(factors=factors),
|
| 185 |
+
transforms.Resize((320, 320)),
|
| 186 |
+
transforms.ToTensor(),
|
| 187 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
| 188 |
+
}
|
| 189 |
+
return transforms_dict
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
class ToonifyTransforms(TransformsConfig):
|
| 193 |
+
|
| 194 |
+
def __init__(self, opts):
|
| 195 |
+
super(ToonifyTransforms, self).__init__(opts)
|
| 196 |
+
|
| 197 |
+
def get_transforms(self):
|
| 198 |
+
transforms_dict = {
|
| 199 |
+
'transform_gt_train': transforms.Compose([
|
| 200 |
+
transforms.Resize((1024, 1024)),
|
| 201 |
+
transforms.ToTensor(),
|
| 202 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 203 |
+
'transform_source': transforms.Compose([
|
| 204 |
+
transforms.Resize((256, 256)),
|
| 205 |
+
transforms.ToTensor(),
|
| 206 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 207 |
+
'transform_test': transforms.Compose([
|
| 208 |
+
transforms.Resize((1024, 1024)),
|
| 209 |
+
transforms.ToTensor(),
|
| 210 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 211 |
+
'transform_inference': transforms.Compose([
|
| 212 |
+
transforms.Resize((256, 256)),
|
| 213 |
+
transforms.ToTensor(),
|
| 214 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
| 215 |
+
}
|
| 216 |
+
return transforms_dict
|
| 217 |
+
|
| 218 |
+
class EditingTransforms(TransformsConfig):
|
| 219 |
+
|
| 220 |
+
def __init__(self, opts):
|
| 221 |
+
super(EditingTransforms, self).__init__(opts)
|
| 222 |
+
|
| 223 |
+
def get_transforms(self):
|
| 224 |
+
transforms_dict = {
|
| 225 |
+
'transform_gt_train': transforms.Compose([
|
| 226 |
+
transforms.Resize((1280, 1280)),
|
| 227 |
+
transforms.ToTensor(),
|
| 228 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 229 |
+
'transform_source': transforms.Compose([
|
| 230 |
+
transforms.Resize((320, 320)),
|
| 231 |
+
transforms.ToTensor(),
|
| 232 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 233 |
+
'transform_test': transforms.Compose([
|
| 234 |
+
transforms.Resize((1280, 1280)),
|
| 235 |
+
transforms.ToTensor(),
|
| 236 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
|
| 237 |
+
'transform_inference': transforms.Compose([
|
| 238 |
+
transforms.Resize((320, 320)),
|
| 239 |
+
transforms.ToTensor(),
|
| 240 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
| 241 |
+
}
|
| 242 |
+
return transforms_dict
|