soiz1's picture
Update app.py
b90811d verified
raw
history blame
5.73 kB
import os
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
from flask import Flask, request, jsonify, render_template, send_from_directory
from PIL import Image
import warnings
warnings.filterwarnings("ignore")
# Clone repository and setup (only run once)
if not os.path.exists("DIS"):
os.system("git clone https://github.com/xuebinqin/DIS")
os.system("mv DIS/IS-Net/* .")
# Project imports
from data_loader_cache import normalize, im_reader, im_preprocess
from models import *
# Setup device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Download official weights if not exists
if not os.path.exists("saved_models"):
os.makedirs("saved_models", exist_ok=True)
if not os.path.exists("saved_models/isnet.pth"):
if os.path.exists("isnet.pth"):
os.rename("isnet.pth", "saved_models/isnet.pth")
class GOSNormalize(object):
def __init__(self, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
self.mean = mean
self.std = std
def __call__(self, image):
image = normalize(image, self.mean, self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5, 0.5, 0.5], [1.0, 1.0, 1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
# Convert numpy array to PIL Image if needed
if isinstance(im, np.ndarray):
if im.ndim == 3 and im.shape[2] == 4: # RGBA image
im = Image.fromarray(im).convert('RGB')
elif im.ndim == 3: # RGB image
im = Image.fromarray(im)
elif im.ndim == 2: # Grayscale image
im = Image.fromarray(im).convert('RGB')
# If it's already PIL Image, check mode
elif hasattr(im, 'mode'):
if im.mode == 'RGBA':
im = im.convert('RGB')
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im, 255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar, device):
net = hypar["model"]
if hypar["model_digit"] == "half":
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if hypar["restore_model"] != "":
net.load_state_dict(torch.load(os.path.join(hypar["model_path"], hypar["restore_model"]),
map_location=device))
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if hypar["model_digit"] == "full":
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0, :, :, :]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val, 0),
(shapes_val[0][0], shapes_val[0][1]), mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val - mi) / (ma - mi)
if device == 'cuda':
torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy() * 255).astype(np.uint8)
# Set Parameters
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
# Build Model
net = build_model(hypar, device)
# Flask app
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['RESULT_FOLDER'] = 'results'
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
os.makedirs(app.config['RESULT_FOLDER'], exist_ok=True)
@app.route('/', methods=['GET'])
def index():
return render_template('index.html')
@app.route('/api/remove_bg', methods=['POST'])
def remove_background():
if 'image' not in request.files:
return jsonify({'error': 'No image provided'}), 400
file = request.files['image']
if file.filename == '':
return jsonify({'error': 'No image selected'}), 400
# Save uploaded file
upload_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
file.save(upload_path)
try:
# Process image
image_tensor, orig_size = load_image(upload_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
# Create results
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(upload_path).convert("RGB")
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
# Save results
result_rgba_path = os.path.join(app.config['RESULT_FOLDER'], f"rgba_{file.filename}")
result_mask_path = os.path.join(app.config['RESULT_FOLDER'], f"mask_{file.filename}")
im_rgba.save(result_rgba_path, format="PNG")
pil_mask.save(result_mask_path, format="PNG")
return jsonify({
'rgba_image': f"/results/rgba_{file.filename}",
'mask_image': f"/results/mask_{file.filename}",
'original_filename': file.filename
})
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/results/<filename>')
def serve_result(filename):
return send_from_directory(app.config['RESULT_FOLDER'], filename)
@app.route('/uploads/<filename>')
def serve_upload(filename):
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000, debug=True)