Spaces:
Sleeping
Sleeping
| import os | |
| import numpy as np | |
| import torch | |
| from torch.autograd import Variable | |
| from torchvision import transforms | |
| import torch.nn.functional as F | |
| from flask import Flask, request, jsonify, render_template, send_from_directory | |
| from PIL import Image | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| # Clone repository and setup (only run once) | |
| if not os.path.exists("DIS"): | |
| os.system("git clone https://github.com/xuebinqin/DIS") | |
| os.system("mv DIS/IS-Net/* .") | |
| # Project imports | |
| from data_loader_cache import normalize, im_reader, im_preprocess | |
| from models import * | |
| # Setup device | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # Download official weights if not exists | |
| if not os.path.exists("saved_models"): | |
| os.makedirs("saved_models", exist_ok=True) | |
| if not os.path.exists("saved_models/isnet.pth"): | |
| if os.path.exists("isnet.pth"): | |
| os.rename("isnet.pth", "saved_models/isnet.pth") | |
| class GOSNormalize(object): | |
| def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): | |
| self.mean = mean | |
| self.std = std | |
| def __call__(self, image): | |
| image = normalize(image, self.mean, self.std) | |
| return image | |
| transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])]) | |
| def load_image(im_path, hypar): | |
| im = im_reader(im_path) | |
| # Convert numpy array to PIL Image if needed | |
| if isinstance(im, np.ndarray): | |
| if im.ndim == 3 and im.shape[2] == 4: # RGBA image | |
| im = Image.fromarray(im).convert('RGB') | |
| elif im.ndim == 3: # RGB image | |
| im = Image.fromarray(im) | |
| elif im.ndim == 2: # Grayscale image | |
| im = Image.fromarray(im).convert('RGB') | |
| # If it's already PIL Image, check mode | |
| elif hasattr(im, 'mode'): | |
| if im.mode == 'RGBA': | |
| im = im.convert('RGB') | |
| im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
| im = torch.divide(im, 255.0) | |
| shape = torch.from_numpy(np.array(im_shp)) | |
| return transform(im).unsqueeze(0), shape.unsqueeze(0) | |
| def build_model(hypar, device): | |
| net = hypar["model"] | |
| if hypar["model_digit"] == "half": | |
| net.half() | |
| for layer in net.modules(): | |
| if isinstance(layer, nn.BatchNorm2d): | |
| layer.float() | |
| net.to(device) | |
| if hypar["restore_model"] != "": | |
| net.load_state_dict(torch.load(os.path.join(hypar["model_path"], hypar["restore_model"]), | |
| map_location=device)) | |
| net.eval() | |
| return net | |
| def predict(net, inputs_val, shapes_val, hypar, device): | |
| net.eval() | |
| if hypar["model_digit"] == "full": | |
| inputs_val = inputs_val.type(torch.FloatTensor) | |
| else: | |
| inputs_val = inputs_val.type(torch.HalfTensor) | |
| inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) | |
| ds_val = net(inputs_val_v)[0] | |
| pred_val = ds_val[0][0, :, :, :] | |
| pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0), | |
| (shapes_val[0][0], shapes_val[0][1]), mode='bilinear')) | |
| ma = torch.max(pred_val) | |
| mi = torch.min(pred_val) | |
| pred_val = (pred_val - mi) / (ma - mi) | |
| if device == 'cuda': | |
| torch.cuda.empty_cache() | |
| return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8) | |
| # Set Parameters | |
| hypar = { | |
| "model_path": "./saved_models", | |
| "restore_model": "isnet.pth", | |
| "interm_sup": False, | |
| "model_digit": "full", | |
| "seed": 0, | |
| "cache_size": [1024, 1024], | |
| "input_size": [1024, 1024], | |
| "crop_size": [1024, 1024], | |
| "model": ISNetDIS() | |
| } | |
| # Build Model | |
| net = build_model(hypar, device) | |
| # Flask app | |
| app = Flask(__name__) | |
| app.config['UPLOAD_FOLDER'] = 'uploads' | |
| app.config['RESULT_FOLDER'] = 'results' | |
| os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) | |
| os.makedirs(app.config['RESULT_FOLDER'], exist_ok=True) | |
| def index(): | |
| return render_template('index.html') | |
| def remove_background(): | |
| if 'image' not in request.files: | |
| return jsonify({'error': 'No image provided'}), 400 | |
| file = request.files['image'] | |
| if file.filename == '': | |
| return jsonify({'error': 'No image selected'}), 400 | |
| # Save uploaded file | |
| upload_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename) | |
| file.save(upload_path) | |
| try: | |
| # Process image | |
| image_tensor, orig_size = load_image(upload_path, hypar) | |
| mask = predict(net, image_tensor, orig_size, hypar, device) | |
| # Create results | |
| pil_mask = Image.fromarray(mask).convert('L') | |
| im_rgb = Image.open(upload_path).convert("RGB") | |
| im_rgba = im_rgb.copy() | |
| im_rgba.putalpha(pil_mask) | |
| # Save results | |
| result_rgba_path = os.path.join(app.config['RESULT_FOLDER'], f"rgba_{file.filename}") | |
| result_mask_path = os.path.join(app.config['RESULT_FOLDER'], f"mask_{file.filename}") | |
| im_rgba.save(result_rgba_path, format="PNG") | |
| pil_mask.save(result_mask_path, format="PNG") | |
| return jsonify({ | |
| 'rgba_image': f"/results/rgba_{file.filename}", | |
| 'mask_image': f"/results/mask_{file.filename}", | |
| 'original_filename': file.filename | |
| }) | |
| except Exception as e: | |
| return jsonify({'error': str(e)}), 500 | |
| def serve_result(filename): | |
| return send_from_directory(app.config['RESULT_FOLDER'], filename) | |
| def serve_upload(filename): | |
| return send_from_directory(app.config['UPLOAD_FOLDER'], filename) | |
| if __name__ == '__main__': | |
| app.run(host='0.0.0.0', port=5000, debug=True) |