Spaces:
Sleeping
Sleeping
| import cv2 | |
| import os | |
| from PIL import Image | |
| import numpy as np | |
| import torch | |
| from torch.autograd import Variable | |
| from torchvision import transforms | |
| import torch.nn.functional as F | |
| from flask import Flask, request, jsonify, render_template, send_from_directory | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| # Clone repository and setup (only run once) | |
| if not os.path.exists("DIS"): | |
| os.system("git clone https://github.com/xuebinqin/DIS") | |
| os.system("mv DIS/IS-Net/* .") | |
| # Project imports | |
| from data_loader_cache import normalize, im_reader, im_preprocess | |
| from models import * | |
| # Setup device | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| # Download official weights if not exists | |
| if not os.path.exists("saved_models"): | |
| os.mkdir("saved_models") | |
| if not os.path.exists("saved_models/isnet.pth"): | |
| os.system("mv isnet.pth saved_models/") | |
| class GOSNormalize(object): | |
| ''' | |
| Normalize the Image using torch.transforms | |
| ''' | |
| def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): | |
| self.mean = mean | |
| self.std = std | |
| def __call__(self,image): | |
| image = normalize(image,self.mean,self.std) | |
| return image | |
| transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) | |
| def load_image(im_path, hypar): | |
| im = im_reader(im_path) | |
| im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
| im = torch.divide(im,255.0) | |
| shape = torch.from_numpy(np.array(im_shp)) | |
| return transform(im).unsqueeze(0), shape.unsqueeze(0) # make a batch of image, shape | |
| def build_model(hypar,device): | |
| net = hypar["model"]#GOSNETINC(3,1) | |
| # convert to half precision | |
| if(hypar["model_digit"]=="half"): | |
| net.half() | |
| for layer in net.modules(): | |
| if isinstance(layer, nn.BatchNorm2d): | |
| layer.float() | |
| net.to(device) | |
| if(hypar["restore_model"]!=""): | |
| net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) | |
| net.to(device) | |
| net.eval() | |
| return net | |
| def predict(net, inputs_val, shapes_val, hypar, device): | |
| ''' | |
| Given an Image, predict the mask | |
| ''' | |
| net.eval() | |
| if(hypar["model_digit"]=="full"): | |
| inputs_val = inputs_val.type(torch.FloatTensor) | |
| else: | |
| inputs_val = inputs_val.type(torch.HalfTensor) | |
| inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) # wrap inputs in Variable | |
| ds_val = net(inputs_val_v)[0] # list of 6 results | |
| pred_val = ds_val[0][0,:,:,:] # B x 1 x H x W # we want the first one which is the most accurate prediction | |
| ## recover the prediction spatial size to the orignal image size | |
| pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) | |
| ma = torch.max(pred_val) | |
| mi = torch.min(pred_val) | |
| pred_val = (pred_val-mi)/(ma-mi) # max = 1 | |
| if device == 'cuda': torch.cuda.empty_cache() | |
| return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) # it is the mask we need | |
| # Set Parameters | |
| hypar = {} # paramters for inferencing | |
| hypar["model_path"] ="./saved_models" ## load trained weights from this path | |
| hypar["restore_model"] = "isnet.pth" ## name of the to-be-loaded weights | |
| hypar["interm_sup"] = False ## indicate if activate intermediate feature supervision | |
| hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number | |
| hypar["seed"] = 0 | |
| hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution | |
| hypar["input_size"] = [1024, 1024] ## model input spatial size | |
| hypar["crop_size"] = [1024, 1024] ## random crop size from the input | |
| hypar["model"] = ISNetDIS() | |
| # Build Model | |
| net = build_model(hypar, device) | |
| # Flask app | |
| app = Flask(__name__) | |
| app.config['UPLOAD_FOLDER'] = 'uploads' | |
| app.config['RESULT_FOLDER'] = 'results' | |
| os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True) | |
| os.makedirs(app.config['RESULT_FOLDER'], exist_ok=True) | |
| def index(): | |
| return render_template('index.html') | |
| def remove_background(): | |
| if 'image' not in request.files: | |
| return jsonify({'error': 'No image provided'}), 400 | |
| file = request.files['image'] | |
| if file.filename == '': | |
| return jsonify({'error': 'No image selected'}), 400 | |
| # Save uploaded file | |
| upload_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename) | |
| file.save(upload_path) | |
| try: | |
| # Process image | |
| image_tensor, orig_size = load_image(upload_path, hypar) | |
| mask = predict(net, image_tensor, orig_size, hypar, device) | |
| # Create results | |
| pil_mask = Image.fromarray(mask).convert('L') | |
| im_rgb = Image.open(upload_path).convert("RGB") | |
| im_rgba = im_rgb.copy() | |
| im_rgba.putalpha(pil_mask) | |
| # Save results | |
| result_rgba_path = os.path.join(app.config['RESULT_FOLDER'], f"rgba_{file.filename}") | |
| result_mask_path = os.path.join(app.config['RESULT_FOLDER'], f"mask_{file.filename}") | |
| im_rgba.save(result_rgba_path, format="PNG") | |
| pil_mask.save(result_mask_path, format="PNG") | |
| return jsonify({ | |
| 'rgba_image': f"/results/rgba_{file.filename}", | |
| 'mask_image': f"/results/mask_{file.filename}" | |
| }) | |
| except Exception as e: | |
| return jsonify({'error': str(e)}), 500 | |
| def serve_result(filename): | |
| return send_from_directory(app.config['RESULT_FOLDER'], filename) | |
| def serve_upload(filename): | |
| return send_from_directory(app.config['UPLOAD_FOLDER'], filename) | |
| if __name__ == '__main__': | |
| app.run(host='0.0.0.0', port=5000, debug=True) |